QUANTUM THEORY
WITHOUT OBSERVERS—
PART TwO

lbert Einstein believed

in the possibility of a
quantum theory without ob-
servers—a version of quan-
tum theory for which the
notions of measurement, ob-
servation and observer are
not invoked in its very for-
mulation, but rather emerge
from an analysis of more
fundamental concepts.
Niels Bohr believed that
such a theory was “in prin-
ciple” impossible. In part
one of this article, I described one approach to such a
theory, that of decoherent histories (DH). Although much
progress has been made, it could be argued that this
approach has not yet yielded a theory that is sufficiently
well defined to provide decisive support for Einstein’s view.
The theories I discuss in this final part of the article are
completely well defined and hence provide a conclusive
refutation of Bohr’s impossibility claims.

Reflection upon the problem of measurement—of mac-
roscopic superpositions—very strongly suggests that for
any quantum theory without observers there are two
alternatives: Either the Schriodinger wavefunction is not
right—that is, the Schrodinger evolution is not exact—or
the Schrodinger wavefunction is not everything—that is,
it does not provide us with a complete description of a
physical system. (DH avoids the measurement problem
by accepting, in effect, the wavefunction-is-not-everything
possibility: The histories with which it is concerned are
histories of quantum observables, not of wavefunctions,
which play only a secondary, theoretical role.) The theo-
ries to which I now turn, spontaneous localization and
Bohmian mechanics, may be regarded, respectively, as the
simplest realizations of these two alternatives.

Spontaneous localization

The spontaneous localization (SL) approach, initiated by
Philip Pearle around 1970, may be regarded as concerned
with a minimal modification of the Schrodinger evolution
in which wavefunctions of macroscopic systems behave in
a sensible way. This goal proved elusive, but in 1985 a
breakthrough occurred: GianCarlo Ghirardi, Alberto
Rimini and Tulio Weber (GRW), by appreciating the privi-
leged role somehow played by positions and thus focusing
on the possibility of spatial localization, showed how to
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The paradoxes of quantum theory can be
resolved in a surprisingly simple way:
by insisting that particles always have

positions and that they move in a manner

naturally suggested by
Schrédinger’s equation.

Sheldon Goldstein

combine the Schriodinger evo-
lution with spontaneous ran-
dom collapses—given by
“Gaussian hits” centered at
random positions x occurring
at random times t—to obtain
an evolution for wavefunc-
tions that reproduces the
Schrodinger evolution on the
atomic level while avoiding
the embarrassment of mac-
roscopic superpositions.!

Thus, as John Bell
wrote, “any embarrassing
macroscopic ambiguity in the usual theory is only momen-
tary in the GRW theory. The cat is not both dead and
alive for more than a split second.” Similarly, measure-
ment pointers quickly point. Moreover, it is a more or
less immediate consequence of the GRW dynamics that
when a macroscopic superposition ¥ = X, ¥, collapses un-
der the GRW evolution to one of its terms, the probability
that ¢, is the term that survives is |[i,/|?, precisely as
demanded by the collapse postulate of standard quantum
theory.

It is tempting to say that with the SL approach,
quantum mechanics is indeed fundamentally about the
behavior of wavefunctions. I believe, however, that this
is not quite right. The problem is that the purpose of any
physical theory is to account for a pattern of events
occurring in (ordinary three-dimensional) space and time.
But the behavior of a wavefunction of a many (IV) particle
universe, a field on an abstract (3N-dimensional) configura-
tion space, has in and of itself no implications whatsoever
regarding occurrences in physical space, however sensible
its behavior may otherwise be. As Bell noted, “It makes
no sense to ask for the amplitude or phase or whatever
of the wave function at a point in ordinary space. It has
neither amplitude nor phase nor anything else until a
multitude of points in ordinary three-space are specified.”

Therefore, Ghirardi rightly emphasizes the impor-
tance of specifying what he calls “the physical reality of
what exists out there® [emphasis in originall.” For this,
he chooses the mass density function, which, for the simple
GRW theory described here, can be identified with the
mass-weighted sum X, m;p;(x), over all particles, of the
one-particle densities p; arising from integrating [i|> over
the coordinates of all but one of the particles. (Because
of subtle considerations related to the notion of “accessi-
bility,” Ghirardi’s specific choice is actually the mass den-
sity averaged over a “localization volume.”)

Bell proposed a strikingly different possibility: that
the space—time points (x,¢) at which the hits are centered
(which are determined by the wavefunction trajectory)
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ENSEMBLE OF TRAJECTORIES for the two-slit experiment. (Adapted by Gernot Bauer from C. Philippidis, C. Dewdney, B. J.

Hiley, Nuovo Cimento B 52, 15, 1979.)

should themselves serve as the “local beables [Bell’s coin-
age] of the theory. These are the mathematical counter-
parts in the theory to real events at definite places and
times in the real world (as distinct from the many purely
mathematical constructions that occur in the working out
of physical theories, as distinct from things which may be
real but not localized, and as distinct from the ‘observables’
of other formulations of quantum mechanics, for which
we have no use here). A piece of matter then is a galaxy
of such events.”? (Bell's proposal is not applicable to
models involving continuous dynamical reduction.?)

One can imagine, of course, many other choices, some
better than others. The point I wish to emphasize, how-
ever, is that if we are to have a well-defined physical
theory at all, some such choice must be made. Indeed,
any quantum theory without observers, and arguably any
physical theory with any pretense to precision, requires
as part of its formulation a specification of the “local
beables,” of “what exists out there,” of what the theory is
fundamentally about—which I would prefer to call the
primitive ontology of the theory. (It could be argued that
the unease sometimes expressed about DH arises from
the obscurity of its primitive ontology—or from its failure
to commit in this regard.) Moreover, we must also specify,
for a quantum theory, the relationship between the wave-
function and this primitive ontology, which for SL will be
provided by a mapping or code connecting the evolution
of the wavefunction to a story in space and time.

Different such specifications define different theories.
They may also have different observable consequences.
Moreover, the symmetries of the theory may depend criti-
cally on this specification. For example, with Bell’s rather
surprising choice, the GRW theory obeys a certain “relative
time translation invariance” and becomes “as Lorentz
invariant as it could be in the nonrelativistic version.”
Thus a careful analysis of the symmetries of a theory

demands a careful specification of its primitive ontology.

As a matter of fact, one would have to make a rather
perverse choice to arrive at any empirical disagreement
with the predictions arising from the choices of Ghirardi
or Bell. It is clear, however, because of its abrogation of
the Schrodinger evolution, that SL (in whatever version
and with whatever choice of primitive ontology) must
disagree somewhat with the predictions of orthodox quan-
tum theory. In fact, by the uncertainty principle, the
wavefunction localizations will increase the momentum
space spread in the wavefunction and hence energy will
tend to increase at a very small rate—so small, in fact,
that this effect may be rather difficult to observe.

Bohmian mechanics

The last version of quantum theory without observers that
I want to describe agrees completely with orthodox quan-
tum theory in its predictions. Precise and simple, it
involves an almost obvious incorporation of Schridinger’s
equation into an entirely deterministic reformulation of
quantum theory.

In the pilot-wave approach, quantum theory is fun-
damentally about the behavior of particles, described by
their positions—or fields (described by field configurations)
or strings (described by string configurations)—and only
secondarily about wavefunctions. In this approach the
wavefunction, obeying Schrodinger’s equation, does not
provide a complete description or representation of a
quantum system. Instead, the wavefunction choreographs
or governs the motion of the more fundamental variables.

Bohmian mechanics (or the de Broglie-Bohm theory),
the simplest pilot-wave theory, is the minimal completion
of Schrédinger’s equation, for a nonrelativistic system of
particles, into a theory describing a genuine motion of
particles. For Bohmian mechanics the state of the system
is described by its wavefunction ¥ =¥(q,, ..., qy), to-
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JOHN BELL (1928-1990). For several decades, Bell was the
deepest thinker on the foundations of quantum mechanics.
His analysis of nonlocality and hidden variables revitalized the
field. The implications of his work have been widely
misunderstood as demonstrating the impossibility of hidden
variables rather than the inevitability of nonlocality.

gether with the configuration @ defined by the positions
Qi ..., Qu of its particles. The theory is then defined
by two evolution equations: Schrodinger’s equation for (z),
and a first-order evolution equation

dQ, fi V'V ¥
dt -vk(wana‘-'lQN)—mkIm 1/}*1'0
for Q(¢), the simplest first-order evolution equation for the
positions of the particles that is compatible with the
Galilean (and time-reversal) covariance of the Schrédinger
evolution.* Here m,; is the mass of the k-th particle. If
 is spinor-valued, the products in the numerator and
denominator should be understood as scalar products. If
external magnetic fields are present, the gradient should
be understood as the covariant derivative, involving the
vector potential. (Since the denominator on the right-
hand side of equation 1 vanishes at the nodes of 1, global
existence and uniqueness for the Bohmian dynamics is a
nontrivial matter; it is proved in reference 5.) This de-
terministic theory of particles in motion completely ac-
counts for all the phenomena of nonrelativistic quantum
mechanics, from interference effects to spectral lines® to
spin,” and it does so in a completely ordinary manner.

Note that, given an initial wavefunction ¢, the full
Bohmian trajectory Q(f) is determined by the initial con-
figuration €,. Thus, given any probability distribution for
the initial configuration, Bohmian mechanics defines a
probability distribution for the full trajectory. Moreover,
since the right-hand side of equation 1 is J/p, where J is
the quantum probability current and p is the quantum
probability density, it follows from the quantum continuity
equation dp/ot + div = 0 that if the distribution of the
configuration @ is given by [¢|*> at some time (say the
initial time), this will be true at all times. Thus Bohmian
mechanics provides us with probabilities for completely
fine-grained configurational histories that are consistent
with the quantum mechanical probabilities for configura-
tions, including the positions of instrument pointers, at
single times.

The pilot-wave approach to quantum theory was in-
itiated, even before the discovery in 1925 of quantum
mechanics itself, by Einstein, who hoped that interference
phenomena involving particle-like photons could be ex-
plained if the motion of the photons were somehow guided
by the electromagnetic field—which would thus play the
role of what he called a Fiihrungsfeld, or guiding field.?
Although the notion of the electromagnetic field as guiding
field turned out to be rather problematical, the possibility
that for a system of electrons the wavefunction might play
this role, of guiding field or pilot wave, was explored by
Max Born in his early paper founding quantum scattering
theory®—a suggestion to which Heisenberg was profoundly
unsympathetic.

By 1927, an equation of particle motion equivalent to
equation 1 for a scalar wavefunction had been written
down by Louis de Broglie,!® who explained at the 1927
Solvay Congress how this motion could account for quan-
tum interference phenomena. However, de Broglie badly
failed to respond adequately to Wolfgang Pauli’s' objection
concerning inelastic scattering, no doubt making a rather
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poor impression on the illustrious audience gathered for
the occasion.

Born and de Broglie very quickly abandoned the
pilot-wave approach and became enthusiastic supporters
of the rapidly developing consensus in favor of the Copen-
hagen interpretation. Bohmian mechanics was redis-
covered in 1952 by David Bohm, the first person genuinely
to understand its significance and implications. (Unfor-
tunately, Bohm’s formulation involved unnecessary com-
plications and could not deal efficiently with spin. In
particular, Bohm’s invocation of the “quantum potential”
made his theory seem artificial and obscured its essential
structure.’’) The principal advocate of Bohmian mechan-
ics during the sixties, seventies and eighties was Bell.
Impelled by the evident nonlocality of Bohmian mechanics,
Bell established, using the “no-hidden-variables theorem”
based on his famous inequality, that nonlocality was un-
avoidable by any serious theory accounting for the quan-
tum predictions.?

‘Impossibility’ of hidden variables

The possibility of a deterministic reformulation of quan-
tum theory such as Bohmian mechanics has been regarded
by almost all luminaries of quantum physics as having
been conclusively refuted. For several decades, this refu-
tation was believed to have been provided by the 1932
no-hidden-variables proof of John von Neumann,'? despite
the fact that, according to Bell,’* von Neumann’s assump-
tions (about the relationships among the values of quan-
tum observables in a hidden-variables theory) are so
unreasonable that “the proof of von Neumann is not
merely false but foolish [emphasis in original]!” Although
some physicists continue to rely on von Neumann’s proof,
it is interesting to note that in recent years it has been
more common to find physicists citing Bell’s no-hidden-
variables theorem as the basis of this refutation—thus
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failing to appreciate that what Bell demonstrated with his
theorem was not the impossibility of Bohmian mechanics
but rather that its most radical implication—namely, nonlo-
cality—was intrinsic to quantum theory itself.

According to Richard Feynman, the two-slit experi-
ment for electrons is “a phenomenon which is impossible,
absolutely impossible, to explain in any classical way, and
which has in it the heart of quantum mechanics. In reality
it contains the only mystery [emphasis in original].”®
This experiment, Feynman declared, “has been designed
to contain all of the mystery of quantum mechanics, to
put you up against the paradoxes and mysteries and
peculiarities of nature one hundred per cent.”® Added
Feynman: “How does it really work? What machinery is
actually producing this thing? Nobody knows any machinery.
Nobody can give you a deeper explanation of this phenome-
non than I have given; that is, a description of it.”6

But Bohmian mechanics is just such a deeper expla-
nation (as is SL, of which, however, Feynman could not
have been aware). It resolves the dilemma of the appear-
ance, in one and the same phenomenon, of both particle
and wave properties in a rather straightforward manner:
Bohmian mechanics is a theory of motion describing a
particle (or particles) guided by a wave. The illustration
at the beginning of this article shows a family of Bohmian
trajectories for the two-slit experiment. While each tra-
jectory passes through but one of the slits, the wave passes
through both; the interference profile that therefore de-
velops in the wave generates a similar pattern in the
trajectories guided by this wave.

Compare Feynman’s presentation above with that of
Bell:

Is it not clear from the smallness of the scintil-

lation on the screen that we have to do with a

particle? And is it not clear, from the diffraction

and interference patterns, that the motion of the
particle is directed by a wave? De Broglie
showed in detail how the motion of a particle,

passing through just one of two holes in [the]

screen, could be influenced by waves propagating

through both holes. And so influenced that the
particle does not go where the waves cancel out,

but is attracted to where they cooperate. This

idea seems to me so natural and simple, to

resolve the wave—particle dilemma in such a

clear and ordinary way, that it is a great mystery

to me that it was so generally ignored.?

Nonetheless, it would appear that because orthodox
quantum theory supplies us with probabilities not merely
for positions but for a huge class of quantum observables,
it is a much richer theory than Bohmian mechanics, which
seems exclusively concerned with positions. Appearances
are misleading, however. In this regard, as with so much
else in the foundations of quantum mechanics, the crucial
observation has been made by Bell:

[Iln physics the only observations we must con-

sider are position observations, if only the posi-

tions of instrument pointers. It is a great merit

of the de Broglie-Bohm picture to force us to

consider this fact. If you make axioms, rather

than definitions and theorems, about the “meas-
urement” of anything else, then you commit
redundancy and risk inconsistency.?

Bell’s point here is well taken: The usual measure-
ment postulates of quantum theory, including collapse of
the wavefunction and correspondence of measurement
probabilities to the absolute square of probability ampli-
tudes, emerge as soon as we take seriously the equations
of Bohmian mechanics and what they describe®—provided
that the initial configuration of a system is random, with
probability distribution given by p = [{{>. Moreover, Detlef
Diirr, Nino Zanghi and I have shown how probabilities for
positions given by [i)/> emerge naturally from an analysis
of “equilibrium” for the deterministic dynamical system
defined by Bohmian mechanics, in much the same way
that the Maxwellian velocity distribution emerges from
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STILL PICTURES, MARK EDWARDS

DAvVID BOHM. Some of
Bohm’s ideas about
quantum mechanics and
the nature of physical
reality—for example,
regarding the implicate
order—were rather
speculative. But his
deterministic version of
quantum mechanics is
quantum theory’s most
lucid and straightforward
completion.

an analysis of classical thermodynamic equilibrium.*
Thus, with Bohmian mechanics the statistical description
in quantum theory indeed takes, as Einstein anticipated,
“an approximately analogous position to the statistical
mechanics within the framework of classical mechanics.”

Reality and the role of the wavefunction

Bohmian mechanics is, it seems to me, by far the simplest
and clearest version of quantum theory. Nonetheless, with
its additional variables and equations beyond those of
standard quantum mechanics, Bohmian mechanics has
seemed to most physicists to involve too radical a depar-
ture from quantum modes of thought. The approaches of
spontaneous localization and decoherent histories have
achieved much wider acceptance among physicists, SL
because it ostensibly involves only wavefunctions, effec-
tively collapsing upon measurement in the usual textbook
manner, and DH because it apparently is defined solely
in terms of standard quantum mechanical machinery—
that is, the quantum measurement formulas of the ortho-
dox theory, involving wavefunctions and sequences of He-
isenberg projection operators.

However, SL clearly involves equations beyond those
of orthodox quantum theory, and, as I've argued, DH must
also be regarded in this way. I have also argued that
neither for DH nor even for SL can the wavefunction be
regarded as providing the complete description of a physi-
cal system. Thus, while there are significant differences
in detail, the three approaches discussed in this two-part
article have much more in common than is usually ac-
knowledged. Each involves additional equations and ad-
ditional variables. The variables are the fundamental
variables, describing the primitive ontology—what the
theory is fundamentally about. Their behavior is governed
by laws expressed in terms of the wavefunction, which
thus simply plays a dynamical role.

As to detail, Bohmian mechanics shows that if we
don’t insist upon patterning these laws upon familiar
formulas such as those of the quantum measurement
formalism, surprising simplicity can be achieved. GRW,
particularly & la Bell, shows that these laws may be of a
most unusual variety, with unexpected implications for
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the symmetry of the theory? And DH intro-
duces a fundamental, irreducible coarse
graining. Furthermore, if it should turn out
that more than one family satisfies the deco-
herence condition and suitable additional con-
ditions, DH suggests that a fundamental sto-
chastic theory need not assign probabilities
to everything that can happen—for example,
to histories of the form “4 and A” where A
and A~ belong to different augmented deco-
herence _condition families, while the history
“h and A” belongs to no such family.

None of the theories sketched here is
Lorentz invariant. There is a good reason for
this: The intrinsic nonlocality of quantum
theory presents formidable difficulties for the
development of a Lorentz-invariant formula-
tion that avoids the vagueness of the orthodox
version. I believe, however, that such a theory
is possible, and that the three approaches I've
discussed in this two-part article have much
to teach us about how we could go about
finding one.
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