SHADOWS AND MIRRORS:
RECONSTRUCTING QUANTUM
STATES OF ATOM MOTION

magine that a pair of coins

are tossed in a black box.
The box reports only one of
the following three results at
random: (1) the outcome of
the first coin (heads or tails),
(2) the outcome of the second
coin (heads or tails), or (3)
whether the outcomes of the
two coins matched or were
different. Our task is to con-
struct a joint probability dis-
tribution of the four possible
outcomes of the coins (HH,
TT, HT, TH) based on many observations of the black box
outputs. Now suppose that after many trials, the black
box reports that each coin comes up heads two-thirds of
the time when measured individually, yet the coins never
match when they are compared. (Clearly the results of
the coin tosses have been correlated—perhaps a joker in
the black box flips the coins and then changes the out-
comes appropriately.) We seek a distribution that both
reflects this correlation and obeys the marginal distribu-
tions of each coin as two-thirds heads, one-third tails (see
the three tables on page 23). The only way to satisfy both
requirements is to force the joint probability P(TT) of
getting two tails to be negative! Mathematically, this is
because P(HH) + P(TT) is observed to be zero, yet we
expect P(HH) to be greater than P(TT), because the indi-
vidual coins are weighted toward heads.

The sleight of hand giving rise to negative prob-
abilities is that we have attempted to reconstruct a joint
probability distribution without ever having observed in-
dividual joint outcomes of the coins. The only measured
events are described by sums of joint probabilities such
as P(HT) + P(TH) = 1 or P(HH) + P(HT) = %. One way to
interpret the distribution of table 3 is to note that, since
individual joint outcomes of the coins are inaccessible,
nothing prevents us from assigning negative probabilities
to such immeasurable events. With this rule in mind,
this joint “quasi-probability” distribution may be a useful
bookkeeping tool, as it not only characterizes the hidden
correlations within the black box, but also retains infor-

DIETRICH LEIBFRIED is a physicist at Innsbruck University in
Austria. He was a guest researcher at the National Institute of
Standards of Technology in Boulder, Colorado, during the
writing of this article. TILMAN PFAU is a physicist at the
University of Konstanz in Germany. CHRISTOPHER
MONROE s a staff physicist at the National Institute of
Standards and Technology in Boulder, Colorado.

22 APRIL 1998  PHYSICS TODAY

Quantum mechanics allows us only one
incomplete glimpse of a wavefunction,
but if systems can be identically prepared
over and over, quantum equivalents of
shadows and mirrors can provide the full
picture.

Dietrich Leibfried, Tilman Pfau and
Christopher Monroe

mation about the marginal
probabilities of the individ-
ual coins.!

Although this example of
coins in a black box is highly
artificial, a similar situation
arises in nature when we de-
scribe the probability distri-
bution of a quantum me-
chanical particle in position—
momentum phase space. A
classical particle occupies a
single point in phase space,
and an ensemble of classical
particles can be characterized by a phase-space probability
distribution. On the other hand, the Heisenberg uncer-
tainty relationship requires that a quantum mechanical
particle be described by an area of uncertainty in phase
space no smaller than Ax Ap = /2. If a particle’s position
is known well, then its momentum is not, and vice versa.
In mathematical language, the position wavefunction ¥, (x)
and momentum wavefunction W (p) are related by a
Fourier transform; thus, localized position wavefunctions
lead to delocalized momentum wavefunctions, and vice
versa. A probability distribution in quantum phase space
must somehow incorporate this feature.

Wigner distribution and ‘negative probabilities’
In 1932, Eugene Wigner presented a convenient mathe-
matical construct for visualizing quantum trajectories in
phase space.?2 The Wigner distribution, or Wigner function
Wi(x, p), retains many of the features of a probability
distribution, except that it can be negative in some regions
of phase space. In the coin example above, practical use
of the quasi-probability distribution of table 3 is limited
to events described by sums of any two entries. Similarly,
when we apply the Wigner distribution to measurements
in quantum phase space, the probability distribution for
the outcome of a measurement is obtained essentially by
convolving W(x, p) with a distribution of possible states of
the measurement device, which must be distributed over
an area of order % or larger. This prescription leads to a
natural connection between quantum and classical phase
space: As the measurement resolution is degraded away
from the quantum limit so that the Heisenberg uncer-
tainty relationship plays no role, localized regions of
W(x, p) (with possible negative values) become washed out,
and the convolved Wigner distribution approaches the
usual classical phase-space probability distribution.
Similar to the quasi-distribution of the coins above, the
Wigner distribution is not a bona fide probability distri-
bution, but can be a useful bookkeeping tool that high-
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lights the inherent anticorrelation of position and momen-
tum uncertainty.

For a pure quantum state, the Wigner distribution is
related to the position or momentum wavefunction by

Wix, p) = i J \If,*{x - -;—J ‘Ifx[x + %] e ds
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where we have set #=1. The Wigner distribution of a
mixed quantum state is a weighted sum of either expres-
sion over the appropriate wavefunctions. These expres-
sions may not be very illuminating, and the equivalent of
the Schriodinger equation describing the time evolution of
Wi(x, p) is even less so. (However, Wolfgang Schleich and
Georg Siissmann discussed a physical interpretation of
this form of the Wigner distribution in PHYSICS TODAY,
October 1991, page 146.) Nevertheless, Wigner showed
that W(x, p) is indeed the closest thing we have to a prob-
ability distribution in quantum phase space, as it corresponds
to the phase-space probability distribution in the classical

momentum

FIGURE 1: WIGNER FUNCTION FOR THE
DOUBLE-SLIT EXPERIMENT, visualized in phase
space. a: The initial Wigner distribution
representing the superposition of two Gaussian
lobes directly behind the slits. The oscillating
part in the center is due to the spatial
coherence between the two lobes. The
“spacelike shadow” (on the orange screen, at
left) shows the spatial marginal distribution

| ¥, (x)|? of the state, obtained by ignoring the
momentum information. The pale burgundy
shadow at rear shows the corresponding
“momentum-like shadow” |¥ (p)2. With a
position-sensitive detector measuring the
spacelike shadow, we can view the initial
Wigner distribution from different angles by
either rotating it (b) or shearing it (c).

TABLES: Joint probability distributions of the outcomes
of tossing two coins. (1) Probability distribution given
that the two coins are tossed independently, both weighted
toward heads with P(H) =% and P(T) = %. The marginal
probabilities of the outcomes of either coin (obtained by
adding the entries vertically or horizontally) result in
two-thirds heads and one-third tails. (2) Probability
distribution given that the coins are tossed in a black

box that reports that the coins never match—that is,
P(HH) + P(TT) =0. The off-diagonals add to 1 as required,
with p arbitrary. The marginal probabilities can no longer
be two-thirds heads for both coins. (3) “Quasi-probability”
distribution under same conditions as (2) and also
exhibiting marginal probabilities of each coin as two-thirds
heads and one-third tails. The price paid is that one of the
entries is negative!
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momentum-sensitive detector
yields the “momentum-like
I shadow” [¥,(p)2. As shown
T in figure la, we can observe
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gles in phase space either by
rotating the detector’s point
of view or by rotating the
Wigner distribution and keep-
ing the detector fixed. For
example, figure 1b shows the
Wigner distribution rotated
by 60° and measured with
a position detector. The
spacelike shadow on the
screen now contains informa-
tion about both x and p of the
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FIGURE 2: DOUBLE-SLIT ATOM INTERFEROMETRY. a: The experimental arrangement.
Atoms from a collimated source propagate through a double slit with 8 uwm separation and
strike a position-sensitive detector screen. The source produces fast-moving atoms and a range
of slower atoms. b: Diffraction pattern of the atomic matter waves plotted as a function of
position and of the propagation time z, for the atoms to travel from the double slit to the
detector. The distance from double slit to detector is d = 195 cm, for which the slow atoms
propagate long enough to produce a Fraunhofer (far-field) diffraction pattern. The fast atoms
produce the near-field shadow of the slits at the bottom. (This shadow is magnified because of
the geometry of the apparatus.) ¢: Calculated diffraction pattern for atoms having a wide
range of velocities (and propagation times z;), showing the transition between Fresnel
(near-field) and Fraunhofer diffraction. d: Data for d = 25 cm, where the transition between
Fresnel and Fraunhofer diffraction becomes visible in the slow atoms’ pattern.

initial distribution. The
Wigner distribution can be
sheared in phase space as
shown in figure 1c by allow-
ing the particle to evolve
freely. A shear rotates the
spacelike shadow and gives
an additional stretching,
which can easily be compen-
sated for. Thus, we can ob-
serve different shadows of
the initial Wigner distribu-
tion by allowing particles to
evolve freely for different
times before we measure

d POSITION

limit, and also preserves the marginal probability distri-
butions of position and momentum |¥,(x)P* and [¥,(p)/*:

W 0PR= W, pydp and [W,@)F =W, pydc. @)

Can the Wigner distribution W(x, p) of a quantum
particle be measured? At first glance, the answer appears
to be no. The probability distribution of any physical
observable corresponds to an integral over W(x, p), as in
equation 2, so a single measurement cannot provide lo-
calized values of W(x, p). But if we prepare a particle in
the same quantum state in repeated experiments, we can
perform a large number of measurements on effectively
the same quantum system. We can then reconstruct the
Wigner distribution by measuring various shadows or
projection integrals of W(x, p) in separate experiments, or
by averaging an observable whose expectation value is
proportional to W(x, p) in repeated experiments.?

In the following, we describe two methods for recon-
structing the Wigner distribution of atomic motion in
phase space from such a set of repeated measurements.
In one experiment, identically prepared atoms from a
beam travel through a double-slit interferometer, and
different measurements are performed on them. In an-
other experiment, a single trapped atom is repeatedly
prepared in an identical state of motion, and a different
measurement is performed after each preparation. The
atoms in both experiments are prepared in nonclassical
states of phase space; thus their corresponding Wigner
distributions have features not found in classical phase-
space distributions, such as negative values.

Quantum shadows and the double slit

Detecting the positions of many identically prepared atoms
yields the spatial marginal distribution [V, (x)? as a
“spacelike shadow” of the Wigner distribution; likewise, a
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their position.

Tomography is a general technique for reconstructing
the shape of an inaccessible object from a set of different
shadows of that object. For instance, medical imaging uses
this technique to obtain a full three-dimensional picture
of the brain by piecing together various two-dimensional
shadows from x rays or nuclear magnetic resonance tech-
niques. Quantum state tomography has been used to
reconstruct the quantum state of light waves* and mo-
lecular vibration,® and has also been theoretically consid-
ered for the reconstruction of the Wigner distribution of
atoms from an atomic beam.® All these applications use
a mathematical device called the inverse Radon transfor-
mation to generate an image of the higher dimensional
object from a full set of shadows. In this sense, quantum
mechanics places the observer in the situation of Plato’s
prisoner—chained in a cave so he can see only the shadows
of objects outside the cave, not the objects themselves.
However, when the objects are rotated or sheared, even
Plato’s prisoner can obtain a full picture of the objects.

At the University of Konstanz, Jirgen Mlynek’s group
use this tomographic technique in sending an atomic beam
through a double-slit apparatus and reconstructing the
Wigner distribution of the atoms immediately behind the
slit.” The theoretical Wigner distribution in figure la
depicts the idealized quantum state of the transverse
position and momentum of each atom as it leaves the
double slit. For a plane matter wave, the emerging
quantum state is a linear superposition of one atomic
wavepacket going through one slit and another such
packet going through the other. The coherence between
these two wavepackets leads to an interference pattern in
the momentum distribution. The signature of this coher-
ence in the Wigner distribution is the oscillating positive
and negative values between the two main lobes. In the
experiment, the spatial distribution of the atoms is meas-
ured on a screen. As the atoms freely propagate between
the double slit and the screen, the corresponding quantum



state is sheared in phase space as shown in figure 1lc.
Different atoms experience different shear, since they are
distributed over a broad range of velocities and therefore
evolve for different times as they travel from the double
slit to the detector. A velocity-selective experiment can
therefore yield the full information about the quantum
state of the motion.

The Konstanz experiment is sketched in figure 2a. A
discharge source for metastable helium atoms fires for 10
us, generating a double-peaked distribution of atomic
velocities consisting of slow atoms between about 1000
and 3000 m/s and fast atoms near 33 000 m/s. The
corresponding de Broglie wavelengths are concentrated
near 3 picometers for the fast atoms and between 20 and
70 pm for the slow atoms. A 5 um wide entrance slit
collimates this beam. Farther downstream, the beam
passes through a microfabricated double-slit structure
with a slit separation of 8 um and openings of 1 um. The
combination of entrance slit and double slit acts as a
preparation tool for the transverse motional quantum
state of the atoms. After emerging from this preparation
tool, the atoms propagate over a distance d to a time- and
space-resolving detector. When each metastable atom
strikes the detector, it releases a large amount of energy,
allowing nearly every atom to be detected. The spatial
and temporal coordinates of each such event at the detec-
tor are recorded. This data provides a measurement of
spatial atomic distributions for different longitudinal ve-
locities v in the beam, or equivalently, different propaga-
tion times #; = d/v from the double slit to the detector.

As discussed above, different propagation times ¢, lead
to different views of the Wigner distribution. Another way
to look at this situation is to treat the atomic wavepacket
evolution as an optical diffraction problem, in which the
shear of the Wigner distribution corresponds to the tran-
sition from the Fresnel (near-field) regime to the Fraun-
hofer (far-field) regime. Figure 2c¢ shows the results pre-
dicted by theory for atoms with a wide range of propaga-
tion times. In the extreme Fresnel regime, we recognize
the spacelike shadow of the two slits. With increasing ¢,
the wavepackets start to overlap and interfere until, for
large t,, we arrive at the Fraunhofer regime in which the
diffraction pattern embodies the momentum-like shadow
of the state. In figure 2, experimental measurements of
the time-resolved diffraction patterns are shown on both
sides of the theoretical plot. On the left, figure 2b corre-
sponds to a distance d = 195 cm, the Fraunhofer regime
for slow atoms. It shows nicely a resolved interference
pattern that corresponds to the momentum-like shadow.
The very fast atoms produce the spacelike shadow of the
double slit at the bottom of figure. This measurement
corresponds to two separate ranges of propagation times,
or view angles, of the quantum state’s Wigner distribution.
The other view angles are missing because their respective
atom velocities are absent from the atomic beam. To fill
in these views, a second experiment is performed with the
detector screen placed only d =25 ¢cm behind the double
slit. Figure 2d shows the result of this experiment, which
features the transition between the spreading individual
wavepackets and the overlapping and interference of the
slow atoms, in addition to the usual spacelike shadow of
the very fast atoms at the bottom.

Figure 3 displays the Wigner distribution that is
reconstructed by binning the data according to the differ-
ent propagation times ¢, and performing the inverse Radon
transformation. Figure 3a shows the Wigner distribution
reconstructed from the d =25 ¢cm data, and figure 3b
shows the Wigner distribution derived from the d = 195
cm data. In both cases, we recognize two positive ridges
corresponding to the spatial distribution of the atoms
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FIGURE 3: RECONSTRUCTED WIGNER DISTRIBUTIONS
derived from the experimental data sets shown in figure 2d
(corresponding to d = 25 cm) (a) and figure 2b (d = 195 cm)
(b). Both reconstructions show the expected two lobes
separated by the slit separation of 8 um. Between the lobes,
the Wigner distribution oscillates between positive and
negative values, indicating the spatial coherence and
nonclassical character of the state immediately behind the
double slit.

immediately behind the double slit. These ridges are
separated by 8 um—the spacing of the double slit. The
coherence between the two spatially separated parts of
the wavefunction at the double slit leads to interference,
reflected by the oscillations in the Wigner distribution in
the region between the ridges. In this region, the recon-
structed Wigner distribution assumes negative values,
indicating a property that cannot be obtained by classical
phase-space distributions and revealing the quantum na-
ture of the observed ensemble of atoms. The reconstructed
Wigner distributions, determined from about 500 000 at-
oms, exhibit all the features of a superposition state
expected from an atom interferometer. The measured
Wigner distributions differ in some respects from what is
theoretically expected, including residual shear and spurious
negative regions close to the two large positive ridges.
These artifacts occur primarily because the reconstruc-
tions are from an incomplete range of projection angles.

Quantum mirrors and a trapped atom

To reconstruct the quantum state of motion of a single
harmonically trapped atom, we turn to a more direct
method that does not require the transformations involved
in the tomographic technique described above. Instead,
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the Wigner distribution at a particular point in phase
space is extracted directly by performing several different
measurements on an identically prepared system. This
method is based upon a simple and powerful picture of
the Wigner distribution that was first pointed out in 1977
by Antoine Royer.?

Suppose we create a mirror image of the wavefunction
W, (x) about the point x, and then measure the overlap of
the mirror image M (xy)W,(x) = ¥, (2x, — x) with the origi-
nal ¥,(x). Formally, this is a measurement of the expec-
tation value m of the mirror operation M,

m(xg) = (P M(x0)[ V)

1 s s

=1 fds \Iff{xo + gj‘I’x(xo - 5) . 3)
If ¥, (x) is localized around x;, the mirror operation about
%o =x; will largely map this area onto itself, resulting in
a nonzero overlap. But if we perform the mirror operation
about some other point x,—far from x,—the overlap with
the original wavefunction will nearly vanish. (See figure
4a.) Thus, we might expect that the observed overlap
m(x,) will be nonzero only for positions x, where ¥ (x) is
localized. But now suppose that the wavefunction is
localized in two separated regions, centered at —X and X.
If we perform the mirror operation halfway in between,
at x,=0, the lobes of the mirrored wavefunction will
nearly coincide with the original lobes, resulting in a large
overlap. Moreover, the overlap will contain information
about the phase difference between the original and mir-
rored wavefunction. For instance, in figure 4b, the two
pieces of the wavefunction are 180° out of phase (a moun-
tain and a valley), resulting in a negative value of the

overlap between the wavefunction and its image.
Returning to equation 3, we note that the mirror
expectation m(x,) is proportional to the Wigner distribu-
tion at zero momentum W(x,, 0). If the mirror operation
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FIGURE 4: THE QUANTUM MIRROR. a: The classical-like case
of a localized particle. If the initial wavefunction (solid black
line) is mirrored around x;, where the particle is localized, the
mirror image (blue dashed line) lies right on top of the
original and the overlap is large. If the mirror is at x,, the
image (red dashed line) has essentially no overlap with the
original. Thus, the overlap is localized like the particle’s
probability distribution. b: The quantumlike case of a particle
with coherent amplitudes in different locations. The
wavefunction of the first excited (» = 1) energy eigenstate of a
harmonic oscillator has a valley and a peak left and right of
the origin (solid black line) and exhibits odd parity. Peak and
valley are interchanged on the mirror image around x, = 0
(blue dashed line) and the overlap product of the two
functions (dashed green line) is zero or negative everywhere.
The value of the Wigner distribution at the origin of phase
space is the area of the green curve, and is thus maximally
negative for the 7 = 1 state.

could be performed about the phase-space coordinates
(%0, Do), We might hope the Wigner distribution W(xo, po)
could be extracted directly from a measurement of this
modified overlap. Royer made this connection and saw
that the mirror operator about the origin of phase space
is just the parity operator II. Therefore the Wigner
distribution at (xy, py) can be interpreted as the expecta-
tion of the displaced parity operator,

Wi(xo, po) =% (¥ DT (=g, —=po) I D(=xp, -p)l¥),  (4)

where D(x, p) is the coherent displacement operator, which
displaces a state across phase space by an amount (x, p)
or, equivalently, shifts the origin of phase space from
(0, 0) to (—x, —p).° The examples of figure 4 illustrate the
connection between the overlap of wavefunction mirrors
and the Wigner distribution, and figure 4b highlights a
particular case in which the Wigner distribution can take
on its peculiar negative values. These negative values
occur only when the wavefunction is nonlocally distrib-
uted, thereby highlighting the nonclassical or delocalized
features of the quantum state.

In experiments conducted by David Wineland’s group
at the National Institute of Standards and Technology in
Boulder, Colorado, a single °Be* ion is confined in a radio
frequency (Paul) ion trap. The trapping potential is well
characterized by a three-dimensional anisotropic harmonic
oscillator. We describe the measurement of the Wigner
distribution for motion in one of the dimensions, charac-
terized by the ladder of energy eigenstates |n) of energy
(n + Y%)hw, where n =0, 1,2, .. ., and /27 = 11 MHz is the
harmonic oscillation frequency. To reconstruct W(x,, py)
in this system, the same quantum state must be prepared
over and over. First, the ion is initialized in the harmonic
oscillator ground state by laser cooling. (See the article
by Wineland and Wayne Itano in PHYSICS TODAY, June
1987, page 34.) Next, a particular motional state is
prepared in a controlled fashion by applying laser pulses
and RF fields. A variety of harmonic oscillator states can
be created, including thermal, coherent, squeezed and
energy eigenstates (number states),'* and superpositions
of these types of states, including “Schrodinger’s cat”
states.’2 The relative phases of these states of motion can
be controlled by the stable relative phases of the laser
and RF fields used in their creation.

The quantum mirror measurement of the Wigner
distribution requires two ingredients: a coherent displace-
ment of the state (equivalent to a displacement of the
phase-space origin), and a way to determine the expecta-
tion value of the parity operator of this displaced state.



The displacement operator is achieved by applying an
oscillating (resonant) electric field, which couples to the
ion’s harmonic motion, similar to pushing (or stopping) a
child on a swing. In principle, the state can be coherently
displaced by any amount (x,, p,) in phase space by varying
the amplitude of the applied field and its phase with
respect to that of the initial state of motion. The expec-
tation value of the parity operator after the displacement
can be determined by measuring the populations of energy
eigenstates, which, for a harmonic oscillator, are also
parity eigenstates. That is, states [n) with an even or odd
number of energy quanta n have even or odd parity,
respectively. Therefore, the expectation of the parity op-
erator can be deduced by simply measuring the probability
distribution P,(xq, p) of energy eigenstates of the dis-
placed state and performing an alternating sum over these

probabilities. Substituting this result in equation 4, we
find that the Wigner distribution is
.
W(xo, Po) =7 2 (=1)"P,,(x0, Po) - (5)
n=0

The measurement of the motional state occupation
probabilities P,(xo, po) is tricky, because it is very difficult
to detect a single ion’s motion directly. Instead, features
of the motional state are encoded onto two internal elec-
tronic (hyperfine) levels of the ion, labeled |!) and |1). The
occupation of these states can be detected with nearly
100% quantum efficiency by applying laser radiation that
connects one of the hyperfine levels (say |!)) to an excited
electronic state. If the ion is in state |!), it scatters
thousands of photons, an event that can easily be detected.
If, on the other hand, the ion is in state |1), essentially
no photons will be scattered.!®> To encode the motional
states onto the internal states of the ion, a “mapping
interaction” is realized with laser beams. For an appro-
priate tuning of the lasers, the external motion is coupled
to the internal hyperfine levels, and energy is periodically
exchanged between the two systems, similarly to energy
exchange between two coupled pendulums. The exchange
frequency (or Rabi frequency) (), between |!) and |1) due
to this mapping interaction is different for each motional
eigenstate |n), and if the atom is initially in state |!), after

FIGURE 5: A CLASSICAL-LIKE COHERENT STATE
of a harmonic oscillator (in this case an ion of
mass 7 in a trap) produces this experimentally
reconstructed Wigner distribution. The ion’s
coordinates of position x and momentum p are
scaled to x" = x\mw/f and p’ = p/Nmhw and
further transformed to a frame (x, p) that
rotates at the harmonic trap frequency w, in
which the Wigner distribution is stationary.
The center of gravity is about 2 scaled units
from the origin, and the roughly circular
Gaussian shape has nearly the minimum
uncertainty width allowed by the Heisenberg
uncertainty relationship (AxAp = %).

the mapping interaction is applied for a time 7, its prob-
ability of being in state |!) is'!

oo

Py(1) =Y. Py(ao, o) c0s*(,7) . (6)

n=0

This whole process—initial state preparation, displace-
ment by (xg, py), mapping interaction for time 7, measure-
ment of P (r)—is repeated for different values of interac-
tion time 7. The motional probabilities P,(x,, po) are then
extracted from equation 6 by Fourier transforming the
measured P,(r) at the known frequencies (),,.

Figure 5 shows the reconstructed Wigner distribution
for the single trapped ion in a classical-like coherent state,
which is simply a wavepacket oscillating in the harmonic
potential without changing shape. In the laboratory
frame, the Wigner distribution rotates in phase space at
the harmonic trap frequency w, but here the reconstruction
is performed in the rotating frame (rotating in phase
space), where W(x, p) is stationary. Within the limits of
experimental uncertainty, the reconstructed Wigner dis-
tribution is positive everywhere and the nearly Gaussian
hump has a width close to the Heisenberg limit, which is
AX Ap = Y% in the scaled coordinates (this is most obvious
in the contour plot at the bottom of the figure).

Figure 6 shows the reconstructed Wigner distribution
of the first excited energy eigenstate of the harmonic
oscillator (that is, the n =1 Fock state). Although Fock
states of the harmonic oscillator are treated in every
introductory quantum mechanics textbook, the NIST ex-
periments represent the first time Fock states (other than
the n =0 ground state) have been created on demand and
fully characterized. (In many quantum optics experi-
ments, single-photon states have been produced using
down-conversion, but such states are not created on de-
mand—they occur at random moments in a nonlinear
crystal—and their mode identity is not well defined.) In
accord with the nonclassical nature of this state, the
Wigner distribution is negative around the origin. The
experimental reconstruction in the figure reaches approxi-
mately —0.25 at the origin of phase space, not far from
the theoretical value of —1/7, which is in fact the largest
negative value the Wigner distribution (as defined in

APRIL 1998  PHYSICS TODAY 27



FIGURE 6: THE FIRST EXCITED ENERGY
eigenstate of a harmonic oscillator produces
this experimentally reconstructed Wigner
distribution. The coordinates x and » are
scaled and in a rotating frame, as in figure 5.
Because energy and phase are complementary,
the measured function is nearly rotationally
symmetric, providing no phase information.
The measured values of the Wigner
distribution near the origin are negative and
reach a minimum value of about —0.25 at the
origin. This is close to the largest negative
value possible (—1/) for a Wigner distribution.

equation 1) can reach in any physical system. Discrep-
ancies with respect to theory can be traced to slight
imperfections in the preparation and are not surprising,
considering the stability required of the experimental
parameters—the reconstructions are the result of about
24 million preparations of the same state. Nevertheless,
the reconstructed Wigner distributions correspond very
closely to that of a pure quantum state.

Applications for quantum trickery

The Wigner distribution W(x, p) corresponds most closely
to the idea of a phase-space probability distribution in
quantum mechanics, making it a useful tool for charac-
terizing quantum states. We've seen that the Wigner
distribution is not a real probability distribution, because
certain joint events (such as simultaneous position and
momentum states) are inaccessible. Localized negative
values of W(x, p) emphasize this fact. To make a connec-
tion between the quantum Wigner distribution and the
“negative probabilities” derived in table 3 for flipping coins
in a black box, we're tempted to identify the joker in the
black box as Heisenberg himself, who somehow knows
what is to be measured each time, and changes the results
of the coin tosses accordingly. And yet, in a sense, quan-
tum mechanics is stranger still than this picture, for the
wavefunction or the Wigner distribution ensures the con-
sistency of different measurements without any need for
such a trickster behind the scenes.

The recent experiments we have discussed, in which
quantum states of matter waves have been reconstructed
by mapping their Wigner distributions, were made possi-
ble by advances in quantum state preparation and ma-
nipulation. These newly developed measurement tech-
niques have abundant future applications. For instance,
in the fields of quantum control and quantum computing,
these techniques could be extended to provide a complete
picture of the evolution of a quantum logic gate. Control
and diagnostics of an atomic beam at the quantum level
might be a helpful tool in deposition techniques reaching
quantum-limited resolution. An intriguing prospect would
be to reconstruct the output state of laserlike sources of
atoms that might evolve from the current research in
Bose—Einstein condensates of dilute gases. A fundamental
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application of these techniques will be the study of quantum

decoherence. The reconstruction of a quantum state as
it loses coherence may someday shed light on the elusive
mechanisms at work when a wavefunction “collapses.”
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