THE CITY OF ANGELS TO HOST THE MARCH APS MEETING

t a time when much of the rest of Athe country is still trying to shake off winter, the California sunshine may lure physicists to the annual March meeting of the American Physical Society, to be held in Los Angeles from the 16th to the 20th of the month. But the primary attraction for most of the expected 4500 participants will no doubt be the chance to learn more about a variety of interesting topics, including a number of emerging fields, and the opportunity to interact with their colleagues in those fields.

The meeting will be held at the Los Angeles Convention Center. The two headquarters hotels are the Westin Bonaventure Hotel and the Omni Hotel.

The meetings program is bursting at the seams, with over 90 invited-paper sessions and 500 contributed-paper and poster sessions. More than 4800 papers and posters will be presented. Following a trend introduced in recent meetings, the program will include more than 40 focused sessions, which combine one or two invited speakers with a number of contributed papers, all concentrating fairly specifically on the session's topic. Examples of such topics are the magnetic field effects on biological systems, the chemistry and physics of water, ferroelectric materials, nanocrystals, clusters and their assemblies, materials physics issues in high- $T_{\rm c}$ superconductivity, the electronic properties of polymers, magnetic nanostructures and heterostructures.

The APS divisions that will participate in the meeting are those of biological physics, chemical physics, computational physics, condensed matter physics, fluid dynamics, high-polymer physics, laser science and materials physics. Sessions have also been organized by a number of topical groups, by the five APS forums and by the committees on minorities and on the status of women in physics.

Participants who arrive the weekend before the official meeting begins can update their background in specific areas by enrolling in a short course, given on Saturday and Sunday, 14-15 March, or in one of the eight tutorials offered on Sunday. The short course, on challenges in polymer research for microelectronics technologies, is being sponsored by the APS division of highpolymer physics. The topics of the tutorials, which will run either a full or half day, include scanning probe microscopy, career choices in industrial and applied physics, quantum computation, magnetoresistance, fractal biology and chaos in medicine, vacuum gauging, carbon fullerenes and nanotubes and the physics of very small quantum dots. Also on Sunday, the APS Committee on the International Freedom of Scientists will sponsor an afternoon workshop on "Free Speech: International Scientific Freedom."

Assistance in planning a career or landing a job will be available at the meeting. The APS is sponsoring a free career workshop from 6 to 9 pm on Sunday, 15 March, at the convention center. Also, a job center will be in operation to match jobseekers with employers. The center will run from Monday through Wednesday, 16-18 March, from 9 to 5 pm in the convention center.

For those who want a brief break from the meeting, APS has organized tours of the new Getty Center, the Huntington Library and Gardens and Universal Studios. For the early risers and eager beavers, APS is sponsoring its first annual, five-kilometer "Run for Health," to take place on Monday, 16 March, from 6:30 to 7:30 am. Runners must preregister for the event, which is limited to 100 individuals.

On Monday night, APS will host a welcome reception at the convention center. Just before the reception, APS will conduct a ceremonial prize session, starting at 5:30 pm in the convention center, at which the society will honor 11 recipients of its medals, awards and prizes.

he APS Exhibit Show expects approximately 125 exhibitors, who will showcase the latest equipment, books and services relevant to the areas of physics covered at the meeting. The products on display will include lasers and optical components, test and measurement devices, scientific software, spectroscopy equipment and much more. The show hours are:

Tuesday, 17 March 11 am to 6 pm Wednesday, 18 March 10 am to 5 pm Thursday, 19 March 10 am to 3 pm

Also available in the exhibit area will be an email center, equipped with telnet service.

At the ceremony, the David Adler Lectureship Award will be presented to **Joseph E. Greene**, who is a professor of materials science and the head of the electronic materials division at the University of Illinois at Urbana-Champaign, and the Tage Erlander Professor of Physics at Linköping University in Sweden. Greene is being cited for "outstanding research and lecturing on the physics and chemistry of thin films." He will give his lecture, dealing with $Si_{1-x}Ge_x$ growth under highly kinetically constrained conditions, at 11 am on Thursday, 19 March.

Rangaswamy Srinivasan, the president of UVTECH Associates in Ossining, New York, will receive the Biological Physics Prize, for "the development of an understanding of the effects of intense ultraviolet light on biological materials, leading to an ability to 'photoetch' tissue surfaces precisely and safely, and for his role in developing applications to medicine in angioplasty, ophthalmology and dermatology.

The Oliver E. Buckley Prize will be shared by Donald Ginsberg, Dale J. van Harlingen, John R. Kirtley and Chang-Chvi Tsuei. All four are being cited for "using phase-sensitive experiments in the elucidation of the orbital symmetry of the pairing function in high-T_c superconductors." Ginsberg and van Harlingen are professors of physics at the University of Illinois at Urbana-Champaign, and Kirtley and Tsuei are research staff members at IBM's Thomas J. Watson Research Center in Yorktown Heights, New York.

Spiros H. Anastasiadis will take home the John H. Dillon Medal for "pioneering studies of the structure and dynamics of polymer solutions, melts, interfaces and thin films." Anastasiadis is an associate professor in the physics department of the University of Crete and a research staff member at the Institute of Electronic Structure and Laser of the Foundation for Research and Technology-Hellas, known as FO.R.T.H.

The winner of the High Polymer Prize is Murugappan Muthukumar. a professor of polymer science and engineering at the University of Massachusetts at Amherst. The citation for Muthukumar credits him with "outstanding theoretical contributions to the fundamental understanding of the statistics of isolated chains, chain dynamics, critical phenomena and polymer self-assembly.'

APS will give its Joseph H. Keithley Award to John Clarke, who holds the Luis W. Alvarez Memorial Chair for Experimental Physics at the University of California, Berkeley. Clarke is being recognized for "his experimental and theoretical studies of Superconducting Quantum Interference Devices (SQUIDs), advancing the state-of-theart of measurement science by applying SQUIDs to many areas of both fundamental and applied physics such as high-T_c superconductor analyses, NMR amplifiers and cryogenic comparators.'

Yuen-Ron Shen, a professor of physics at the University of California, Berkeley, will receive the Frank Isakson Prize for "his contributions to the basic understanding of the interaction of light with matter, and for his development of novel linear and nonlinear

techniques for pioneering studies of semiconductors, liquid crystals, surfaces and interfaces.'

The Lars Onsager Prize will go to Leo P. Kadanoff, the John D. and Catherine T. MacArthur Professor of Physics and Mathematics at the University of Chicago. Kadanoff's citation praises "his numerous and profound contributions to statistical physics, including the introduction of the concepts of universality and block spin scaling

Sessions With Invited Speakers

Monday, 16 March

morning GMAG/DCMP: Magnetism at the Nanoscale. Tejada, Hayashi, Borsa, Hjorvarsson, Nayak.

DCMP: Sensing Tiny Forces: Measuring Colloidal Interaction. Wiltzius,

Walz, Crocker, Behringer, Gollub.

DCMP: Quantum Shot Noise in FQHE and the Measurement of Fractional Charge. Martinis, Glattli, Reznikov, Chamon, Schoelkopf. DCMP: High- T_c Superconductivity SO(5) Theory and Normal State

Lifetimes. Berlinsky, Henley, Hanke, Schofield, Stojkovic.
DFD: New Approaches to Turbulence. Chertkov, Eyink, Mou, Miller,

Bodenschatz.

DCP: Nucleation: Modern Theory and Methods of Measurement I. Oxtoby, Schaaf, Strey, van Dongen.

DCP: The Chemistry and Physics of Water I. Stanley, Xantheas, Chen, Clary

DHPP/DCMP: Electronic and Optical Properties. Heeger, Hadziioannou, Greenham, Garito, Vardeny

DCMP/DMP: Ferroelectric Materials I: Ferroelectric Thin Films. Ahn. DMP: III-V Nitride Semiconductors I: Optical Properties of GaN. Bishop, Wetzel.
DMP/DCMP: Fullerenes and Nanotubes I: Novel Fullerene Molecules

and Solids. Grossman.

DMP: Colossal Magnetoresistance I. Mathur.

DMP: Magnetic Nanostructures and Heterostructures I: Overlayers and Thin Film Alloys. *Robertson, Durr.*DMP: Science of Hard Materials. *Cohen.*

DMP: Interfacial Migration and Dynamics I. Shvindlerman.

DMP: Materials Theory-Electronic Structure I: Computational Meth-

ods. Canning.
DCMP: Semiconductor Multiple Quantum Wells I. Golub.
DCMP: One Dimensional Quantum Magnetism I. Starykh.

DCMP: Single Electron Tunneling. Flees.

DCMP: High-Tc Superconductivity: Penetration Depth Theory. Kosztin. DCMP: Irradiated High-Tc Superconductors: Vortex Pinning. van der Beek.

JT: Properties of Granular Materials. Savage, Rajchenbach, Aranson, Behringer.

DCMP: Dephasing and Energy Relaxation in Mesoscopic Systems. Mohanty, Altshuler.
DCMP: Single-Walled Carbon Nanotubes: Electrons in One Dimension.

Smalley, Balents, Venema, Huang, Cobden.

DCMP: Interlayer Coupling. Leggett, Anderson, Uchida, van der Marel,

FPS: Current Policy Issues. Savitz, Craig, Levine, Frieman.
DFD: Equilibrium Structures in 2D Flows. Weichman, Driscoll, Tabeling, Chen.

DCP: Nucleation: Modern Theory and Methods of Measurement II. Bartell, McGraw, Katz.
DCP: The Chemistry and Physics of Water II. Debenedetti, Van Der

Avoird, Shen DCMP: Highly Correlated Metals: 1D Organic Conductors I. Grioni,

DMP: III-V Nitride Semiconductors II: Optical Properties of Alloys. Monemar.

DMP: Colossal Magnetoresistance II: Layered Manganites. Mitchell.

DMP: Magnetic Nanostructures and Heterostructures II: Thin Films. Naugle

DMP: Bulk Mechanical Properties I: Fracture. Fisher, Evans

DMP: Interfacial Migration and Dynamics II: Studies of Growth, Nucleation and Interfacial Structures. *Hillier, Tanaka*.

IMSTG: Spectroscopy at High Magnetic Fields I. Perry, Wang. DCMP: Fluid Dynamics/Fluid Interfaces. Field.

DCMP: High- T_c Superconductors: Penetration Depth Measurements. Fournier.

afternoon

JT: Fluctuations in Granular Materials. Durian, Cody, Nowak, Ben-Naim, Fukushima.

DCMP: Large Scale Quantum Simulations. Kim, Ordejón, Yang, Scuse-

DCMP: Mesoscopic Kondo and Spin-Glass Alloys. Van Haesendonck, Goldhaber-Gordon, Martin, Chandrasekhar, van Ruitenbeek

DCMP: Vortex Dynamics. Rabin, Andrei, Gordeev, Scheidl, Metlushko. FIAP: The Physics and Applications of Microelectromechanical Systems (MEMS). Roukes, Kenny, Ho, Polla, Tang.
FIP: Physics Without Borders. Ming, Jiang, Grover, Kim.

DCP: Biophysics of Single Macromolecules I. Yanagida, Pierce, Smith, Kinosita

DCP. Dynamics on Rugged Energy Landscapes: Clusters, Liquids, Proteins I. Berry, Hofrichter, Shakhnovich.

DHPP: Nanostructures. Tirrell, Möller, Schmidt, Percec, Eisenberg. DMP/GMAG: Tunneling Magnetoresistance I. Fert

DMP: Nanocrystals III: Self-Organized Nanocrystal Quantum Dot Arrays. Heath.

DMP: Magnetic Nanostructures and Heterostructures III: Magnetic Anisotropy. Oepen.

DMP: Interfacial Phenomena in Environmental Materials I. Fenter. DMP: Materials Theory–Electronic Structure III: Local Density Functional Theory and Beyond. Pollmann, Majewski. DCMP: High- T_c Superconductivity: Millimeter Wave/Optical Spectros-

copy. Mallozzi

Tuesday, 17 March

morning JT: Alkali Bose Condensates and Their Mixtures. Baym, Ho, Weiman, Stringari, Hulet

DCMP: Near-Field Scanning Microwave Microscopy. Feenstra. Takeuchi, van der Weide

DCMP: Three Dimensional Metal-Insulator Transition. Husmann, Di-Tusa, Dobrosavljevic.
DCMP: Vortex Phases. Dodgson, Bishop, Nattermann, Fisher, Fuchs.

FIAP: Pake Prize Session. McTague, Fleury, Taylor. FPS: Arms Control and Science-Based Stockpile Stewardship. Panofsky,

Koonin, Staffin, Dynes, Zimmerman.

bbreviations preceding each entry denote the spon-Asoring division (d), committee (c), forum (f) or topical group(t):

CWSP: Status of Women in Physics (c)

DBP: Biophysics (d)

DCP: Chemical Physics (d)

DCOMP: Computational Physics (d) DCMP: Condensed Matter Physics (d)

DFD: Fluid Dynamics (d)

DHPP: High Polymer Physics (d)

DMP: Materials Physics (d)

FED: Education (f)

FHP: History of Physics (f)

FIAP: Industrial and Applied Physics (f)

FIP: International Physics (f)

FPS: Physics and Society (f)

GMAG: Magnetism and Its Applications (t) IMSTG: Instrument and Measurement Science (t)

JT: Joint Session

that are central to the modern understanding of the critical phenomena."

APS will honor John Paul McTague with its George E. Pake Prize. McTague, who is the vice president for technical affairs at Ford Motor Co, is being cited for "insightful experiments and contributions to the understanding of 2-D phase transitions and orientation epitaxy; and for major contributions in management of science in government, national laboratories and industry; and championing new paradigms for collaboration, such as the Partnership for the Next Generation

David M. Ceperley will receive the Aneesur Rahman Prize for "important and deep methodological contributions to computational physics, and for highly significant research using those methods in multiple areas of physics." Ceperley is a professor of physics at the University of Illinois at Urbana-Champaign and a

scientist at NCSA, the supercomputing center at the university.

F. Fleming Crim will garner the Earl K. Plyler Prize for "the application of novel and powerful spectroscopic and dynamic techniques to elegantly demonstrate the feasibility of bond-selective photodissociation of molecules, holding the promise of control of chemical reactions by light." Crim is the John E. Willard Professor of Physics at the University of Wisconsin—Madison.

DCP: Nucleation: Modern Theory and Methods of Measurement III. Frenkel, de la Mora, Wang, Shneidman

DCP: The Chemistry and Physics of Water III. Chandler, Leforestier,

Gomez.

DHPP: Ford Prize Symposium. Muthukumar, Edwards, Lodge, Thomas, Freed.

DBP: Long-Range Correlated Fluctuations in Biological Systems. Gilden, Liebovitch, Peng, Teich, Ding.

DMP/GMAG: Tunneling Magnetoresistance II. Bernard. DMP: Ferroelectric Materials IV: Theory. Cockayne.

DMP: III-V Nitride Semiconductors IV: Electronic Properties/Devices. Look, Binari.

DMP/DCMP: Fullerenes and Nanotubes IV: Nanotube Structure and Growth. *Iijima*.

DMP: Colossal Magnetoresistance IV: Transport. *Jaime*.

DMP: Magnetic Nanostructures and Heterostructures IV: Coupling. Dura, Fullerton.

DMP: Bulk Mechanical Properties III: Mesoscale. Schwarz

DMP: Interfacial Phenomena in Environmental Materials II. Palmer, Liu. DCMP: Nano-Electromechanical Systems. Cleland, Beck

DCMP: Beyond the Local Density Approximation. Gonze, Martin. JT: Bulk Amorphous Alloys. Johnson, Eckert.

DCMP: Quantum Computing. Zoller, Hughes, Garg, Kimble.
DCMP: Wide Bandgap Nitride Semiconductors. K.-E. Smith, Rabalais, A.-R. Smith, Ploog, Buongiorno Nardelli.

DCMP: Spin Polarized Effects. Goldman, Johnson, Si, Hershfield,

FIAP: Potential Industrial Applications of Cryogenic Particle Detec-

tors. Wollman, Mears, Segall, Frank, Hilton. IMSTG: In situ Measurements for Understanding and Control of Semiconductor Samples. Richter, Kobayashi, Kaspi, Breiland

DCP: Biophysics of Single Macromolecules II. Chu, Croquette, Allemand, Strick, Trautman.

DCP: The Chemistry and Physics of Water IV. Soper, Head-Gordon,

Mishima.

DBP: Biological Physics Prize Symposium. Srinivasan, Garrison, Berns, Franz, Oraevsky.

GMAG: Properties of Doped Lanthanum Manganites. Dai, Casa

DMP: Ferroelectric Materials V: Polymers and Thin Films. Fridkin. DMP: Defects in Wide Bandgap Semiconductors I. Watkins

DMP: Bulk Mechanical Properties IV: Plasticity. Kyriakides

DMP: Conducting Polymers I: Organic LED Device Physics. Blom. DMP: Materials Theory-Electronic Structure V: Electron Correlations. Mitas.

DCMP: Excitons and Phonons in 1D Nanostructures. Hasen, Schwab. DCMP: Quantum Hall Effect: General. Druist, Fogler.

afternoon

JT: Magnetic, Electronic and Transport Properties of Layered Ruthenates. Liu, Cao, Puchkov

GMAG/DCMP: Spin Polarized Transport in Magnetic Heterostructures. Samarth, Allen, Ohno, Moodera.

DCMP: Doped Fullerenes and Fullerides. Knupfer, Gunnarsson.
DCMP: Novel Effects of Interactions in Quantum Dots. Zhitenev, Kouwenhoven, Marcus, Mordehai, Aleiner.

DCMP: Josephson Junction Arrays. Wiesenfeld, Orlando, Barbara,

FIAP/DMP: Magnetic Materials for Technology. Weller, Shi, Herbst, Wolf. Berkowitz.

DCOMP: Computational Condensed Matter Physics. Ceperley, Family, Kaxiras, Nightingale.

DCP: Biophysics of Single Macromolecules III. Hansma, Tibbs, Schindler. DCP: Dynamics on Rugged Energy Landscapes: Clusters, Liquids, Proteins II. Laird, Stillinger, Angell.

DHPP: Dillon Medal Symposium. Anastasiadis.

DBP: Neural Timing and Information. Bialek.

FIAP: Chemical and Physical Sensor Technologies. Sickafus.
DMP: Ferroelectric Materials VI. Mueller, Shur.
DMP: Defects in Wide Bandgap Semiconductors II. Boguslawski.

DMP/DCMP: Fullerenes and Nanotubes VI: Nanotube Electronic Structure. Mintmire.

DMP: Nanocrystals VI: Compound-Semiconductors, Quantum Dots. Guvot-Sionnest.

DMP: Colossal Magnetoresistance VI: Induced Phase Transitions and Isotope Effect. Asamitsu.

DMP: Novel Properties and Growth Characteristics of Metal Heteroepitaxy. Horn, Cho, Bauer.

DMP: Mechanical Properties of Thin Films I. Chason.

IMSTG: Keithley Award Session. Clarke, Koch, Wellstood.

DCMP: Highly Correlated Metals: 1D Metals. Affleck.

DCMP: Mesoscopic Mechanical Engineering. Cleland.
DCMP: High-T_c Superconductivity: Impurities in Superconduc-

tors/Superconductor-Insulator Transition. Joynt.

DCMP: Implications of Metal Polymer Interfaces. Fahlman,

Wednesday, 18 March

JT: Extended Defects in Solids. Yan, Molteni, Mooney, Ponce

DCMP: Potential Landscapes and Aging in Glasses. Parisi, Cugliandolo, Kühn, Orbach,

 adolo, Kuhn, Oroaca.
 DCMP: Photons, Phonons and Spins in Semiconductor Heterostructures. Wixforth, Kikkawa, Leo, Oestreich, Kenrow.
 DCMP: Pseudogap. Chubukov, Schmalian, Kivelson, Lee, Boldizsar.
 FIAP: Dynamics of Silicon Etching and Oxidation. Hines, Weldon, Gibson, Pasquarello, Pantelides.

FHP: The History of Critical Phenomena. Levelt Sengers, Hohenberg, Fisher.

DCP: Biophysics of Single Macromolecules IV. Moerner, Xie, Ha. DCP: Dynamics on Rugged Energy Landscapes: Clusters, Liquids, Proteins III. Wolynes, Thirumalai, Elber.

DHP: Processing. Macosko, Ryan, Migler, Martin, Krause.
DBP: Statistical Physics in Biology. Doniach, Li, Hwa, Leibler.

DCMP: Glasses: Collective Behavior and Vibrational Dynamics. Natelson.

GMAG: New Developments in Magnetic Measurements. Farrell, Julian. DMP: III-IV Nitride Semiconductors V: Theory. Bellaiche.

DMP: Nanocrystals VII: Narrow Bandgap Semiconductors and Metals. Alivisatos.

DMP: Colossal Magnetoresistance VII: Theory. *Röder*. DMP: Magnetic Nanostructures and Heterostructures VI: Multilayers. Bader.

DMP: Mechanical Properties of Thin Films II: Metallic Multilayers. Cammarata, Foecke

 $DMP: Materials\ Theory-Electronic\ Structure\ VI: Alloys\ and\ Ordering.$ de Gironcoli.

DCMP: t-J model. Leung.

JT: Growth: Nucleation, Roughening, Smoothening and Removal. Wendelken, Shih, Qin, Weaver, Canright.

DCMP: Disorder-Free Glassiness. Gîrtu, Diep, Gingras

DCMP: Non-Markovian Processes in Semiconductors. Wehner, Kner, Leitenstorfer, Bányai, Schaefer.

DCMP: Quick as a Flash: Femtosecond Dynamics. Mazur, Shank, Allen. DCMP: Liquid Crystals in Restricted Geometry. Iannacchione, Radzi-

hovsky, Zapotocky, Held. IMSTG/GMAG: Magnetic Measurements Using Force and Torque Methods. Wood, Chaparala, De Long, Lindemuth.

DCMP: Quasicrystals I. Symko.

DCP: Computer Simulations of Condensed Phase Dynamical Processes I. Anderson, Madden, Tobias.

DCP: The Chemical Physics of Light Harvesting in Photosynthesis I.

Schulten, Ghosh, Zerner.

DCMP: 2D Metal-Insulator Transition at B=0: Experiment. Simmons.

DBP: Low Dimensional Dynamics and Control. Moss.
DBP: Understanding the Hydrophobic Effect and Its Role in Protein
Folding. Pratt, Makhatadze, Dill, Hummer, Paulaitis.

DCMP: Spin Correlations in Superconductors. Yamada. DMP: Materials Theory-Simulation I: Extended Length Scales and New Hamiltonians. Abraham.

DMP/DCMP: Fullerenes and Nanotubes VIII: Quantum Transport and Transport. Dekker.

DMP/DCMP: Defects in Semiconductors I. Gossmann.

DMP: Conducting Polymers IV: Optical Properties. $\it Kirova.$ DMP: Materials Theory–Electronic Structure VII: Metallic Alloys. van de Walle

afternoon

DCMP: Rigidity of Glasses. *Thorpe, Boolchand.*DCMP: Raman Response and Superconductors. *Devereaux, Klein.* JT: Coherence in Semiconductor Optics. Smirl, Bonadeo, Heberle, Portengen, Perakis.

DCMP: Hot Wire Amorphous Semiconductors. Crandall, Liu.

DCMP: Squeezed Phonons. Merlin, Artoni, Hu.
DCMP: Buckley and Onsager Prizes. van Harlingen, Ginsberg. Kirtley, Tsuei, Kadanoff.

FIAP/GMAG: Magnetocaloric Effect / Magnetic Refrigeration. Barclay, Zimm, Pecharsky, Shull, Chahine.
FED: How to Give a Better Physics Talk. Schwartz, Hallock, Gar-

land Cole

DCP: Computer Simulations of Condensed Phase Dynamical Processes II. Parrinello, Sprik, Tuckerman, Mukamel

DCP: The Chemical Physics of Light Harvesting in Photosyntheses II. Van Grondelle, Parson, Silbey.

DBP: Synchronization in Neural Systems. Gauthier.
DMP: Materials Theory—Simulation II: Structure and Reactions.

DMP: Nanocrystals IX: Group IV Nanocrystals—Silicon. Ögüt. DMP: Colossal Magnetoresistance IX: Pyrochlores and Other Mate-

rials. Majumdar. DMP: Magnetic Nanostructures and Heterostructures VIII: Nanos-

tructures. Schuller.
DMP: Defects in Semiconductors II. McCluskey

DMP: Conducting Polymers V: Nonlinear Optical Properties. Denton. DMP: Materials Theory-Electronic Structure VIII: Surfaces and Defects. Rahman.

DCMP: Scanning Tunneling Microscopy: Metal Surfaces. Hofmann. DCMP: Mesoscopic SN and SNS Junctions. Xiong.

DCMP: Magnetic Resonance Investigation of Spin Peierls Phase. Jean-Paul, Brown, Bourbonnais.

DCMP: Novel Weak Links. Clinton, Davis.

Thursday, 19 March

morning

JT: Electron Dynamics in Metallic Nanoparticles. Feldman, Averitt, Bigot, Zhang.

DCMP: Electrons, Magnons, Polarons in Semimetallic EuB₆. von

Molnár, Süllow, Degiorgi, Sharifi, Cooper.

DCMP: Excitons in Semiconductor Quantum Wires and Dots. Wegscheider, Molinari, Deveaud, Jönsson.

DCMP: Self Organized Composition Modulation During Epitaxial Growth. Barabási, Millunchick, Venezuela.

FIAP: Finding Faults and Failures in Future ICs. Wagner, Hawkins, Barton, Kash.

FED: Frontiers in Physics. Putterman, Crawford, Preskill.

DCP: Computer Simulation on Condensed Phase Dynamical Processes III. Coker, Makri, Martyna

DCP: The Chemical Physics of Light Harvesting in Photosynthesis

III. Small, Fleming, Struve.
DHPP: Biopolymers. Slater, Baumgartner, Kasianowicz, Wirtz, Gido. DBP: Neural Encoding: Determinism and Noise. Koch, van Hem-

men, Pei, Sauer, Stemmler.
DMP/DCMP: Fullerenes and Nanotubes X: AFM, STM, Imaging and Mechanical Properties. Lieber.

DMP: Materials Physics Issues in High-Tc Superconductivity I. Mannhart

DMP/DCMP: Defects in Semiconductors III. Ramdas.

DMP: Biological Materials on Solids I. Hood, Block

DCMP: Photon Correlation Spectroscopy and X-ray Diffuse Scattering. Mochrie.
IMSTG: Spectroscopy at High Magnetic Fields II. Tanner.

DCMP: Metallic Surfaces. DiMasi. DCMP: Spin Ladder and Haldane Gap Systems. Reich.

DCMP: Thermal/Electrical Transport. *Movshovich*. DCMP: Simulation and Theory on Wetting Transitions. *Cole, Bon*insegni.

JT: Statistical Physics Across Disciplines. Banavar, Koplik, Liu, Huberman.

DCMP: The Loop Algorithm for Quantum Monte-Carlo Simulations.

Evertz, Wiese, Svistunov, Kawashima, Troyer.

DCMP: Local Probes of the Quantum Hall Effects. Yacoby, McCormick, Tessmer.

DCMP: Metal-Insulator Transition in Correlated Two-Dimensional Electron Gas. Kravchenko, Shahar, Pepper

CSWP/FIAP: Beyond the Ivory Tower: Preparing Physicists for Careers in Government and Industrial Labs. Wilson, Young, Jones,

Murray.

IMSTG: Measurement Methods of Imaging Science. Spicer, Wickramasinghe, Moulder, Maldague, Han

DCP: Femtosecond Surface Dynamics: Theory and Experiment I. Heinz, Hertel. Petek.

DCP: Aspects of THz Spectroscopy in Chemical Physics I. Mittleman, Blake, Keiding.

DBP: Random Walks in Biology and Medicine. Buldyrev,

Viswanathan, Ohira, Hausdorff, Havlin.
DBP: Spectroscopy of Biomolecules. Hoff, Nagarajan.
DMP: Materials Theory—Simulation IV: New Algorithms. Greengard. DMP: Materials Theory-Electronic Structure IX: Surfaces and Defects. Baldereschi.

DMP: Materials Physics Issues in High-T_c Superconductivity II. Aprili. DMP: Nanometer Scale Morphology of Surfaces and Interfaces II: Strain Induced Islanding and Roughening. Ross, Medeiros-Ribeiro. DMP: Combinatorial Materials Synthesis and Evaluation I.

McFarland.

DMP: Biological Materials on Solids II. Smith. DCMP: Semiconductors: Transients and Nonlinearities. Xu. DCMP: Mesoscopic Kondo Systems and Kondo Effect. Schiller.

afternoon

DCMP: Two Component Composite Fermion Systems. Eisenstein, Stern.

DCMP: Stacked Arrays. Claeson, Müller.

JT: Quantum Chaos and Localization. Stone, Sridhar, Raizen, Tomsovic, Heller.

DCMP: Spin Dependent Transport in Half-Metallic Ferromagnetic

Perovskites. Hwang, Dong, Park.

DCMP: Skyrmions and Spin Dynamics in Quantum Hall Ferromagnets. Shayegan, Barrett, Fertig.

DCMP: Impurities in Strongly Correlated Systems. Alloul,

Hirschfeld, Scalettar, Takigawa, Dagotto.

FIAP: Take Physics Local: Linking Physics to Student and Societal Needs. Rigden, Gutierrez, Wolff, van den Berg, Tagg DCMP: Andreev Reflections in Mesoscopic Systems. Urbina, Averin,

Courtois, van Wees, Frydman.
DCP: Femtosecond Surface Dynamics Theory and Experiments II.

Aeschlimann, Misewich, Tom. DCP: Aspects of THz Spectroscopy in Chemical Physics II. Evenson,

Grischkowsky, Heilweil, Wynne.

DCMP: Phase Transitions in Disordered Systems. Yesilleten. DMP: Materials Theory—Simulation V: Dynamics. Voter.

DMP: Materials Physics Issues in High-T_c Superconductivity III. Welch.

DMP: Nanoscale Tribology I: Modeling and Lubricants. Landman. DMP: Combinatorial Materials Synthesis and Evaluation II. Isaacs. DMP: DNA and Lipids. Lubensky

DCMP: Quantum Wires: General Theory. Wang.
DCMP: Ferromagnetism in Strongly Correlated Systems. Lonzarich Vollhardt

DCMP: Modern Optical Microscopy. Denk.

Friday, 20 March

morning

DCMP: Exchange Bias in FM-AFM Bilayers. Dahlberg, Lederman,

Ijiri, Koon, Šuhl.

DCMP: Systematics of the ARPES Spectral Function of the Cuprates. Ding, Kim, Schrieffer, Lee, Norman.

DCP: Femtosecond Surface Dynamics: Theory and Experiment III. Tully, Saalfrank, Micha.

DCP: Aspects of Spectroscopy in Chemical Physics III. Ralph, Scherer, Bucksbaum.

DHPP: Patterned Surfaces. Chakraborty, Chakrabarti, Karim, Mayes, Russell DBP: Membrane Ion Channels-From Microscopic Stochastic Be-

havior to Macroscopic Organization. White, Bezrukov, Gailey, Astumian, Tsong.

DMP: Materials Theory-Simulation VI: Stochastic Methods, Phase Diagrams and Spin Systems. *Panagiotopoulos*. DMP: Materials Theory-Electronic Structure XI: Compounds.

Klein.

DMP: Nanoscale Tribology II: Scanning Probe Microscopy. *Meyer*. DMP: Complex Fluids and Biomolecular Materials II: DNA and Self-Assembly. Gelbart.

DCMP: Semiconductor Surfaces: Adsorption. van Driel

DCMP: Nanofabrication of Mesoscopic Systems. Ahn.
DCMP: Random Matrix Theory and Quantum Chaos. Muttalib.
DCMP: Superconductivity Theory: Tunneling and d-wave. Wei.
DBP: Magnetic and Electric Fields in Biology. Valles Jr.
DMP: Materials Theory—Simulation VII: Quantum Simulations.

DMP: Nanometer Scale Morphology of Surfaces and Interfaces V: Influence of Strain on Alloy and Interface Stability. Greene, Wolf. DMP: Complex Fluids and Biomolecular Materials III: Polyelectrolytes and Macromolecules. Pincus.