his works in this period became classic. His study of helium adsorbed on grafoil, for example, (*Physics Letters*, volume 54A, page 353, 1975) was the forerunner of numerous works on commensurate—incommensurate—transitions, and the Alexander—McTague theory of the liquid—solid transition is now standard textbook material.

Shortly after he was introduced to polymers during his sabbatical at the College of France in 1976, Shlomo developed the scaling theory of polymers attached to surfaces. His seminal papers on this subject gave birth to a new branch of polymer science, and there are hundreds of references to the "Alexander-de Gennes brush" in the literature. This work was followed by another classic in the area of soft condensed matter: the first lattice gas model of microemulsions.

In 1978, Shlomo was elected dean of the faculty of science and mathematics at the Hebrew University, a position he held until 1981.

Following many visits to UCLA in the beginning of the 1980s, Shlomo joined the UCLA physics faculty in 1986. There, he made major contributions to the study of transport and excitation dynamics in one-dimensional disordered systems. In 1982, he and Raymond Orbach wrote the famous Alexander-Orbach conjecture concerning the density of states of excitations on fractal lattices ("fractons"), which became one of the most cited works in the physics literature. Shlomo made important contributions to a broad range of subjects, including the theory of colloidal crystals, superconductivity in disordered systems, the structure and packing of quasicrystals, polymers at interfaces, hydrodynamics of electrolyte solutions, nonequilibrium growth of crystals and inter-diffusion.

In the early 1980s, he became occupied with the development of a new, fundamental description of the elastic properties of disordered materials, which culminated in a pioneering study published in *Physics Reports* shortly before his untimely death.

In 1989, Shlomo retired to emeritus status from the Hebrew University and joined the department of chemical physics at the Weizmann Institute, where he remained until his full retirement in 1995. Since then, he was affiliated with the physics department of Bar-Ilan University.

Shlomo had an unusually reliable intuition about physics and a rare ability to translate experimental observations into simple physical models. The combination of his extremely broad range of interests and deep knowledge of physics with his gentle and friendly personality made his office and home

a Mecca for colleagues and students alike. He collaborated with an enormous number of people from a variety of fields, ranging from organic chemistry to mathematical physics, and even ventured outside of physics to economics-a subject he worked on with his wife Esther. Age and scientific stature had no effect on his youthful mind: He remained energetic, inquisitive and open-minded, and would address a young student with the same courtesy and respect as a public or scientific celebrity. He had a passion for scientific integrity, and deep awareness of the need to protect science against dangers ranging from downright fraud to the presentation of half-baked ideas as scientific truths.

Shlomo was a noble human being, a brilliant physicist and a dear friend. We are deeply saddened by his death.

ZEEV LUZ
Weizmann Institute of Science
Rehovot, Israel
MEIR WEGER

Hebrew University of Jerusalem Jerusalem, Israel

ROBIJN BRUINSMA

University of California, Los Angeles
YITZHAK RABIN

Bar-Ilan University Ramat-Gan, Israel

PIERRE-GILLES DE GENNES

College of France
Paris, France

Achilles Papapetrou

A chilles Papapetrou, a leading researcher in the field of general relativity for over 50 years, died in Paris at the age of 90 on 12 August 1997.

Born in northern Greece, he studied mechanical and electrical engineering at what is now the National Technical University of Athens from 1925 to 1930, working afterwards as an engineer. In 1934, he moved to the University of Stuttgart to study with Paul Ewald. Although he worked first on solid-state theory, his interest shifted to relativity as he and Helmut Honl worked on special-relativistic equations that described the motion of spinning particles.

After obtaining his doctorate in engineering at Stuttgart in 1935, Papapetrou returned to the technical university in Athens as an assistant in the electrical engineering department. He became a professor of physics there in 1940 and taught throughout World War II. Well-known as an opponent of collaboration during the brutal German occupation, he participated in the Greek people's remarkable odyssey of resistance and liberation.

In 1946, Erwin Schrödinger invited

Papapetrou to the Dublin Institute for Advanced Studies, where he started to work on Schrödinger's unified field theory. He found exact spherically symmetric solutions and proved that nonsingular solutions to the nonsymmetric field equations do not exist. In 1948, he became a physics research fellow at the University of Manchester, where he worked mainly on problems connected with the equations of motion in general relativity. He introduced marked simplifications in the derivation of the slow-motion equations, and derived the equations of motion of spinning test particles, partly in collaboration with Ernesto Corinaldesi.

In 1952, Papapetrou moved to East Berlin, where he established a relativity group in the German Academy of Sciences of the German Democratic Republic. His work there, often in collaboration with the younger research workers whom he was training, included a proof of the nonexistence of periodic, nonsingular solutions to the gravitational field equations, investigations of gravitational shock waves and further studies of the equations of motion.

Papapetrou moved to Paris in 1962 to become a research director at the National Center for Scientific Research (CNRS), a post he held until he retired in 1977. There, he again trained a large group of younger researchers, who joined the already well-established French relativity community.

In 1975, he became director of the Laboratory of Theoretical Physics at the Henri Poincaré Institute. His work there, in Paris, which ranged over almost all topics of current interest in general relativity, included doing research on elastic waves and their use in gravitational-wave detectors, gravitational collapse of shells of matter, the Newman-Penrose formalism and its identities and stationary axially symmetric gravitational fields. His publication list includes over a hundred articles and two highly regarded textbooks, one on special relativity in German and one on general relativity in English (Spezielle Relativitätstheorie, VEB Deutscher Verlag der Wissenschaften, 1967; Lectures on General Relativity, D. Reidel, 1974).

Papapetrou was a colleague, mentor and friend to several generations of relativists in countries scattered across the globe, and, after he retired, he and his wife Koula continued to receive many of them at home with a warmth and affection that were heartily reciprocated. For many of us, Paris without Achilles will never be the same.

JOHN STACHEL
Boston University
Boston, Massachusetts ■