SUPERCONDUCTOR-INSULATOR
TRANSITIONS IN THE
Two-DIMENSIONAL LIMIT

he investigation of super-

conductivity in the pres-
ence of disorder began 60
years ago with the work of
Alexander Shal'nikov at the
Institute for Physical Prob-
lems in Moscow. The subject
has played an ongoing role in
condensed matter physics
over the years. Interest has
recently been heightened by
the possibility that the disorder-driven or magnetic-field-
driven quenching of superconductivity in systems at the
limit of zero temperature and two dimensions might be
quantum phase transitions.! That would link the physics
of the superconductor—insulator transition in thin films to
other systems believed to exhibit quantum phase transi-
tions—for example, helium-4 in porous media, high tem-
perature superconductors, Josephson-junction arrays, two-
dimensional electron gases and various spin systems.

Disorder, which is relevant to superconductivity, can
be morphological or chemical. Early in the game, Philip
Anderson? showed that nonmagnetic impurities have no
significant effect on the superconducting transition by
pointing out that Cooper pairs are formed from time-
reversed eigenstates, which have disorder included. An-
derson’s idea applies only to weakly disordered systems,
with their extended electronic states.

One can, however, increase disorder to a level where
electronic wavefunctions become localized. The investiga-
tion of superconductivity in that localized regime provides
a unique opportunity for studying the competition between
the attractive interaction responsible for superconducting
pairing and the pair-breaking effects of localization and
disorder-enhanced Coulomb repulsion. The latter is an
important route to the localization of electronic wavefunc-
tions.®> Whereas superconductivity is a manifestation of
long-range phase coherence between electron pair states,
electronic localization involves a limitation of the spatial
extent of the wavefunctions, which should preclude such
pairing. One would therefore anticipate that supercon-
ductivity should disappear as disorder increases and states
become localized. In 1985, Patrick Lee and Michael Ma
at MIT presented a scenario for the persistence of super-
conductivity even when all states are localized.*

Of particular interest are very thin films, where both
superconductivity and metallic behavior are marginal. In
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Increasing the disorder of an ultrathin
superconducting film may produce a
quantum phase transition at zero
temperature to an insulating state.

Allen M. Goldman and Nina Markovié

two dimensions, a supercon-
ducting transition is barely
possible. It would be a topo-
logical Kosterlitz-Thouless-
Berezinski (KTB) transi-
tion® Weakly interacting
electron systems in two di-
mensions are always local-
ized, even for arbitrarily
weak disorder.® (This view
is changing; recent investi-
gations of strongly interacting systems suggest that there
can be a metal—insulator transition in two dimensions.5)
The subject of the superconductor—insulator transition
in two dimensions is an active area of experimental and
theoretical study. There is no consensus as to the nature
and applicability of the bosonic models of the quantum
phase transition that have been proposed.” Indeed, the
conventional picture of the suppression of superconductiv-
ity by disorder contains no quantum phase transition.

Disordered thin films

Thin films are good candidates for studying superconduc-
tor—insulator transitions, because they can be fabricated
with disorder on different length scales. The supercon-
ducting state in metallic and alloy systems is usually
forgiving of even substantial amounts of disorder. The
modification of a film’s superconducting properties caused
by disorder depends on the strength of the disorder and
its geometrical scale relative to intrinsic scales. The
relevant intrinsic scales include the interatomic spacing,
the inverse Fermi momentum (a few angstroms), the
electronic mean free path, the London penetration depth,
the Bardeen-Cooper-Schrieffer coherence length (10* A)
and the zero-temperature Ginzburg-Landau coherence
length, which can be as short as 50 A. This last is an
approximate measure of the size of the normal core of a
superconducting vortex.

The control and quantification of a film’s disorder
length scale represent a critical experimental problem.
The disorder can be on any scale ranging from 2 to 500 A.
It is determined by processing. Metallic or metal-oxide
films can be made inhomogeneous with a mesoscopic
(about 100 A) disorder length scale. With care, disorder
can be created on atomic scales in sputtered films, or in
films deposited on specially prepared substrates cooled to
liquid helium temperatures. Such films can contain me-
tallic clusters connected electrically by relatively narrow
necks, or insulating junctions with tunneling through the
substrate or through space.

In sputtered films that are nominally homogeneous
on atomic scales the superconducting transition tempera-
ture is observed to be a decreasing function of the sheet
resistance R of the film, measured in the normal state.
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FIGURE 1. CRITICAL TEMPERATURE for the transition of a
thin Mo,,Ge,;, film to superconductivity falls with increasing
sheet resistance (decreasing thickness) in good agreement with
models (red curve) based on weakening of Coulomb screening
by disorder. (Adapted from ref. 8, Graybeal and Beasley.)

(Because the resistance of a film is proportional to its
length and inversely proportional to its width, the resis-
tance of a square film, denoted R, is independent of the
size of the square, but not of the film’s thickness. It is
used to characterize resistive behavior in two dimensions.)
As we see in figure 1, the transition temperature falls
with increasing Ry (or decreasing film thickness) in very
much the way predicted by perturbative theoretical models
based on the weakening of Coulomb screening with in-
creasing disorder.® The response of such films to magnetic
fields turns out to resemble a quantum critical point.

In films produced by evaporating metal onto cold
substrates, repeated deposition of small amounts of metal
followed by measurement reveals the evolution of super-
conductivity with increasing thickness. If such studies
are carried out on substrates precoated with a thin layer
of amorphous germanium or antimony, one seems to get
disorder on atomic rather than mesoscopic scales. In
figure 2 we see such films exhibiting a clear separation
between superconducting and insulating behavior with
increasing thickness, in the limit of zero temperature.®
For bismuth, the resistance at the separation between
insulators and superconductors is very close to the quan-
tum resistance for electron pairs: h/4e* or 6450Q).

It has been suggested that films formed this way
are amorphous and free of clustering, because the un-
derlayer promotes the wetting of the substrate by the
film. Thus it permits the onset of conductance at
thicknesses on the order of a monolayer.!® There may,
however, be mesoscale clusters. But the underlayer,
though itself nonconducting, can provide a tunneling
channel for the electrical coupling between clusters, thus
giving rise to electrical connectivity at very early stages
of surface coverage.

Films made by low-temperature evaporation without
an underlayer of amorphous germanium or antimony are
believed to be granular. They do possess mesoscale clus-
ters, and they exhibit a separation between supercon-
ducting and insulating behavior in the limit of zero tem-
perature. But their properties differ in certain details
from the nominally homogeneous amorphous films de-
scribed above. In particular, their superconducting tran-
sition temperatures are independent of thickness, and
there is evidence that the mesoscale clusters are super-
conducting, with transition temperatures close to the bulk
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values. These systems may exhibit quantum critical be-
havior. So may Josephson junction arrays, which have
similar properties.

High-temperature superconductors have been studied
in a variety of configurations: Films have had their
superconductivity weakened by disruptive ion bombard-
ment or oxygen depletion, and they have been driven
normal by applied magnetic fields. Single crystals of
YBa,Cu;0,_, have been made to behave like two-dimen-
sional systems by controlled oxygen depletion. High-tem-
perature (oxide) superconductors are serving as models
for the study of the superconductor—insulator transition.
This modeling is, however, severely complicated by the
contrast between the simple metallic systems and the
structural, chemical and physical complexity of the oxides.

Aspects of superconductivity

To achieve an elementary understanding of the supercon-
ductor—insulator transition, it is useful to characterize the
superconducting state by the complex order parameter

V=T, et .

¥ is, in effect, a macroscopic wavefunction for the super-
conducting electrons. Even though superconductors are
complicated interacting many-body systems, many of their
properties can be described by a very simple picture in
which the aggregate collection of electrons behaves much
like a single electron. Resistance vanishes when the order
parameter is nonzero and there is long-range phase co-
herence—that is to say, when the phase ¢ becomes time-
independent. In the presence of phase fluctuations, it is,
in principle, possible to have finite resistance even with
a nonzero order parameter.

Fluctuations in either the amplitude or phase of the
order parameter are central to various models of the
superconductor—insulator transition in disordered films.
One can regard models in which electronic localization
weakens superconductivity as primarily affecting the
amplitude ¥,. By contrast, the “dirty boson” models
discussed below are mostly concerned with phase fluc-
tuations.

Fluctuations in the phase play a central role in the
superconductivity of films not so thin or disordered that
their electrons are strongly localized, but thinner than the
London penetration depth, which is the length scale for
the variation of currents and magnetic fields associated
with Abrikosov vortices. The onset of superconducting
behavior in this regime can be characterized as a topo-
logical (KTB) phase transition.? By contrast with three-
dimensional superconductors, this transition is not accom-
panied by the onset of true long-range phase coherence.

Vortex—antivortex pairs, which are topological excita-
tions produced in this regime by thermal excitation, be-
come bound below a characteristic temperature and cease
to contribute to the flux-flow resistance. Flux flow is a
process by which resistance can develop in a superconduc-
tor. Under the action of an applied current, vortices
generally move at right angles to the current, so that the
induced emf results in a nonvanishing resistance. That
is one way of producing a time-varying phase.

KTB transitions have been studied in many different
types of film and junction array systems with sheet resis-
tances on the order of a k. One should see a KTB
transition except when there are sample-dependent length
scales due to granularity or defects that cut off the long-
range vortex interaction. One also fails to see KTB
transitions in films with sheet resistances close to A /4e?,
the quantum resistance for pairs. See, for example, the
separatrix region in figure 2. In such cases, evidence of
the KTB transition appears to be suppressed by localiza-



tion effects and quantum fluctua-
tions of the order parameter’s 10"
phase.

The resemblance of what we
see in figure 2 to renormalization
flow diagrams in statistical me-
chanics has led to the suggestion
of a superconductor—insulator tran- 10°
sition at zero temperature very
much like the dirty-boson quantum
phase transition.” This approach
assumes that the crossover from
superconductor to insulator is a
consequence of phase fluctuations.
It attempts to go beyond perturba-
tive treatments, which are unsat-
isfactory in the limit of strong dis-
order.
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FIGURE 2. TEMPERATURE DEPENDENCE
of sheet resistance for various
thicknesses of bismuth film exhibits a
striking separatrix near 6450
Q=h/4¢’. Film thicknesses range
from 4.36 A (top curve) to 74.27 A
(bottom). (Adapted from ref. 9, Liu
etal.)

computationally with simulations
of the d +1 dimensional classical
problem. But disorder can change
the universality class of the equiva-
lent classical problem. Further-
more, space and time do not, in
general, enter the equivalent clas-
sical problem in the same way un-

less the dynamical exponent z is

unity. And the value of z depends

A quantum phase transition (QPT)

on the interactions in the system.

is a transition at absolute zero
brought about by changing a pa-
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The effect of considering non-
vanishing temperature in statisti-

rameter in the Hamiltonian of a
quantum system.!

cal mechanical analysis is to force

effects are central to QPTs. In )
other phase transitions, the order 107
parameter itself may be quantum
mechanical, but classical thermal
order-parameter fluctuations gov-
ern the behavior of the transition
at the relevant long wavelengths. 1
In superconductors, for example,

the “temporal” dimension of the
problem to be finite. One can then

The quantum 10°
mechanical ground state changes
when the critical point is crossed.
By contrast with phase transitions
at nonzero temperature, quantum
—

use a finite-size scaling model to
analyze data at nonzero tempera-
tures. The success of such analyses
for superconductor—insulator transi-
tions argues that they have quantum
critical points. The change in behav-
ior at nonzero temperature can be a
phase transition or a crossover.

The scaling dependence of the
sheet resistance on the tempera-
| ture and the control parameter in

V¥ is related to an underlying
many-body electronic wavefunc-
tion, but fluctuations are described
by a classical phenomenological
Landau—Ginzburg free energy. The fluctuations are clas-
sical, because the thermal energy kg7 is much greater
than Aw for all frequencies of interest. (kg is the
Boltzmann constant.) But in QPTs, where the tempera-
ture must be zero, the fluctuations themselves are quan-
tum mechanical.

Near a quantum phase transition, ¢ and &, the spatial
and temporal correlation lengths, are divergent. &, is
associated with a vanishing energy scale. If we define a
control parameter § as the absolute value of the difference
between the tuning parameter (for example, film thickness
or magnetic field) and its critical value, then we can write

£oc§” and & o« &7, (D

0 5

That defines the correlation-length exponent v and the
dynamic critical exponent z. In the critical region close
to the QPT, physical properties are homogeneous functions
of the independent variables in the problem.!

A key feature of QPTs is the interplay of dynamics
and thermodynamics. As a consequence of this interplay,
a d-dimensional quantum system at finite temperature is
described in the 7'— 0 limit as a classical system of
d + 1 dimensions. (This is strictly true for z = 1; otherwise
the dimensionality is z+d.) The finite extent of the
system in the extra dimension is given, in units of time,
by %/kgT; it becomes infinite only in the T'— 0 limit.

It is remarkable that important features of the quan-
tum transition can be studied extensively in a classical
context. One can treat the quantum mechanical problem

TEMPERATURE (kelvin)

10 15 two dimensions has the form:
Ro=R.f@/TV=), (2)

where R, is the critical resistance. The tuning parameter
is most often the magnetic field or film thickness, but it
could also be charge density, stress or disorder at fixed
thickness.!! Indeed, if the system is close enough to the
transition, it probably doesn’t matter what tuning parame-
ter the experimenter uses.”

Although the data shown in figure 2 suggested that
that the insulator—superconductor transition was a quan-
tum phase transition, the first quantitative attempt at a
finite-size scaling analysis was in the 1990 work of Arthur
Hebard and Mikko Paalanen on the field-driven transition
of amorphous composite In,O; films.'!  Figure 3 shows
the scaling behavior of equation 2 in more recent data
taken by Ali Yazdani and Aharon Kapitulnik with amor-
phous MoGe films.!? They find that the exponent product
zv = 1.36.

One can determine the dynamical exponent z without
a scaling analysis of the resistance: Hebard and Paalanen
have argued!! that the critical magnetic field B, goes like
T2z, Yazdani and Kapitulnik scaled the electric-field
dependence of the dynamical resistance at fixed tempera-
ture and found the exponent product v (z + 1) =2.73. That
yielded z =1.0 £ 0.1. That’s what one expects in systems
with long-range Coulomb interactions. For the magnetic-
field-driven transition, both v and z were found to agree
with theoretical expectations.

Until recently it was less clear that there was a
quantum critical point in the transitions one gets by
varying the film thickness or disorder. The scaling of the
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figure 2 data gave exponent products zv of 2.4 for the
insulating side of the transition and 1.2 for the supercon-
ducting side.® This mismatch appears to be the result of
including in the analysis of the insulating side resistance
data that involve a transport mode not relevant to the
insulator—superconductor transition.

Our University of Minnesota group has recently car-
ried out a more complete study with new data. We find
an exponent product of 1.3 on both sides of the transition.!3
The results are shown in figure 4. We have also studied
the field-driven transition of superconducting films very
close to the critical resistance and found surprisingly an
exponent product of 0.7. That’s something of a mystery
at this point, because it is consistent with simulations in
which there is no disorder.

Dirty bosons
Despite some rough edges, the various scaling analyses
appear to establish the existence of QPTs associated with
both the disorder- and field-driven transitions. The issue
of the applicability of the bosonic models proposed as a
description of these transitions is not well established.
Let us examine this issue.

The problem of Bose particles in a random medium,
originally considered in the context of helium in porous
media, has come to be called the dirty-boson picture. In
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FIGURE 3. SCALING BEHAVIOR of the temperature and
magnetic-field dependence of sheet resistance is exhibited by
plotting R of a sputter-deposited MoGe film measured at
four different temperatures (from 80 to 110 mK) together
against the scaling variable | B— B,|/T"#. Here the critical
magnetic field B. = 4.19 kG and the exponent product zv =
1.36. (Adapted from ref. 12.)

the superconducting case, films are modeled by pointlike
charge 2e bosons in a random potential, interacting with
a long-range Coulomb force. The treatment of Cooper
pairs as composite bosonic particles has been justified
because it does correctly describe the critical behavior of
superconductors. In three dimensions, models of the su-
perconducting transition based on a finite-temperature
Bose condensation and those based on the Bardeen—Cooper—
Schrieffer theory belong to the same universality class.

As the boson density is increased through the critical
density, there is a T'=0 transition from an insulating
localized Bose-glass phase (localized Cooper pairs) to a
superconducting phase. That picture ignores all the sys-
tem’s fermionic properties, such as single-particle excita-
tions. Increasing the thickness of a film makes it more
metallic. Presumably it also increases the carrier concen-
tration. In the presence of an attractive electron—electron
interaction, that results in an increased Cooper-pair
(boson) density.

Applying a magnetic field adds vortices, which inter-
act with a logarithmic potential and behave like quantum
point particles. In the presence of disorder, these vortices
are pinned and the usual vortex-lattice phase is replaced
by a vortex glass. At temperatures above zero in a
magnetic field, the resistance can be nonvanishing, be-
cause vortices can move either by thermal activation or
quantum tunneling. But as the magnetic field is in-
creased, the quantum gas of point vortices can, in princi-
ple, become a Bose condensate at some critical field. This
condensation results in a Bose insulator with localized
Cooper pairs.

There is a parallel between the disorder-controlled
and field-controlled transitions. Adding charged bosons
(Cooper pairs) by increasing film thickness results in a
Cooper-pair condensate, and adding uncharged bosons
(vortices) by applying a perpendicular magnetic field leads
to a vortex condensate. Vortices and charges are related
by a duality transformation. In two-dimensional super-

FIGURE 4. DEPENDENCE OF SHEET RESISTANCE (divided by its
critical value) on film thickness d shows the expected scaling
behavior when measurements in different magnetic fields
(from 0 to 10 kG) are plotted together against the scaling
variable | d — d.|/T"?. Here the exponent product
zv=1.4+0.1, and d_ is the critical thickness in the absence of
a magnetic field. The inset is a phase diagram for the critical
thickness as a function of magnetic field. The curve indicates
the power law d — d_ o B'*. (Adapted from ref. 13.)




FIGURE 5. TUNNELING JUNCTION CONDUCTANCE of a
PbBi/Ge film measured at 7 = 360 mK and various magnetic
fields. (The temperature T, at which the resistance has
dropped to half its normal-state value is 1.64 K.) The curves
are for five different magnetic fields, ranging from 0 to 40 kG.
No energy-gap feature is found for insulating films. (Adapted
from ref. 15, Hsu, Chervenak and Valles.)

conductors this transformation interchanges particles and
vortices and maps the insulating and superconducting
phases onto each other.!* We can view the insulator at
zero temperature as a Bose condensate of vortices with
the original Bose particles now localized. The dissipation-
less flow of vortices in the insulating phase is thus the
dual of superconductivity. Just as moving charges induce
current, moving vortices induce voltage.

An important additional prediction of the dirty boson
theory is that, at the critical point (with both T and & at
zero), the conductivity is finite. This means there should
be true metallic conduction. Furthermore, renormaliza-
tion-group arguments lead to the conclusion that the sheet
resistance at criticality is universal, its value depending
upon the universality class of the transition, and not on
microscopic details.

In the very special case in which the insulator and
superconductor are self-dual, the resistance at criticality
would be % /4e?, the quantum resistance for pairs. That
can be understood by a simple argument: When the
system switches from superconductor to insulator, both
charges and vortices move. A flow of Cooper pairs results
in a current I=2e(dn/d¢)., Vortices moving at right
angles to the current produce a voltage
V=(h/2e)(dn/dt),, When a superconductor is self-dual,
vortices and charges behave identically and the two time
derivatives are equal, so that the resistance R =V/I be-
comes h/4e.

The experimental situation

An important feature of the dirty-boson model is the
prediction that there is a universal limiting resistance at
the critical point. Although some studies® find limiting
resistances close to A/4e?, different values of the critical
resistance have, in fact, been reported for a number of
thin-film systems. The spread of measured values may
be extrinsic; there are morphological differences between
films of different materials. In particular, films believed
to be homogeneous may, in fact, be granular. The Joseph-
son coupling between grains in such films would be de-
termined by a critical value of the ratio of the electrostatic
energy to the Josephson coupling energy, which would
depend on geometry. Alternatively, material-specific fea-
tures such as the strength of spin—orbit coupling might
influence the universality class. Finally, the data may not
really be from the critical regime of the 7'=0 phase
transition. The size of this regime is not known. It may
require studies at lower temperatures, with values of the
control parameter closer to criticality.

Tunneling studies of the density of states in ultrathin
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films also suggest that dirty-boson physics cannot be the
whole story.!® In particular, when superconductivity is
tuned by varying the film thickness, the energy gap
obtained by measuring the tunneling conductance is found
to scale with the transition temperature. It disappears
when the superconductivity vanishes. A similar study has
been carried out on the magnetic-field driven transition,
although in that case the density of states associated with
the gap, rather than the gap itself, decreases with increas-
ing field and vanishes in the insulating state. This is
seen very clearly in figure 5.

The simplest interpretation of such studies is that
there are serious amplitude fluctuations as well as phase
fluctuations associated with the superconductor—insulator
transition. One might also conclude from this interpre-
tation that the vanishing of the energy gap implies the
vanishing of the order parameter in the insulating state.
That would call into question our earlier discussion of the
superconductor—insulator transition. Such a conclusion
should be treated with care. The vanishing of the gap
aspect of tunneling could result from other effects, such
as pair breaking by phase fluctuations. In any case,
tunneling experiments raise serious questions as to the
completeness of a phase-only picture of the transition.®

In the magnetic-field-driven transition, the values of
the critical resistance cluster about the quantum resis-
tance for pairs. But there too, the data indicate that the
limiting resistance at the transition is not universal.
Yazdani and Kapitulnik have suggested that this may be
due to parallel electronic conduction channels.’? It may also
turn out that bosonic models incorporating local ohmic dis-
sipation, in which the dynamical critical exponent is damp-
ing-dependent, will provide the clue to what is happening.'’

The various bosonic models assume that Cooper pairs
exist in the insulator. This certainly is the case in granu-
lar films and Josephson junction arrays. It might also be
true for “uniform” films: Hall effect studies on indium
oxide films suggest a crossover between two distinct in-
sulating phases. When the longitudinal resistance R,
and the transverse Hall resistance R,, are measured on
the same film,"! we see in figure 6 that R, crosses over
to insulating behavior at a field strength lower than that
of a second crossover, found in the dependence of E,, on
B. At the higher-field feature there is also a drop in the
resistance. It has been suggested that the first crossover
indicates a transition between a superconductor and a
Bose insulator—a state with nonzero pairing but infinite
resistance at zero temperature—and the second feature is
a crossover or transition to a Fermi electronic insulator
without pairing.!!
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A second piece of supporting evidence for Cooper
pairing in the insulator comes from the magnetoresistance
of quench-deposited films. James Valles and Shih-ying
Hsu have seen!® a crossover from activated conduction
(where conductance varies like exp(—VT,/T ) to conduc-
tion that goes like log 7. This crossover is accompanied
by a change in the sign of the magnetoresistance.

Our group has observed these effects to be correlated
with the development of anisotropy in the magnetoresis-
tance of sets of films that ultimately become supercon-
ducting.’® We found the difference between the measure-
ments with the applied field perpendicular and parallel
to the film plane—which should be a measure of the orbital
magnetoresistance—to be linear in magnetic field. That
linearity could be due to the flux flow of vortices in the
insulating state. Theorist Efrat Shimshoni and coauthors
have recently considered a system of quantum disordered
Cooper pairs subject to a penetrating magnetic field, with
one flux quantum per Cooper pair.’® These objects might
result in flux-flow resistance, which would exhibit linear
magnetoresistance.

Challenges

The success of finite-size scaling analyses of the super-
conductor—insulator transitions as a function of film thick-
ness or applied magnetic field provides strong evidence
that 7= 0 quantum phase transitions are occurring. On
the other hand, the superconducting gap experiments and
the lack of a universal limiting resistance at zero tem-
perature raise serious questions as to whether the theo-
retical picture based on dirty-boson physics and phase
fluctuations correctly describes the critical behavior of
these two-dimensional systems. Certainly the correct the-
ory should not ignore electronic degrees of freedom.

There are challenges to the experimentalist as well.
We need lower temperatures, so we can be sure that the
scaling analyses are really in the critical region. The
nature of the insulating state must be investigated further.
There are also concerns about the frequencies at which
the measurements are made. To be confident of having
reached the quantum limit,! one would like to achieve the
condition fiw > kgT.

There is also the issue of the chemical composition
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FIGURE 6. LONGITUDAL AND TRANSVERSE resistances of an
amorphous In,O; thin film superconductor, measured as a
function of applied magnetic field, exhibit quite different
critical fields B°, as manifested by the crossover point for
different isotherms from 40 to 200 mK. The right-hand axis
refers to the transverse (Hall) resistance R, (red curves). The
separation of the critical field values suggests an insulating
phase of mobile bosonic vortices above the critical field for the
field-driven superconductor-insulator transition. The
high-field (fermionic) insulating phase appears to be less
resistive than this bosonic phase. (Adapted from ref. 11,
Paalanen, Hebard and Ruel.)

and structure of the various films used in these investi-
gations. To assert that these films are homogeneous is,
for quench-vaporated films, a minimalist assumption or,
for sputtered films, an extrapolation from measurements
on thicker films. It would be useful to obtain more struc-
tural information on films much thinner than 50 A. It
would also be important to investigate the behavior of
films as the length scale for disorder changes from the
microscopic to the mesoscopic scale.

Our work is supported by the National Science Foundation’s
condensed-matter physics program.
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