
SUPERCONDUCTOR-INSULA TOR 
TRANSITIONS IN THE 

Two-DIMENSIONAL LIMIT 
The investigation of super­

conductivity in the pres­
ence of disorder began 60 
years ago with the work of 
Alexander Shal'nikov at the 
Institute for Physical Prob­
lems in Moscow. The subject 
has played an ongoing role in 
condensed matter physics 
over the years. Interest has 

Increasing the disorder of an ultrathin 
superconducting film may produce a 

quantum phase transition at zero 
temperature to an insulating state. 

two dimensions, a supercon­
ducting transition is barely 
possible. It would be a topo­
logical Kosterlitz-Thouless­
Berezinski (KTB) transi­
tion.5 Weakly interacting 
electron systems in two di­
mensions are always local­
ized, even for arbitrarily Allen M. Goldman and Nina Markovic 

recently been heightened by 
the possibility that the disorder-driven or magnetic-field­
driven quenching of superconductivity in systems at the 
limit of zero temperature and two dimensions might be 
quantum phase transitions. 1 That would link the physics 
of the superconductor-insulator transition in thin films to 
other systems believed to exhibit quantum phase transi­
tions- for example, helium-4 in porous media, high tem­
perature superconductors, Josephson-junction arrays, two­
dimensional electron gases and various spin systems. 

Disorder, which is relevant to superconductivity, can 
be morphological or chemical. Early in the game, Philip 
Anderson2 showed that nonmagnetic impurities have no 
significant effect on the superconducting transition by 
pointing out that Cooper pairs are formed from time­
reversed eigenstates, which have disorder included. An­
derson's idea applies only to weakly disordered systems, 
with their extended electronic states. 

One can, however, increase disorder to a level where 
electronic wavefunctions become localized. The investiga­
tion of superconductivity in that localized regime provides 
a unique opportunity for studying the competition between 
the attractive interaction responsible for superconducting 
pairing and the pair-breaking effects of localization and 
disorder-enhanced Coulomb repulsion. The latter is an 
important route to the localization of electronic wavefunc­
tions.3 Whereas superconductivity is a manifestation of 
long-range phase coherence between electron pair states, 
electronic localization involves a limitation of the spatial 
extent of the wavefunctions, which should preclude such 
pairing. One would therefore anticipate that supercon­
ductivity should disappear as disorder increases and states 
become localized. In 1985, Patrick Lee and Michael Ma 
at MIT presented a scenario for the persistence of super­
conductivity even when all states are localized.4 

Of particular interest are very thin films, where both 
superconductivity and metallic behavior are marginal. In 
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weak disorder. 3 (This view 
is changing; recent investi­

gations of strongly interacting systems suggest that there 
can be a metal-insulator transition in two dimensions.6) 

The subject of the superconductor-insulator transition 
in two dimensions is an active area of experimental and 
theoretical study. There is no consensus as to the nature 
and applicability of the bosonic models of the quantum 
phase transition that have been proposed.7 Indeed, the 
conventional picture of the suppression of superconductiv­
ity by disorder contains no quantum phase transition. 

Disordered thin films 
Thin films are good candidates for studying superconduc­
tor-insulator transitions, because they can be fabricated 
with disorder on different length scales. The supercon­
ducting state in metallic and alloy systems is usually 
forgiving of even substantial amounts of disorder. The 
modification of a film's superconducting properties caused 
by disorder depends on the strength of the disorder and 
its geometrical scale relative to intrinsic scales. The 
relevant intrinsic scales include the interatomic spacing, 
the inverse Fermi momentum (a few angstroms), the 
electronic mean free path, the London penetration depth, 
the Bardeen-Cooper-Schrieffer coherence length (104 A) 
and the zero-temperature Ginzburg- Landau coherence 
length, which can be as short as 50 A. This last is an 
approximate measure of the size of the normal core of a 
superconducting vortex. 

The control and quantification of a film's disorder 
length scale represent a critical experimental problem. 
The disorder can be on any scale ranging from 2 to 500 A. 
It is determined by processing. Metallic or metal-oxide 
films can be made inhomogeneous with a mesoscopic 
(about 100 A) disorder length scale. With care, disorder 
can be created on atomic scales in sputtered films, or in 
films deposited on specially prepared substrates cooled to 
liquid helium temperatures. Such films can contain me­
tallic clusters connected electrically by relatively narrow 
necks, or insulating junctions with tunneling through the 
substrate or through space. 

In sputtered films that are nominally homogeneous 
on atomic scales the superconducting transition tempera­
ture is observed to be a decreasing function of the sheet 
resistance R0 of the film, measured in the normal state. 
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FIGURE 1. CRITICAL TEMPERATURE for the transition of a 
thin Mo77Ge23 film to superconductivity falls with increasing 
sheet resistance (decreasing thickness) in good agreement with 
models (red curve) based on weakening of Coulomb screening 
by disorder. (Adapted from ref. 8, Graybeal and Beasley.) 

(Because the resistance of a film is proportional to its 
length and inversely proportional to its width, the resis­
tance of a square film, denoted R0 , is independent of the 
size of the square, but not of the film's thickness. It is 
used to characterize resistive behavior in two dimensions.) 
As we see in figure 1, the transition temperature falls 
with increasing R0 (or decreasing film thickness) in very 
much the way predicted by perturbative theoretical models 
based on the weakening of Coulomb screening with in­
creasing disorder. 8 The response of such films to magnetic 
fields turns out to resemble a quantum critical point. 

In films produced by evaporating metal onto cold 
substrates, repeated deposition of small amounts of metal 
followed by measurement reveals the evolution of super­
conductivity with increasing thickness. If such studies 
are carried out on substrates precoated with a thin layer 
of amorphous germanium or antimony, one seems to get 
disorder on atomic rather than mesoscopic scales. In 
figure 2 we see such films exhibiting a clear separation 
between superconducting and insulating behavior with 
increasing thickness, in the limit of zero temperature9 

For bismuth, the resistance at the separation between 
insulators and superconductors is very close to the quan­
tum resistance for electron pairs: hI 4e2 or 645011. 

It has been suggested that films formed this way 
are amorphous and free of clustering, because the un­
derlayer promotes the wetting of the substrate by the 
film. Thus it permits the onset of conductance at 
thicknesses on the order of a monolayer. 10 There may, 
however, be mesoscale clusters. But the underlayer, 
though itself nonconducting, can provide a tunneling 
channel for the electrical coupling between clusters, thus 
giving rise to electrical connectivity at very early stages 
of surface coverage. 

Films made by low-temperature evaporation without 
an underlayer of amorphous germanium or antimony are 
believed to be granular. They do possess mesoscale clus­
ters, and they exhibit a separation between supercon­
ducting and insulating behavior in the limit of zero tem­
perature. But their properties differ in certain details 
from the nominally homogeneous amorphous films de­
scribed above. In particular, their superconducting tran­
sition temperatures are independent of thickness, and 
there is evidence that the mesoscale clusters are super­
conducting, with transition temperatures close to the bulk 
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values. These systems may exhibit quantum critical be­
havior. So may Josephson junction arrays, which have 
similar properties. 

High-temperature superconductors have been studied 
in a variety of configurations: Films have had their 
superconductivity weakened by disruptive ion bombard­
ment or oxygen depletion, and they have been driven 
normal by applied magnetic fields. Single crystals of 
YBa2Cu30 7_x have been made to behave like two-dimen­
sional systems by controlled oxygen depletion. High-tem­
perature (oxide) superconductors are serving as models 
for the study of the superconductor-insulator transition. 
This modeling is, however, severely complicated by the 
contrast between the simple metallic systems and the 
structural, chemical and physical complexity of the oxides. 

Aspects of superconductivity 
To achieve an elementary understanding of the supercon­
ductor-insulator transition, it is useful to characterize the 
superconducting state by the complex order parameter 

'¥ = '¥ o e'<l> . 

'¥ is, in effect, a macroscopic wavefunction for the super­
conducting electrons. Even though superconductors are 
complicated interacting many-body systems, many oftheir 
properties can be described by a very simple picture in 
which the aggregate collection of electrons behaves much 
like a single electron. Resistance vanishes when the order 
parameter is nonzero and there is long-range phase co­
herence-that is to say, when the phase 1> becomes time­
independent. In the presence of phase fluctuations , it is, 
in principle, possible to have finite resistance even with 
a nonzero order parameter. 

Fluctuations in either the amplitude or phase of the 
order parameter are central to various models of the 
superconductor-insulator transition in disordered films . 
One can regard models in which electronic localization 
weakens superconductivity as primarily affecting the 
amplitude '1'0 . By contrast, the "dirty boson" models 
discussed below are mostly concerned with phase fluc­
tuations. 

Fluctuations in the phase play a central role in the 
superconductivity of films not so thin or disordered that 
their electrons are strongly localized, but thinner than the 
London penetration depth, which is the length scale for 
the variation of currents and magnetic fields associated 
with Abrikosov vortices. The onset of superconducting 
behavior in this regime can be characterized as a topo­
logical (KTB) phase transition.5 By contrast with three­
dimensional superconductors, this transition is not accom­
panied by the onset of true long-range phase coherence. 

Vortex-antivortex pairs, which are topological excita­
tions produced in this regime by thermal excitation, be­
come bound below a characteristic temperature and cease 
to contribute to the flux-flow resistance. Flux flow is a 
process by which resistance can develop in a superconduc­
tor. Under the action of an applied current, vortices 
generally move at right angles to the current, so that the 
induced emf results in a nonvanishing resistance. That 
is one way of producing a time-varying phase. 

KTB transitions have been studied in many different 
types of film and junction array systems with sheet resis­
tances on the order of a kfl. One should see a KTB 
transition except when there are sample-dependent length 
scales due to granularity or defects that cut off the long­
range vortex interaction." One also fails to see KTB 
transitions in films with sheet resistances close to hI 4e2

, 

the quantum resistance for pairs. See, for example, the 
separatrix region in figure 2. In such cases, evidence of 
the KTB transition appears to be suppressed by localiza-



tion effects and quantum fluctua­
tions of the order parameter's 
phase. 

The resemblance of what we 
see in figure 2 to renormalization 
flow diagrams in statistical me­
chanics has led to the suggestion 
of a superconductor-insulator tran­
sition at zero temperature very 
much like the dirty-boson quantum 
phase transition.7 This approach 
assumes that the crossover from 
superconductor to insulator is a 
consequence of phase fluctuations. 
It attempts to go beyond perturba­
tive treatments, which are unsat­
isfactory in the limit of strong dis­
order. 

Quantum phase transitions 
A quantum phase transition CQPT) 
is a transition at absolute zero 
brought about by changing a pa­
rameter in the Hamiltonian of a 
quantum system. 1 The quantum 
mechanical ground state changes 
when the critical point is crossed. 
By contrast with phase transitions 
at nonzero temperature, quantum 
effects are central to QPTs. In 
other phase transitions, the order 
parameter itself may be quantum 
mechanical, but classical thermal 
order-parameter fluctuations gov-
ern the behavior of the transition 
at the relevant long wavelengths. 

10' 

10' 

10' 74.27 A 

FIGURE 2. TEMPERATURE DEPENDENCE 

of sheet resistance for various 
thicknesses of bismuth film exhibits a 
striking separatrix near 6450 
D = h/ 4£?. Film thicknesses range 
from 4.36 A (top curve) to 74.27 A 
(bottom). (Adapted from ref. 9, Liu 
et al .. ) 

computationally with simulations 
of the d + 1 dimensional classical 
problem. But disorder can change 
the universality class of the equiva­
lent classical problem. Further­
more, space and time do not, in 
general , enter the equivalent clas­
sical problem in the same way un­
less the dynamical exponent z is 
unity. And the value of z depends 
on the interactions in the system. 

The effect of considering non­
vanishing temperature in statisti­
cal mechanical analysis is to force 
the "temporal" dimension of the 
problem to be finite . One can then 
use a finite-size scaling model to 
analyze data at nonzero tempera­
tures. The success of such analyses 
for superconductor-insulator transi­
tions argues that they have quantum 
critical points. The change in behav­
ior at nonzero temperature can be a 
phase transition or a crossover. 

In superconductors, for example, 
'¥ is related to an underlying 
many-body electronic wavefunc­
tion, but fluctuations are described 
by a classical phenomenological 

0 5 10 15 

The scaling dependence of the 
sheet resistance on the tempera­
ture and the control parameter in 
two dimensions has the form: 

TEMPERATURE (kelvin) R o =Rcf(o / T llzv )' (2) 

Landau-Ginzburg free energy. The fluctuations are clas­
sical, because the thermal energy k 8T is much greater 
than hw for all frequencies of interest. (k 8 is the 
Boltzmann constant.) But in QPTs, where the tempera­
ture must be zero, the fluctuations themselves are quan­
tum mechanical. 

Near a quantum phase transition, g and g" the spatial 
and temporal correlation lengths, are divergent. g, is 
associated with a vanishing energy scale. If we define a 
control parameter 8 as the absolute value of the difference 
between the tuning parameter (for example, film thickness 
or magnetic field) and its critical value, then we can write 

(1) 

That defines the correlation-length exponent v and the 
dynamic critical exponent z. In the critical region close 
to the QPT, physical properties are homogeneous functions 
of the independent variables in the problem. 1 

A key feature of QPTs is the interplay of dynamics 
and thermodynamics. As a consequence of this interplay, 
a d -dimensional quantum system at finite temperature is 
described in the T ~ 0 limit as a classical system of 
d + 1 dimensions. (This is strictly true for z = 1; otherwise 
the dimensionality is z +d.) The finite extent of the 
system in the extra dimension is given, in units of time, 
by h I k8T ; it becomes infinite only in the T ~ 0 limit. 

It is remarkable that important features of the quan­
tum transition can be studied extensively in a classical 
context. One can treat the quantum mechanical problem 

where R c is the crit ical resistance. The tuning parameter 
is most often the magnetic field or film thickness, but it 
could also be charge density, stress or disorder at fixed 
thickness.11 Indeed, if the system is close enough to the 
transition, it probably doesn't matter what tuning parame­
ter the experimenter uses.7 

Although the data shown in figure 2 suggested that 
that the insulator-superconductor transition was a quan­
tum phase transition, the first quantitative attempt at a 
finite-size scaling analysis was in the 1990 work of Arthur 
Hebard and Mikko Paalanen on the field-driven transition 
of amorphous composite In20 3 films. 11 Figure 3 shows 
the scaling behavior of equation 2 in more recent data 
taken by Ali Yazdani and Aharon Kapitulnik with amor­
phous MaGe films. 12 They find that the exponent product 
zv = 1.36. 

One can determine the dynamical exponent z without 
a scaling analysis of the resistance: Hebard and Paalanen 
have argued11 that the critical magnetic field Be goes like 
T c21z . Yazdani and Kapitulnik scaled the electric-field 
dependence of the dynamical resistance at fixed tempera­
ture and found the exponent product v (z + 1) = 2. 73. That 
yielded z = 1.0 ± 0.1. That's what one expects in systems 
with long-range Coulomb interactions. For the magnetic­
field-driven transition, both v and z were found to agree 
with theoretical expectations. 

Until recently it was less clear that there was a 
quantum critical point in the transitions one gets by 
varying the film thickness or disorder. The scaling of the 
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figure 2 data gave exponent products zv of 2.4 for the 
insulating side of the transition and 1.2 for the supercon­
ducting side.9 This mismatch appears to be the result of 
including in the analysis of the insulating side resistance 
data that involve a transport mode not relevant to the 
insulator-superconductor transition. 

Our University of Minnesota group has recently car­
ried out a more complete study with new data. We find 
an exponent product of 1.3 on both sides of the transition.l3 

The results are shown in figure 4. We have also studied 
the field-driven transition of superconducting films very 
close to the critical resistance and found surprisingly an 
exponent product of 0.7. That's something of a mystery 
at this point, because it is consistent with simulations in 
which there is no disorder. 

Dirty bosons 
Despite some rough edges, the various scaling analyses 
appear to establish the existence of QPTs associated with 
both the disorder- and field-driven transitions. The issue 
of the applicability of the bosonic models proposed as a 
description of these transitions is not well established. 
Let us examine this issue. 

The problem of Bose particles in a random medium, 
originally considered in the context of helium in porous 
media, has come to be called the dirty-boson picture. In 

42 

0.6 ,.--- ---------, 

2 4 6 8 
MAGNETIC FIELD B(kG) 

, ...... _ .. ~ 

0.001 O.ot 0.1 
1 

THICKNESS SCALING VARIABLE ld-d, I/ T v
2

v (AK
12

v) 

NOVEMBER 1998 PHYSICS TODAY 

FIGURE 3. SCALING BEHAVIOR of the temperature and 
magnetic-field dependence of sheet resistance is exhibited by 
plotting R0 of a sputter-deposited MoGe film measured at 
four different temperatures (from 80 to 110 mK) together 
against the scaling variable I B- Bci/T Jlzv~ Here the critical 
magnetic field Be = 4.19 kG and the exponent product zv = 
1.36. (Adapted from ref. 12.) 

the superconducting case, films are modeled by pointlike 
charge 2e bosons in a random potential, interacting with 
a long-range Coulomb force. The treatment of Cooper 
pairs as composite bosonic particles has been justified 
because it does correctly describe the critical behavior of 
superconductors. In three dimensions, models of the su­
perconducting transition based on a finite-temperature 
Bose condensation and those based on the Bardeen- Cooper­
Schrieffer theory belong to the same universality class. 

As the boson density is increased through the critical 
density, there is a T = 0 transition from an insulating 
localized Bose-glass phase (localized Cooper pairs) to a 
superconducting phase. That picture ignores all the sys­
tem's fermionic properties, such as single-particle excita­
tions. Increasing the thickness of a film makes it more 
metallic. Presumably it also increases the carrier concen­
tration. In the presence of an attractive electron- electron 
interaction, that results in an increased Cooper-pair 
(boson) density. 

Applying a magnetic fie ld adds vortices, which inter­
act with a logarithmic potential and behave like quantum 
point particles. In the presence of disorder, these vortices 
are pinned and the usual vortex-lattice phase is replaced 
by a vortex glass. At temperatures above zero in a 
magnetic field, the resistance can be nonvanishing, be­
cause vortices can move either by thermal activation or 
quantum tunneling. But as the magnetic field is in­
creased, the quantum gas of point vortices can, in princi­
ple, become a Bose condensate at some critical fie ld. This 
condensation results in a Bose insulator with localized 
Cooper pairs. 

There is a parallel between the disorder-controlled 
and field-controlled transitions. Adding charged bosons 
(Cooper pairs) by increasing film thickness results in a 
Cooper-pair condensate, and adding uncharged bosons 
(vortices) by applying a perpendicular magnetic field leads 
to a vortex condensate. Vortices and charges are related 
by a duality transformation. In two-dimensional super-

FIGURE 4. DEPENDENCE OF SHEET RESISTANCE (divided by its 
critical value) on film thickness d shows the expected scaling 
behavior when measurements in different magnetic fields 
(from 0 to 10 kG) are plotted together against the scaling 
variable I d- dei/T 11zv. Here the exponent product 
zv = 1.4 ± 0.1 , and de is the critical thickness in the absence of 
a magnetic field. The inset is a phase diagram for the critical 
thickness as a function of magnetic field. The curve indicates 
the power law d - de oc B1 4. (Adapted from ref. 13.) 



FIGURE 5. TUNNELING JUNCTION CONDUCTANCE of a 
PbBi/Ge film measured at T ~ 360 mK and various magnetic 

fields. (The temperature T, 0 at which the resistance has 
dropped to half its normal-state value is 1.64 K.) The curves 

are fo r five different magnetic fields, ranging from 0 to 40 kG. 
No energy-gap feature is found for insulating films. (Adapted 

from ref. 15, Hsu, Chervenak and Valles.) 

conductors this transformation interchanges particles and 
vortices and maps the insulating and superconducting 
phases onto each other. 14 We can view the insulator at 
zero temperature as a Bose condensate of vortices with 
the original Bose particles now localized. The dissipation­
less flow of vortices in the insulating phase is thus the 
dual of superconductivity. Just as moving charges induce 
current, moving vortices induce voltage. 

An important additional prediction of the dirty boson 
theory is that, at the critical point (with both T and 8 at 
zero), the conductivity is finite. This means there should 
be true metallic conduction. Furthermore, renormaliza­
tion-group arguments lead to the conclusion that the sheet 
resistance at criticality is universal, its value depending 
upon the universality class of the transition, and not on 
microscopic details. 

In the very special case in which the insulator and 
superconductor are self-dual, the resistance at criticality 
would be hI 4e2, the quantum resistance for pairs. That 
can be understood by a simple argument: When the 
system switches from superconductor to insulator, both 
charges and vortices move. A flow of Cooper pairs results 
in a current I = 2e(dn l dt\u· Vortices moving at right 
angles to the current produce a voltage 
V = (h l 2e)(dn l dt)v. When a superconductor is self-dual, 
vortices and charges behave identically and the two time 
derivatives are equal, so that the resistance R = V I I be­
comes hI 4e2. 

The experimental situation 
An important feature of the dirty-boson model is the 
prediction that there is a universal limiting resistance at 
the critical point. Although some studies9 find limiting 
resistances close to h I 4e2, different values of the critical 
resistance have, in fact , been reported for a number of 
thin-film systems. The spread of measured values may 
be extrinsic; there are morphological differences between 
films of different materials. In particular, films believed 
to be homogeneous may, in fact , be granular. The Joseph­
son coupling between grains in such films would be de­
termined by a critical value of the ratio of the electrostatic 
energy to the Josephson coupling energy, which would 
depend on geometry. Alternatively, material-specific fea­
tures such as the strength of spin-orbit coupling might 
influence the universality class. Finally, the data may not 
really be from the critical regime of the T = 0 phase 
transition. The size of this regime is not known. It may 
require studies at lower temperatures, with values of the 
control parameter closer to criticality. 

Thnneling studies of the density of states in ultrathin 
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films also suggest that dirty-boson physics cannot be the 
whole story.l5 In particular, when superconductivity is 
tuned by varying the film thickness, the energy gap 
obtained by measuring the tunneling conductance is found 
to scale with the transition temperature. It disappears 
when the superconductivity vanishes. A similar study has 
been carried out on the magnetic-field driven transition, 
although in that case the density of states associated with 
the gap, rather than the gap itself, decreases with increas­
ing field and vanishes in the insulating state. This is 
seen very clearly in figure 5. 

The simplest interpretation of such studies is that 
there are serious amplitude fluctuations as well as phase 
fluctuations associated with the superconductor-insulator 
transition. One might also conclude from this interpre­
tation that the vanishing of the energy gap implies the 
vanishing of the order parameter in the insulating state. 
That would call into question our earlier discussion of the 
superconductor-insulator transition. Such a conclusion 
should be treated with care. The vanishing of the gap 
aspect of tunneling could result from other effects, such 
as pair breaking by phase fluctuations. In any case, 
tunneling experiments raise serious questions as to the 
completeness of a phase-only picture of the transition. 16 

In the magnetic-field-driven transition, the values of 
the critical resistance cluster about the quantum resis­
tance for pairs. But there too, the data indicate that the 
limiting resistance at the transition is not universal. 
Yazdani and Kapitulnik have suggested that this may be 
due to parallel electronic conduction channels.12 It may also 
turn out that bosonic models incorporating local ohmic dis­
sipation, in which the dynamical critical exponent is damp­
ing-dependent, will provide the clue to what is happeningP 

The various bosonic models assume that Cooper pairs 
exist in the insulator. This certainly is the case in granu­
lar films and Josephson junction arrays. It might also be 
true for "uniform" films: Hall effect studies on indium 
oxide films suggest a crossover between two distinct in­
sulating phases. When the longitudinal resistance R xx 
and the transverse Hall resistance R xy are measured on 
the same film , 11 we see in figure 6 that R xx crosses over 
to insulating behavior at a field strength lower than that 
of a second crossover, found in the dependence of R xy on 
B . At the higher-field feature there is also a drop in the 
resistance. It has been suggested that the first crossover 
indicates a transition between a superconductor and a 
Bose insulator-a state with nonzero pairing but infmite 
resistance at zero temperature-and the second feature is 
a crossover or transition to a Fermi electronic insulator 
without pairing. 11 

NOVEMBER 1998 PHYSICS TODAY 43 



c §: 
6 ;;-

R:; 
~ ~ R:; u 

"'" z u < z I-
~ ;!l 

'f) 

;!l 40 ~ 'f) 

"'" ::i' ~ 
...l 30 ....I 

< < 
z ;_ 
i5 ~ 

20 'f) 
;:J ~ 
!:: ~ 
() ;;;. 

'f) z 10 z 
0 ~ ...l 

I-
0 

- 10 
0 10 

APPLIED MAGNETIC FIELD B (tesla) 

A second piece of supporting evidence for Cooper 
pairing in the insulator comes from the magnetoresistance 
of quench-deposited films. James Valles and Shih-ying 
Hsu have seen15 a crossover from activated conduction 
(where conductance varies like exp(-,JT0 /T) to conduc­
tion that goes like log T. This crossover is accompanied 
by a change in the sign of the magnetoresistance. 

Our group has observed these effects to be correlated 
with the development of anisotropy in the magnetoresis­
tance of sets of films that ultimately become supercon­
ducting.l3 We found the difference between the measure­
ments with the applied field perpendicular and parallel 
to the film plane-which should be a measure of the orbital 
magnetoresistance- to be linear in magnetic field. That 
linearity could be due to the flux flow of vortices in the 
insulating state. Theorist Efrat Shimshoni and coauthors 
have recently considered a system of quantum disordered 
Cooper pairs subject to a penetrating magnetic field, with 
one flux quantum per Cooper pair. 18 These objects might 
result in flux-flow resistance, which would exhibit linear 
magnetoresistance. 

Challenges 
The success of finite-size scaling analyses of the super­
conductor-insulator transitions as a function of film thick­
ness or applied magnetic field provides strong evidence 
that T = 0 quantum phase transitions are occurring. On 
the other hand, the superconducting gap experiments and 
the lack of a universal limiting resistance at zero tem­
perature raise serious questions as to whether the theo­
retical picture based on dirty-boson physics and phase 
fluctuations correctly describes the critical behavior of 
these two-dimensional systems. Certainly the correct the­
ory should not ignore electronic degrees of freedom. 

There are challenges to the experimentalist as well. 
We need lower temperatures, so we can be sure that the 
scaling analyses are really in the critical region. The 
nature of the insulating state must be investigated further. 
There are also concerns about the frequencies at which 
the measurements are made. To be confident of having 
reached the quantum limit,1 one would like to achieve the 
condition liw » kBT. 

There is also the issue of the chemical composition 
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FIGURE 6. LONGITUDAL AND TRANSVERSE resistances of an 
amorphous In20 3 thin film superconductor, measured as a 
function of applied magnetic field, exhibit quite different 
critical fields B', as manifested by the crossover point for 
different isotherms from 40 to 200 mK. The right-hand axis 
refers to the transverse (Hall) resistance Rxy (red curves). The 
separation of the critical field values suggests an insulating 
phase of mobile bosonic vortices above the critical field for the 
field-driven superconductor-insulator transition. The 
high-field (fermionic) insulating phase appears to be less 
resistive than this bosonic phase. (Adapted from ref. 11, 
Paalanen, Hebard and Rue!.) 

and structure of the various films used in these investi­
gations. To assert that these films are homogeneous is, 
for quench-vaporated films, a minimalist assumption or, 
for sputtered films, an extrapolation from measurements 
on thicker films. It would be useful to obtain more struc­
tural information on films much thinner than 50 A. It 
would also be important to investigate the behavior of 
films as the length scale for disorder changes from the 
microscopic to the mesoscopic scale. 

Our work is supported by the National Science Foundation's 
condensed-matter physics program. 
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