
EXPOSING LIFE'S LIMITS WITH 
DIMENSIONLESS NUMBERS 

The impressive perform­
ance of evolution as a 

design mechanism needs no 
belaboring. Physics, though, 
constitutes a larger reality 
that evolution can no more 
transcend than a cow can 
jump upward at escape veloc­
ity. Enzymes cannot act as 
Maxwellian demons, nor can 

A crude device for quantification shows 
how diverse aspects of distantly related 
organisms reflect the interplay of the 

same underlying physical factors. 

and at metabolic rates, but 
its values reflect both size 
and shape. If something 
(sinking rates of plankton, 
let's say) varies with surface­
to-volume ratio, either shape 
or size may be responsible. 
A dimensionless version, 
such as the ratio of surface 
cubed to volume squared, de­

Steven Vogel 

birds turn off gravity. Physics limits life's designs no less 
rigidly than it constrains our own technology. 

But how, in practice, can we locate the limits that the 
physical context sets on life? At least for understanding 
its macroscopic, mechanical aspects, a device long used by 
engineers in particular proves to be useful. Surprisingly 
often, boundaries get set by the interplay of two competing 
factors, and their ratio, expressed in dimensionless terms, 
provides us with at least heuristic guidance. 

As a simple if fanciful example, consider the limits 
to stacking. The ratio of the stress on the pile's base to 
the compressive strength of the blocks' material cannot 
exceed one. Or, 

pgh 

O"cm < 1 ' 

where p is the density of the material, g is the strength 
of gravity, h is the height and u cm is the material's ultimate 
compressive stress or crushing strength. Inserting values, 
we find that ordinary bricks run into trouble at a height 
of less than 400 meters, but granite can be piled to nearly 
5000 meters; bone and wood do better, and a pile of either 
could exceed 8000 meters. So simple gravitational loading 
imposes no serious design limitation. Doing the same 
thing for tensile loading gives the length at which a cable 
breaks from self-loading alone. It exposes the impossibil­
ity of lowering a rope to Earth's surface from a satellite 
in geosynchronous orbit, a notion both raised and shot 
down back in 1966 by a group at the Woods Hole Oceano­
graphic Institute_! 

Dimensionless numbers are usually offshoots of their 
parent subject, dimensional analysis, and hundreds have 
been defined and named2 •3 Most consist of the ratio of 
two forces , such as viscous and gravitational. But they 
can be contrived without formal analyses, with just an 
eye to practical utility. They typically permit simple but 
still quantitative views of complicated physical phenom­
ena. Biology, cursed by complicated phenomena, needs 
even such relatively crude tools. 

Dimensionlessness holds an additional appeal for bi­
ologists. It can keep size from confusing an analysis, 
which is no small matter for a field whose subjects en­
compass lengths spanning eight orders of magnitude. For 
instance, the ratio of surface area to volume is important 
when looking at the sizes of cells, at swimming speeds 
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pends on shape alone. Something shape dependent will 
vary with this cubed/squared ratio, while a purely size­
dependent phenomenon won't. 

Swimming, gas extraction, gait changes 
William Froude (1810-79) first devised a useful way to 
extrapolate performance data from small model ships 
moving slowly to full-size ships at their intended speeds. 
We now use a scaling parameter that bears his name for 
a lot more than ensuring dynamic similarity between 
model and ship. One way to get the Froude number is 
by taking the ratio of the inertial force that keeps the 
water within a wave moving to the gravitational force that 
prefers the water's surface to be flat. Thus, 

vz 
Fr=-

gl ' 

where v is the speed at which the waves move across the 
water's surface and l is the distance between adjacent 
crests. (Sometimes the square root of the relationship is 
used as the Froude number.) Waves move at a specific 
Froude number. So longer waves travel faster than 
shorter ones, at least in the range (lengths greater than 
a few centimeters) where inertial and gravitational forces 
are what matter. 

A surface ship with an ordinary water-displacing hull 
creates waves as it moves. In particular, it makes a bow 
wave in front and additional waves along its length and 
at its stern. At full ("hull") speed, it's left with a bow 
wave and a stern wave, the two separated by the length 
of the ship's hull. All is well as long as the ship doesn't 
exceed the speed that waves of that length will travel. 
Going faster than the critical Froude number of about 
0.16 requires that the ship leave its beneficent stern wave 
astern and try to cut through or climb up its bow wave. 
That's why getting ahead becomes an uphill battle, as the 
small ship of figure 1 discovers. Crucial here is the 
longer-is-faster rule, which permits the longer ship to go 
faster before reaching the point at which its power re­
quirement rises steeply. 

Surface ships are practical, in short, when they're 
long. A 100 m long ship reaches hull speed at about 13 
m/s, or 28 mph, whereas a 10 m long ship can do only 4 
m/s, or 8 mph-or just a little more with a clever hull 
design. That's why animals find that swimming with a 
displacement hull on the surface is such a bad deal relative 
to swimming fully submerged. A duck, with a hull length 
of about a third of a meter, hits hull speed at 0.7 m/s, or 
1.6 mph. Fully submerged, it can swim several times as 
fast. 4 Terrie Williams of the University of California, 
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Santa Cruz found that above hull 
speed, mink towed along the surface 
had up to ten times as much drag as 
they did when fully submerged.5 

The value of that critical Froude 
number shows why decent surface 
speeds are off-limits for the sizes of 
most of nature's craft, why even its air 
breathers mostly swim submerged. 
An occasional animal porpoises up and 
down through the interface or planes 
on the surface, but only a large whale 
could consider migrating as a surface 
ship . Snorkeling is rare, perhaps be­
cause swimming deep enough to keep 
wave drag low requires breathing 
against too much hydrostatic pres­
sure- an argument originally raised 
by Knut Schmidt-Nielsen of Duke Uni­
versity for why long-necked dinosaurs 
couldn't have walked around largely 
submerged. 6 

Mention of hydrostatic pressure brings up another 
limit for which the Froude number provides insight. Con­
sider an organism attached to a rock beneath flowing 
water while it manages to hold on to a bubble of air. The 
flow of water, by Bernoulli's principle-that a fluid's ve­
locity and static pressure vary inversely-will reduce the 
pressure in the bubble. So while the very front of the 
bubble may be subjected to an inward dynamic pressure, 
the rest will be drawn outward. If sufficient air is dis­
solved in the water, oxygen and nitrogen will diffuse into 
the bubble, which could act as a permanent lung. And the 
water of rapid streams is usually equilibrated with the 
atmospheric air above. But the subambient pressure in the 
bubble isn't necessarily subatmospheric, for ambient pressure 
increases hydrostatically with depth. Pressure reduction in 
the bubble follows Bernoulli's principle, so it depends on the 
square of the flow speed. For the bubble to provide a 
permanent lung, the ratio of the flow-induced pressure de­
crease to the hydrostatic pressure increase (inertial and 
gravitational forces, again) must exceed one, or, 

pv2CP 
2pgh > 1 

where h is the depth and cp is an empirically determined 
pressure coefficient. 7 

For small bubbles, CP will be about 0.2, so the critical 

FIGURE 1. RUBBER DUCKY being towed 
in a flow tank just under (left) and just 
over (bottom) its hull speed. Notice 
that at the higher speed this small 
surface ship tips upward and its stern 
wave disappears. 

depth can be expressed as a Froude number v2/gh of about 
10, with h now indicating depth. That's a severe con­
straint: For a brisk water speed of a meter per second, 
the lung will persist only down to a depth of a centimeter. 
To go down a full meter would require a 10 m/s flow, a 
speed encountered only in waterfalls and large, breaking 
waves. At least a few organisms do use the device-a 
West African beetle that dives into shallow, rapid streams 
and grazes on the algae on their rocky floors, and the 
pupae of some midges (figure 2) attached to rocks in 
torrential streams.8·9 But we're no longer surprised by 
the rarity of the scheme. 

An application of the Froude number both more gen­
eral and closer to home was pointed out by R. McNeill 
Alexander of Leeds University.l0 He noted that in a 
walking gait, an animal uses gravitational energy storage 
in pendulum fashion to reduce the work of repeatedly 
accelerating inertial legs. Animals of all sizes should walk 
in a dynamically similar manner at a given Froude num­
ber, when length in the formula is redefined as the 
hip-to-ground distance. To keep storing energy as they 
walk faster, animals increase amplitude, or stride length, 
rather than frequency. Dynamic similarity implies that 
all will reach the practical amplitude maximum at about 
the same Froude number, which turns out to be between 
0.5 and 0.6. At that point, animals ranging from small 
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FIGURE 2. PUPA OF A MIDGE with a 
bubble between its gills, together with 

several larvae of the same 
species-Neocurupira chiltoni (in the 

blepharocerid family). The bubble acts 
as a permanent lung, with air diffusing 

into it from the flowing water. (Photo 
courtesy of Douglas Craig, University 

of Alberta.) 

insects to large mammals shift to a 
trot or some other gait that uses elas­
tic energy storage (mainly in tendons) 
instead of gravitational storage. The 
transition point, of course, is size de­
pendent. You can walk comfortably while the youngster 
holding your hand prefers to jog. For a typical adult, the 
gait transition happens at about the expected 5 mph-try 
it. Recently, Rodger Kram and his coworkers at the Uni­
versity of California, Berkeley found that the transition 
happens at the same Froude number even when the value 
of gravitational acceleration is altered.11 

Alexander noted as well that the trot-to-gallop tran­
sition for quadrupeds occurs at Froude numbers between 
2 and 4, still a fairly specific transition point considering 
the size range involved. This is puzzling, because neither 
gait involves gravitational energy storage. The explana­
tion may turn not on the upper speed limit of trotting but 
on the lower limit of galloping-an animal is in free fall 
for a time within each stride, and it ought to tolerate a 
fall of a fixed fraction of leg length. So gravity can 
reasonably reenter the picture. If the period of falling is 
a fixed fraction of stride duration and if running speed at 
transition varies with leg length times stride frequency 
(which is supported by observations),l2 then the Froude 
number ought to set that transition point. 

Walking on water, getting sap up the tree 
For us, water's high surface tension is a mild nuisance 
ordinarily mitigated by a dose of detergent. For other 
organisms, typically smaller than we, it can be a major 
player in their physical world. Quite a few creatures can 
walk on water, pressing legs into the interface and using 
the upward component of surface tension for support. But 
they are mainly insects and spiders that span a narrow 
size range of about a millimeter to a centimeter or two 
in length. A pair of dimensionless numbers sheds some 
light on the bounds of their window of opportunity. 

The upper size limit ought to involve, as competing 
factors , the upward force of surface tension and the down­
ward force of gravity. If the animal isn't to fall through, 
the ratio of gravitational force to surface tension force, 
the Bond number, should be less than one: 

Bo = !!YI. < 1 yl , 

where y is the surface tension and l is the wetted perime­
ter, which is the length of the air-water-leg interface 
(figure 3). Assuming unpolluted water, a human wearing 
my size 9C sandals could weigh no more than 10 grams 
to stand or 5 grams (one leg supporting) to walk. But an 
insect weighing a tenth of a gram needn't be bizarrely 
shaped-1.3 mm will do for a perimeter, which a water 
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strider, for instance, can divide among four contacting legs. 
A fringe of hydrophobic foot hairs gives it lots of leeway. 
For that matter, some creatures can jump vertically from 
the surface, which demands support by an upward force 
an order of magnitude greater. Ignoring shape and sub­
stituting density times length cubed for mass shows that 
the Bond number varies with length squared. So larger 
is very much worse. 13 

What about the lower size limit? Here the problem 
isn't support but locomotion. The water's surface tension 
will pull against an animal whichever way it tries to move. 
Can it get enough inertial force to offset the force of surface 
tension? Put another way, it needs a sufficiently high 
value of the ratio of those forces, given by the Weber 
number, 

plv 2 

We= --:y-, 

not to find the surface a fatal trap. So the animal has 
to be sufficiently large and fast; because size and speed 
are ordinarily correlated, that makes real trouble for really 
tiny creatures. As D'Arcy Thompson, the greatest prose 
artist among biologists, put it, "A water beetle finds the 
surface of a pool a matter of life and death, a perilous 
entanglement or an indispensable support."14 

The interplay of gravity and surface tension may be 
still more important in quite a different biological context. 
The columns of liquid sap within even the tallest tree 
extend, uninterrupted by gas, from roots to leaves. Could 
capillary rise account for the ascent of sap? Assuming 
perfect wetting of the walls of the conduits, the upward 
pressure will be twice the surface tension divided by 
conduit radius, so we can write that Bond number as 

pghr 
Bo=2Y. 

For the Bond number not to exceed one with a typical 
conduit radius of a twentieth of a millimeter, the rise h 
must remain below about 3 m . That wouldn't be much 
of a tree; capillary rise simply won't do the job. 

In the generally accepted picture, columns of sap are 
maintained by the considerable internal cohesion of water, 
in essence hanging from the tops of trees and drawn up 
by evaporative water loss from the leaves, as in figure 4. 15 

Putting aside the matter of cohesion, we can ask how the 
columns can remain open to the air at the top. Put 
another way, we can ask why, since water vapor quite 
clearly leaves the leaves, air doesn't enter. Here the 
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relevant interfacial radius is much smaller, about a ten­
thousandth of a millimeter for the pores in the walls of 
cells within the leaves. With this radius, the Bond number 
won't rise above one and air won't be pulled in by gravity 
until a tree exceeds 1500 meters in height-over an order 
of magnitude higher than any tree ever known. So trees 
are not limited in height on this account, and they have 
lots of margin for pressure losses from flow in the conduits 
and from extracting water from soil. 

Two matters of circulation 
Perhaps nowhere does physics so strongly constrain the 
arrangements of organisms as in their systems for moving 
fluids through themselves. Surface tension may play a 
much smaller role in animals than we noted in plants, 
but gravity matters as much to a large, terrestrial animal 
as to a tree. And sucking with subambient pressures is 
a game played largely by plants, with their noncollapsible 
piping; siphoning has been persuasively excluded even for 
giraffes and thus most likely for dinosaurs. So, lacking 
much in the way of auxiliary pumps, we need hearts that 
can pump blood up to our heads with enough pressure left 
to drive blood through arterioles and capillaries. (See the 
article by George J. Hademenos on the physics of cerebral 
aneurysms, PHYSICS TODAY, February 1995, page 24.) 

Trouble ensues if an animal has a height, expressed 
in units of blood pressure, that exceeds its systolic blood 
pressure, the peak output of the left ventricle. That's a 
rough-and-ready criterion: On the one hand, one's heart 
isn't in one's feet, and so body height overstates the hill 
to be climbed, while on the other hand, systolic pressure 
overstates the pressure drop available to supply the brain. 
Still, we can define what we could call "circulatory hazard" 
as the ratio of manometric height (blood density times 
gravity times height) to systolic pressure, and assert that 
it ought to stay below one. 

What happens in mammals proves intriguing. Most 
mammals have about the same resting systolic pressure 
as we humans-120 mm of mercury, corresponding to a 
manometric height of about 1.7 m or between 5 and 6 
feet. That works for cat, dog or human, but species much 
taller than we increasingly depart from the typical mam­
malian pressure. Horses run about 180 mm Hg at rest, 
and giraffes get as high as 30016 So humans are near 
the inflection point where a plot of manometric height 
against blood pressure, as in figure 5, begins to slope 
upward-as necessary to keep the circulatory hazard be­
low one. If I stand up suddenly after sleeping horizontally, 

Air 

W ater 

fiGURE 3. WALKING ON WATER. The 
schematic diagram shows legs pressing 
on the air-water interface where surface 
tension is more than adequate for 
support (Bond number Bo < 1), and 
where the weight of the animal just 
reaches the force that can be sustained 
by surface tension (Bo = 1). 

I get a bit dizzy, which I'm told indi­
cates that I'm not hypertensive. Our 
cat should have no such problem. 

For aquatic animals, living in a 
medium near blood density, height and posture are oflittle 
concern, so whales have normal mammalian pressure and 
sea snakes have the normal reptilian pressure of around 
40 mm Hg. A terrestrial snake is okay on the ground, 
but how can it climb a tree without passing out? Tree­
climbing snakes keep their circulatory hazard under con­
trol by a heroic adjustment-their hearts are located 
considerably nearer their front ends. One wonders about 
long-necked dinosaurs; they must have had the fully 
separate systemic and pulmonary circulations of present 
birds (and humans), together with the high pressures of 
giraffes.l7 Physics, again, doesn't bend for evolution. 

Physiology textbooks often begin their section on cir­
culatory systems by talking about Bernoulli's principle. 
Only a few ever mention Bernoulli again-probably a good 
thing, as we'll see. Consider what should happen if a 
fluid pulses through a pipe with a flexible wall. Bernoulli's 
principle implies lower pressures with faster flow, so the 
pipe ought to constrict as the flow speeds up. Another 
rule, the Hagen-Poiseuille equation, predicts the opposite. 
It describes the pressure necessary to force a laminar flow 
through a pipe whose walls exert some resistance, and it 
makes clear that faster flow requires higher pressure. Is 
a given flow Bernoulli dominated or Hagen-Poiseuille 
dominated? We need do no more than look at their ratio 
(using dynamic pressure pu2/2 for the former), 

B pvr2 pvd 
-=-- oc--
HP 16111 JL ' 

where JL and p are the dynamic viscosity and density of 
blood, respectively. 

For a pipe 100 mm long and 1 mm in diameter 
carrying blood at 100 mm/s, the ratio has a value of about 
0.01, indicating that Hagen-Poiseuille is in charge and 
Bernoulli has little to say.7 Because circulatory systems 
have their pipes serially arrayed, the effective lengths are 
in practice even longer. In circulatory systems, Bernoulli's 
principle finds use only around heart valves, at pathologi­
cal stenoses and in a few other places. That one's pulse 
is felt as an arterial expansion rather than constriction 
ought to make the point. Bernoulli does better in turbu­
lent flow or where (as in carburetors) the ratio of pipe 
radius to length is high. Maybe the terminal ends of the 
urethras of large animals are braced, like vacuum-cleaner 
hoses, against collapse. 

Incidentally, the relationship in the equation above 
turns out to be a version of the Reynolds number, the 
ratio of inertial to viscous forces and the most famous of 
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FIGURE 4. CONTINUOUS COLUMNS OF LIQUID SAP, nearly 
pure water, run up a tree and connect the water between soil 
particles with the wet walls of the cells within the leaves that 
contact the air. Supporting the columns of height h, as well as 
offsetting the pressure losses due to flow and capillary forces 
within the soil, requires that the radius of curvature r of the 
final air- water interfaces be very small. 

all dimensionless numbers in fluid mechanics. 

Jets, propellers and wings 
Efficiencies are dimensionless indices that establish limits, 
usually by setting an ideal of 100%. Perhaps of more 
biological interest are places where low values preclude 
the use of certain devices. Thus the maximum thermal 
efficiency of an engine with a heat source at 40 oc and a 
sink at 0 °C-a range that a wet, proteinaceous organism 
may achieve-is less than 13%. That nature lacks heat 
engines should thus be no surprise. 

Consider a device, such as a propeller, that provides 
thrust by speeding up a fluid flowing through it from v1, 

the craft's speed, to v2, some output speed. The device's 
thrust is the product of the mass it processes per unit 
time and the increase in speed (v2 - v1) it imparts. Its 
power output is that thrust times the craft's speed. Its 
power input is kinetic energy per unit time, or half that 
mass per unit time multiplied by the difference in the 
squares of the speed of its output and the craft's speed 
v2

2 - v1
2. So efficiency, usually called the Froude propul­

sion efficiency, is simply7 

2v1 
Tl=--. 

v2 + v1 

Now v2 has to be at least a bit above v1 if any thrust is 
to be generated, and so 100% efficiency can't be reached. 
But making v2 approach v1 means processing the largest 
possible volume of fluid and giving it the least increase 
in speed. That's a bad indictment of jets relative to 
paddles or propellers-a jet ordinarily gives a smaller 
mass flux a higher incremental speed. In this light, it's 
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understandable that neither Hero's jet engine of the first 
century nor James Rumsey's pulse-jet steamboat of 1787 
led anywhere17 

But nature makes quite a few jet engines-in jellyfish , 
salps, frogfish, dragonfly nymphs, squid, scallops and 
others. They're probably easy to achieve given that or­
ganisms often push water through themselves to filter 
food or gain oxygen, often make one-way valves, and often 
wrap muscle around soft tubes. Aside from squid, though, 
nature's large, fast swimmers-fish, penguins, seals, 
whales and such-all use some form of propeller, like our 
propellers except for being oscillatory rather than rota­
tional. Jets lose when competition between fins or flukes 
and jets turns on Froude propulsion efficiency. Squid can 
go fast-8 m/s is impressive for foot-long swimmers. But 
they do so only briefly, to escape predators or lunge at 
prey, when efficiency must matter little, and they use their 
fins for steady traveling. 7 

We have a similarly equivocal attitude toward jets. 
No commercially produced cars or motorcycles and only a 
few boats use jet engines. We usually reserve them for 
high-speed applications since, when push comes to shove, 
the jet's output speed has to be high enough to exceed the 
craft's speed. An exception, the Harrier jet, a small 
military aircraft that can take off vertically and hover, 
consumes fuel at a notoriously high rate. One can imagine 
a birdlike creature that uses its chest muscles and a pair 
of one-way valves to run a pulse-jet engine that provides 
thrust and respiratory gas exchange at the same time. 
Birds, in fact, do pump air through their lungs unidirec­
tionally. But even the fastest known avian flyer, a falcon 
diving at a little over 60 m/s, or 130 mph, is surely too 
slow to make good use of the scheme. 18 

Froude propulsion efficiency exposes yet another limit, 
although this one matters mostly for human technology. 
Our earliest successful aircraft (ignoring lighter-than-air 
fliers) and most of our present ones get lift from fixed 
wings and forward propulsion from propellers or jets. 
That combination is almost unknown among birds, bats and 
insects, which get both lift and propulsion from pointing a 
single thruster in the appropriate direction. The helicopter, 
our analog of nature's fliers, wins no prizes for either fuel 
economy or range. Are nature's fliers as bad? 

The utility of fixed wings turns out to depend on size. 
The lift of a wing varies with its area, while the weight 
of craft to be lifted varies with its volume. Larger thus 
means relatively lift-deprived unless wings are dispropor­
tionately large-or unless the flying machine goes faster. 
A faster v1 demands a greater v2 to generate forward 
thrust. Lift, of course, comes from downward thrust, and 
that's the crux of the problem. The vertical speed of an 
airplane is trivial, so the downward component of v1 is 
negligible. If the propeller or jet is simply reaimed to get 
some downward momentum flux, then V2down- V tdown will 
be great and the efficiency low. A fixed wing acts as a 
transformer, converting some of the high-speed, low-vol­
ume rearward flow from propeller or jet into a low-speed, 
high-volume downward flow behind the wing, and thereby 
creating lift efficiently. 

Nature's fliers go much more slowly- a bird that flies 
horizontally at 30 m/s is remarkable, while an airplane 
that flies that slowly is equally special. So flying animals 
can achieve adequately high propulsion efficiencies with­
out resorting to separate fixed wings and propellers. Or 
mostly so, since the inner portions of the wings oflarge birds 
operate nearly as fixed, horizontal airfoils. The relatively 
large wings of nature's small fliers permit low speeds. Thus, 
very small birds can hover steadily, medium-sized ones can 
hover only momentarily and large birds can't hover at all. 
The advent of hovering aircraft awaited engines of very 
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FIGURE 5. SYSTOLIC BLOOD PRESSURE as a function of 
animal height. The pressure shows little regular variation 
among small- and medium-sized mammals. But it must (and 
does) rise in large mammals so that it remains at least as great 
as manometric height (the product of blood density, 
gravitational field strength and the animal's height). 

high power-to-weight ratios, and the very slow human­
powered aircraft have gigantic wings. 

Dimensionless numbers find use in many other bio­
logical or at least biomechanical situations. Some are 
well-established in the physical sciences, where they get 
used in much the same fashion; others have their variables 
redefined for biological purposes; still others have been 
especially contrived. Some set specific boundaries for the 
possible; others provide scaling rules that show how the 
desirable slopes off toward the impractical. Some answer 
specific questions; others just head us in some useful 
direction. Most, though, involve more complicated stories 
than those just related, which merely give the flavor of 
the game. 
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