EXPOSING LIFE’S LIMITS WITH
DIMENSIONLESS NUMBERS

he impressive perform-

ance of evolution as a
design mechanism needs no
belaboring. Physics, though,
constitutes a larger reality
that evolution can no more
transcend than a cow can
jump upward at escape veloc-
ity. Enzymes cannot act as
Maxwellian demons, nor can
birds turn off gravity. Physics limits life’s designs no less
rigidly than it constrains our own technology.

But how, in practice, can we locate the limits that the
physical context sets on life? At least for understanding
its macroscopic, mechanical aspects, a device long used by
engineers in particular proves to be useful. Surprisingly
often, boundaries get set by the interplay of two competing
factors, and their ratio, expressed in dimensionless terms,
provides us with at least heuristic guidance.

As a simple if fanciful example, consider the limits
to stacking. The ratio of the stress on the pile’s base to
the compressive strength of the blocks’ material cannot
exceed one. Or,
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where p is the density of the material, g is the strength
of gravity, 4 is the height and oy, is the material’s ultimate
compressive stress or crushing strength. Inserting values,
we find that ordinary bricks run into trouble at a height
of less than 400 meters, but granite can be piled to nearly
5000 meters; bone and wood do better, and a pile of either
could exceed 8000 meters. So simple gravitational loading
imposes no serious design limitation. Doing the same
thing for tensile loading gives the length at which a cable
breaks from self-loading alone. It exposes the impossibil-
ity of lowering a rope to Earth’s surface from a satellite
in geosynchronous orbit, a notion both raised and shot
down back in 1966 by a group at the Woods Hole Oceano-
graphic Institute.!

Dimensionless numbers are usually offshoots of their
parent subject, dimensional analysis, and hundreds have
been defined and named.>® Most consist of the ratio of
two forces, such as viscous and gravitational. But they
can be contrived without formal analyses, with just an
eye to practical utility. They typically permit simple but
still quantitative views of complicated physical phenom-
ena. Biology, cursed by complicated phenomena, needs
even such relatively crude tools.

Dimensionlessness holds an additional appeal for bi-
ologists. It can keep size from confusing an analysis,
which is no small matter for a field whose subjects en-
compass lengths spanning eight orders of magnitude. For
instance, the ratio of surface area to volume is important
when looking at the sizes of cells, at swimming speeds
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A crude device for quantification shows
how diverse aspects of distantly related
organisms reflect the interplay of the
same underlying physical factors.

Steven Vogel

and at metabolic rates, but
its values reflect both size
and shape. If something
(sinking rates of plankton,
let’s say) varies with surface-
to-volume ratio, either shape
or size may be responsible.
A dimensionless version,
such as the ratio of surface
cubed to volume squared, de-
pends on shape alone. Something shape dependent will
vary with this cubed/squared ratio, while a purely size-
dependent phenomenon won't.

Swimming, gas extraction, gait changes

William Froude (1810-79) first devised a useful way to
extrapolate performance data from small model ships
moving slowly to full-size ships at their intended speeds.
We now use a scaling parameter that bears his name for
a lot more than ensuring dynamic similarity between
model and ship. One way to get the Froude number is
by taking the ratio of the inertial force that keeps the
water within a wave moving to the gravitational force that
prefers the water’s surface to be flat. Thus,
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where v is the speed at which the waves move across the
water’s surface and [ is the distance between adjacent
crests. (Sometimes the square root of the relationship is
used as the Froude number.) Waves move at a specific
Froude number. So longer waves travel faster than
shorter ones, at least in the range (lengths greater than
a few centimeters) where inertial and gravitational forces
are what matter.

A surface ship with an ordinary water-displacing hull
creates waves as it moves. In particular, it makes a bow
wave in front and additional waves along its length and
at its stern. At full (“hull”) speed, it’s left with a bow
wave and a stern wave, the two separated by the length
of the ship’s hull. All is well as long as the ship doesn’t
exceed the speed that waves of that length will travel.
Going faster than the critical Froude number of about
0.16 requires that the ship leave its beneficent stern wave
astern and try to cut through or climb up its bow wave.
That’s why getting ahead becomes an uphill battle, as the
small ship of figure 1 discovers. Crucial here is the
longer-is-faster rule, which permits the longer ship to go
faster before reaching the point at which its power re-
quirement rises steeply.

Surface ships are practical, in short, when theyre
long. A 100 m long ship reaches hull speed at about 13
m/s, or 28 mph, whereas a 10 m long ship can do only 4
m/s, or 8 mph—or just a little more with a clever hull
design. That’s why animals find that swimming with a
displacement hull on the surface is such a bad deal relative
to swimming fully submerged. A duck, with a hull length
of about a third of a meter, hits hull speed at 0.7 m/s, or
1.6 mph. Fully submerged, it can swim several times as
fast.* Terrie Williams of the University of California,
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Santa Cruz found that above hull
speed, mink towed along the surface
had up to ten times as much drag as
they did when fully submerged.®

The value of that critical Froude
number shows why decent surface
speeds are off-limits for the sizes of
most of nature’s craft, why even its air
breathers mostly swim submerged.
An occasional animal porpoises up and
down through the interface or planes
on the surface, but only a large whale
could consider migrating as a surface
ship. Snorkeling is rare, perhaps be-
cause swimming deep enough to keep
wave drag low requires breathing
against too much hydrostatic pres-
sure—an argument originally raised
by Knut Schmidt-Nielsen of Duke Uni-
versity for why long-necked dinosaurs
couldn’t have walked around largely
submerged.®

Mention of hydrostatic pressure brings up another
limit for which the Froude number provides insight. Con-
sider an organism attached to a rock beneath flowing
water while it manages to hold on to a bubble of air. The
flow of water, by Bernoulli’s principle—that a fluid’s ve-
locity and static pressure vary inversely—will reduce the
pressure in the bubble. So while the very front of the
bubble may be subjected to an inward dynamic pressure,
the rest will be drawn outward. If sufficient air is dis-
solved in the water, oxygen and nitrogen will diffuse into
the bubble, which could act as a permanent lung. And the
water of rapid streams is usually equilibrated with the
atmospheric air above. But the subambient pressure in the
bubble isn’t necessarily subatmospheric, for ambient pressure
increases hydrostatically with depth. Pressure reduction in
the bubble follows Bernoulli’s principle, so it depends on the
square of the flow speed. For the bubble to provide a
permanent lung, the ratio of the flow-induced pressure de-
crease to the hydrostatic pressure increase (inertial and
gravitational forces, again) must exceed one, or,
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where £ is the depth and C, is an empirically determined

pressure coefficient.”
For small bubbles, C,, will be about 0.2, so the critical

FIGURE 1. RUBBER DUCKY being towed
in a flow tank just under (left) and just
over (bottom) its hull speed. Notice
that at the higher speed this small
surface ship tips upward and its stern
wave disappears.

depth can be expressed as a Froude number v%gh of about
10, with A now indicating depth. That’s a severe con-
straint: For a brisk water speed of a meter per second,
the lung will persist only down to a depth of a centimeter.
To go down a full meter would require a 10 m/s flow, a
speed encountered only in waterfalls and large, breaking

waves. At least a few organisms do use the device—a
West African beetle that dives into shallow, rapid streams
and grazes on the algae on their rocky floors, and the
pupae of some midges (figure 2) attached to rocks in
torrential streams.®® But were no longer surprised by
the rarity of the scheme.

An application of the Froude number both more gen-
eral and closer to home was pointed out by R. McNeill
Alexander of Leeds University.’® He noted that in a
walking gait, an animal uses gravitational energy storage
in pendulum fashion to reduce the work of repeatedly
accelerating inertial legs. Animals of all sizes should walk
in a dynamically similar manner at a given Froude num-
ber, when length in the formula is redefined as the
hip-to-ground distance. To keep storing energy as they
walk faster, animals increase amplitude, or stride length,
rather than frequency. Dynamic similarity implies that
all will reach the practical amplitude maximum at about
the same Froude number, which turns out to be between
0.5 and 0.6. At that point, animals ranging from small
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FIGURE 2. PUPA OF A MIDGE with a
bubble between its gills, together with
several larvae of the same
species—Neocurupira chiltoni (in the
blepharocerid family). The bubble acts
as a permanent lung, with air diffusing
into it from the flowing water. (Photo
courtesy of Douglas Craig, University
of Alberta.)

insects to large mammals shift to a
trot or some other gait that uses elas-
tic energy storage (mainly in tendons)
instead of gravitational storage. The
transition point, of course, is size de-
pendent. You can walk comfortably while the youngster
holding your hand prefers to jog. For a typical adult, the
gait transition happens at about the expected 5 mph—try
it. Recently, Rodger Kram and his coworkers at the Uni-
versity of California, Berkeley found that the transition
happens at the same Froude number even when the value
of gravitational acceleration is altered.

Alexander noted as well that the trot-to-gallop tran-
sition for quadrupeds occurs at Froude numbers between
2 and 4, still a fairly specific transition point considering
the size range involved. This is puzzling, because neither
gait involves gravitational energy storage. The explana-
tion may turn not on the upper speed limit of trotting but
on the lower limit of galloping—an animal is in free fall
for a time within each stride, and it ought to tolerate a
fall of a fixed fraction of leg length. So gravity can
reasonably reenter the picture. If the period of falling is
a fixed fraction of stride duration and if running speed at
transition varies with leg length times stride frequency
(which is supported by observations),? then the Froude
number ought to set that transition point.

Walking on water, getting sap up the tree

For us, water’s high surface tension is a mild nuisance
ordinarily mitigated by a dose of detergent. For other
organisms, typically smaller than we, it can be a major
player in their physical world. Quite a few creatures can
walk on water, pressing legs into the interface and using
the upward component of surface tension for support. But
they are mainly insects and spiders that span a narrow
size range of about a millimeter to a centimeter or two
in length. A pair of dimensionless numbers sheds some
light on the bounds of their window of opportunity.

The upper size limit ought to involve, as competing
factors, the upward force of surface tension and the down-
ward force of gravity. If the animal isn’t to fall through,
the ratio of gravitational force to surface tension force,
the Bond number, should be less than one:
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where vy is the surface tension and [ is the wetted perime-
ter, which is the length of the air-water-leg interface
(figure 3). Assuming unpolluted water, a human wearing
my size 9C sandals could weigh no more than 10 grams
to stand or 5 grams (one leg supporting) to walk. But an
insect weighing a tenth of a gram needn’t be bizarrely
shaped—1.3 mm will do for a perimeter, which a water
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strider, for instance, can divide among four contacting legs.
A fringe of hydrophobic foot hairs gives it lots of leeway.
For that matter, some creatures can jump vertically from
the surface, which demands support by an upward force
an order of magnitude greater. Ignoring shape and sub-
stituting density times length cubed for mass shows that
the Bond number varies with length squared. So larger
is very much worse.?

What about the lower size limit? Here the problem
isn’t support but locomotion. The water’s surface tension
will pull against an animal whichever way it tries to move.
Can it get enough inertial force to offset the force of surface
tension? Put another way, it needs a sufficiently high
value of the ratio of those forces, given by the Weber
number,

plv?
T

not to find the surface a fatal trap. So the animal has
to be sufficiently large and fast; because size and speed
are ordinarily correlated, that makes real trouble for really
tiny creatures. As D’Arcy Thompson, the greatest prose
artist among biologists, put it, “A water beetle finds the
surface of a pool a matter of life and death, a perilous
entanglement or an indispensable support.”**

The interplay of gravity and surface tension may be
still more important in quite a different biological context.
The columns of liquid sap within even the tallest tree
extend, uninterrupted by gas, from roots to leaves. Could
capillary rise account for the ascent of sap? Assuming
perfect wetting of the walls of the conduits, the upward
pressure will be twice the surface tension divided by
conduit radius, so we can write that Bond number as
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For the Bond number not to exceed one with a typical
conduit radius of a twentieth of a millimeter, the rise A
must remain below about 8 m. That wouldn’t be much
of a tree; capillary rise simply won’t do the job.

In the generally accepted picture, columns of sap are
maintained by the considerable internal cohesion of water,
in essence hanging from the tops of trees and drawn up
by evaporative water loss from the leaves, as in figure 4.1
Putting aside the matter of cohesion, we can ask how the
columns can remain open to the air at the top. Put
another way, we can ask why, since water vapor quite
clearly leaves the leaves, air doesn’t enter. Here the
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relevant interfacial radius is much smaller, about a ten-
thousandth of a millimeter for the pores in the walls of
cells within the leaves. With this radius, the Bond number
won’t rise above one and air won’t be pulled in by gravity
until a tree exceeds 1500 meters in height—over an order
of magnitude higher than any tree ever known. So trees
are not limited in height on this account, and they have
lots of margin for pressure losses from flow in the conduits
and from extracting water from soil.

Two matters of circulation

Perhaps nowhere does physics so strongly constrain the
arrangements of organisms as in their systems for moving
fluids through themselves. Surface tension may play a
much smaller role in animals than we noted in plants,
but gravity matters as much to a large, terrestrial animal
as to a tree. And sucking with subambient pressures is
a game played largely by plants, with their noncollapsible
piping; siphoning has been persuasively excluded even for
giraffes and thus most likely for dinosaurs. So, lacking
much in the way of auxiliary pumps, we need hearts that
can pump blood up to our heads with enough pressure left
to drive blood through arterioles and capillaries. (See the
article by George J. Hademenos on the physics of cerebral
aneurysms, PHYSICS TODAY, February 1995, page 24.)

Trouble ensues if an animal has a height, expressed
in units of blood pressure, that exceeds its systolic blood
pressure, the peak output of the left ventricle. That’s a
rough-and-ready criterion: On the one hand, one’s heart
isn’t in one’s feet, and so body height overstates the hill
to be climbed, while on the other hand, systolic pressure
overstates the pressure drop available to supply the brain.
Still, we can define what we could call “circulatory hazard”
as the ratio of manometric height (blood density times
gravity times height) to systolic pressure, and assert that
it ought to stay below one.

What happens in mammals proves intriguing. Most
mammals have about the same resting systolic pressure
as we humans—120 mm of mercury, corresponding to a
manometric height of about 1.7 m or between 5 and 6
feet. That works for cat, dog or human, but species much
taller than we increasingly depart from the typical mam-
malian pressure. Horses run about 180 mm Hg at rest,
and giraffes get as high as 300. So humans are near
the inflection point where a plot of manometric height
against blood pressure, as in figure 5, begins to slope
upward—as necessary to keep the circulatory hazard be-
low one. IfI stand up suddenly after sleeping horizontally,

FIGURE 3. WALKING ON WATER. The

schematic diagram shows legs pressing

on the air-water interface where surface
Nin tension is more than adequate for
support (Bond number Bo < 1), and
where the weight of the animal just
reaches the force that can be sustained
by surface tension (Bo = 1).

I get a bit dizzy, which I'm told indi-
cates that I'm not hypertensive. Our

cat should have no such problem.
For aquatic animals, living in a
medium near blood density, height and posture are of little
concern, so whales have normal mammalian pressure and
sea snakes have the normal reptilian pressure of around
40 mm Hg. A terrestrial snake is okay on the ground,
but how can it climb a tree without passing out? Tree-
climbing snakes keep their circulatory hazard under con-
trol by a heroic adjustment—their hearts are located
considerably nearer their front ends. One wonders about
long-necked dinosaurs; they must have had the fully
separate systemic and pulmonary circulations of present
birds (and humans), together with the high pressures of

giraffes.!” Physics, again, doesn’t bend for evolution.
Physiology textbooks often begin their section on cir-
culatory systems by talking about Bernoulli’s principle.
Only a few ever mention Bernoulli again—probably a good
thing, as we’ll see. Consider what should happen if a
fluid pulses through a pipe with a flexible wall. Bernoulli’s
principle implies lower pressures with faster flow, so the
pipe ought to constrict as the flow speeds up. Another
rule, the Hagen—Poiseuille equation, predicts the opposite.
It describes the pressure necessary to force a laminar flow
through a pipe whose walls exert some resistance, and it
makes clear that faster flow requires higher pressure. Is
a given flow Bernoulli dominated or Hagen—Poiseuille
dominated? We need do no more than look at their ratio

(using dynamic pressure pv%2 for the former),
pvd
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where p and p are the dynamic viscosity and density of
blood, respectively.

For a pipe 100 mm long and 1 mm in diameter
carrying blood at 100 mm/s, the ratio has a value of about
0.01, indicating that Hagen—Poiseuille is in charge and
Bernoulli has little to say.” Because circulatory systems
have their pipes serially arrayed, the effective lengths are
in practice even longer. In circulatory systems, Bernoulli’s
principle finds use only around heart valves, at pathologi-
cal stenoses and in a few other places. That one’s pulse
is felt as an arterial expansion rather than constriction
ought to make the point. Bernoulli does better in turbu-
lent flow or where (as in carburetors) the ratio of pipe
radius to length is high. Maybe the terminal ends of the
urethras of large animals are braced, like vacuum-cleaner
hoses, against collapse.

Incidentally, the relationship in the equation above
turns out to be a version of the Reynolds number, the
ratio of inertial to viscous forces and the most famous of
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FIGURE 4. CONTINUOUS COLUMNS OF LIQUID SAP, nearly
pure water, run up a tree and connect the water between soil
particles with the wet walls of the cells within the leaves that
contact the air. Supporting the columns of height 5, as well as
offsetting the pressure losses due to flow and capillary forces
within the soil, requires that the radius of curvature r of the
final air-water interfaces be very small.

all dimensionless numbers in fluid mechanics.

Jets, propellers and wings

Efficiencies are dimensionless indices that establish limits,
usually by setting an ideal of 100%. Perhaps of more
biological interest are places where low values preclude
the use of certain devices. Thus the maximum thermal
efficiency of an engine with a heat source at 40 °C and a
sink at 0 °C—a range that a wet, proteinaceous organism
may achieve—is less than 13%. That nature lacks heat
engines should thus be no surprise.

Consider a device, such as a propeller, that provides
thrust by speeding up a fluid flowing through it from vy,
the craft’s speed, to vy, some output speed. The device’s
thrust is the product of the mass it processes per unit
time and the increase in speed (vy—v;) it imparts. Its
power output is that thrust times the craft’s speed. Its
power input is kinetic energy per unit time, or half that
mass per unit time multiplied by the difference in the
squares of the speed of its output and the craft’s speed

vy?2 —v,2 So efficiency, usually called the Froude propul-
sion efficiency, is simply”’
2y
s Vg + l)l.

Now v, has to be at least a bit above v, if any thrust is
to be generated, and so 100% efficiency can’t be reached.
But making v, approach v; means processing the largest
possible volume of fluid and giving it the least increase
in speed. That’s a bad indictment of jets relative to
paddles or propellers—a jet ordinarily gives a smaller
mass flux a higher incremental speed. In this light, it’s
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understandable that neither Hero’s jet engine of the first
century nor James Rumsey’s pulse-jet steamboat of 1787
led anywhere.!”

But nature makes quite a few jet engines—in jellyfish,
salps, frogfish, dragonfly nymphs, squid, scallops and
others. Theyre probably easy to achieve given that or-
ganisms often push water through themselves to filter
food or gain oxygen, often make one-way valves, and often
wrap muscle around soft tubes. Aside from squid, though,
nature’s large, fast swimmers—fish, penguins, seals,
whales and such—all use some form of propeller, like our
propellers except for being oscillatory rather than rota-
tional. Jets lose when competition between fins or flukes
and jets turns on Froude propulsion efficiency. Squid can
go fast—8 m/s is impressive for foot-long swimmers. But
they do so only briefly, to escape predators or lunge at
prey, when efficiency must matter little, and they use their
fins for steady traveling.”

We have a similarly equivocal attitude toward jets.
No commercially produced cars or motorcycles and only a
few boats use jet engines. We usually reserve them for
high-speed applications since, when push comes to shove,
the jet’s output speed has to be high enough to exceed the
craft’s speed. An exception, the Harrier jet, a small
military aircraft that can take off vertically and hover,
consumes fuel at a notoriously high rate. One can imagine
a birdlike creature that uses its chest muscles and a pair
of one-way valves to run a pulse-jet engine that provides
thrust and respiratory gas exchange at the same time.
Birds, in fact, do pump air through their lungs unidirec-
tionally. But even the fastest known avian flyer, a falcon
diving at a little over 60 m/s, or 130 mph, is surely too
slow to make good use of the scheme.!®

Froude propulsion efficiency exposes yet another limit,
although this one matters mostly for human technology.
Our earliest successful aircraft (ignoring lighter-than-air
fliers) and most of our present ones get lift from fixed
wings and forward propulsion from propellers or jets.
That combination is almost unknown among birds, bats and
insects, which get both lift and propulsion from pointing a
single thruster in the appropriate direction. The helicopter,
our analog of nature’s fliers, wins no prizes for either fuel
economy or range. Are nature’s fliers as bad?

The utility of fixed wings turns out to depend on size.
The lift of a wing varies with its area, while the weight
of craft to be lifted varies with its volume. Larger thus
means relatively lift-deprived unless wings are dispropor-
tionately large—or unless the flying machine goes faster.
A faster v; demands a greater v, to generate forward
thrust. Lift, of course, comes from downward thrust, and
that’s the crux of the problem. The vertical speed of an
airplane is trivial, so the downward component of v, is
negligible. If the propeller or jet is simply reaimed to get
some downward momentum flux, then vggoun — V1down Will
be great and the efficiency low. A fixed wing acts as a
transformer, converting some of the high-speed, low-vol-
ume rearward flow from propeller or jet into a low-speed,
high-volume downward flow behind the wing, and thereby
creating lift efficiently.

Nature’s fliers go much more slowly—a bird that flies
horizontally at 30 m/s is remarkable, while an airplane
that flies that slowly is equally special. So flying animals
can achieve adequately high propulsion efficiencies with-
out resorting to separate fixed wings and propellers. Or
mostly so, since the inner portions of the wings of large birds
operate nearly as fixed, horizontal airfoils. The relatively
large wings of nature’s small fliers permit low speeds. Thus,
very small birds can hover steadily, medium-sized ones can
hover only momentarily and large birds can’t hover at all.
The advent of hovering aircraft awaited engines of very
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FIGURE 5. SYSTOLIC BLOOD PRESSURE as a function of
animal height. The pressure shows little regular variation
among small- and medium-sized mammals. But it must (and
does) rise in large mammals so that it remains at least as great
as manometric height (the product of blood density,
gravitational field strength and the animal’s height).

high power-to-weight ratios, and the very slow human-
powered aircraft have gigantic wings.

Dimensionless numbers find use in many other bio-
logical or at least biomechanical situations. Some are
well-established in the physical sciences, where they get
used in much the same fashion; others have their variables
redefined for biological purposes; still others have been
especially contrived. Some set specific boundaries for the
possible; others provide scaling rules that show how the
desirable slopes off toward the impractical. Some answer
specific questions; others just head us in some useful
direction. Most, though, involve more complicated stories
than those just related, which merely give the flavor of
the game.
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