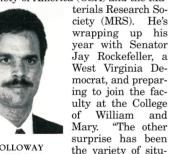

vanced Research Projects Agency. After his term ends in December, Roonev says he may return to his previous post as a program officer at the National Academy of Sciences or possibly look

for a position on Capitol Hill.



K. CLAY

mittee, and so one of Clav's main projects has been writing a bill to establish limits on the sulfur content of gasoline. "The group I was with in graduate school [at the University of Michigan] worked on alternative vehicles and emissions, so this is a great extension of my thesis research," Clay says.

The fellowship "has really opened my eyes to the broader role that science plays throughout the world," says Clay. "It's easy to forget that when you're working in the lab." She would like to stay in science policy, perhaps continuing her work on gasoline standards.

"One of the best surprises was the quality of people you meet up here,' says Brian Holloway, the Congressional fellow sponsored by the Optical Society of America (OSA) and the Ma-

B. HOLLOWAY

ations you get put in." He ticks off some of his myriad responsibilities: drafting legislation, pulling together opinions and background research, advising the senator during hearings, meeting with lobbyists and constituents, writing speeches. "It's kind of everything."

Although returning to academia, Holloway plans to remain politically active. "Politics doesn't have to be a full-time vocation," he says. "It's something you can do at the state or local level, or even at your own university."

The American Geophysical Union's Congressional fellow is Julie Moses, who spent her term working for Representative Dennis Kucinich, a Democrat from Ohio. Moses says she had very little political experience going into her fellowship. "I was surprised how diverse the opinions are in the House," she says. "Right meets left at the extremes of opinion." Because

J. Moses

Kucinich's district includes the NASA Lewis Research Center, arguing for continfunding ued for NASA and the international space station has been one of Moses's main tasks. "Most

members of Congress recognize that science benefits the economy," she says. "Although scientists may not think that when looking at the budget." She will be seeking a science policy post when her term ends later this month.

New arrivals

In September, the latest crop of Congressional science fellows went through a two-week orientation at the American Association for the Advancement of Science (AAAS), after which they interviewed for positions.

Antonia Herzog, the incoming APS fellow, received her PhD in experimental condensed matter physics from the University of California, San Diego and then did a postdoc in neuroscience at the Salk Institute for Biological Studies. Last November, having decided to pursue a career in science policy, she took an internship at the AAAS.

Taking over the AGU fellowship is David E. Hunter, who recently finished his PhD at UC San Diego, where he was studying climate variability in the Indian Ocean. Hunter has long been interested in science and environmental policy. During graduate school, he spent four months at the White House Office on Environmental Policy, helping draft a report on reducing greenhouse gases.

The new AIP fellow, Lowell Ungar, is also a returnee to Washington. In between college and graduate school, he spent nine months as an intern there, first with the Union of Concerned Scientists and then with the League of Women Voters Education Fund. Ungar received his PhD in physical chemistry from the University of Chicago in 1994 and then worked for two years as a postdoc at the University of Pennsylvania, before joining the chemistry faculty at the University of Utah.

This year's OSA/MRS fellow, Merrilea Joyce Mayo, is taking a sabbatical from Pennsylvania State University, where she is an associate professor of materials science. Before joining Penn State in 1990, she was a member of the technical staff at Sandia National Laboratories. She earned her PhD in materials science and engineering from Stanford University in 1988.

Information about applying for Congressional fellowships is available from the sponsoring societies: AIP (301-209-3094); APS (202-662-8700); AGU (202-462-6900); and OSA/MRS (202-416-1418).

Airliner Crash Claims Lives of Two Physicists

wo physicists, Per Spanne and Klaus Kinder-Geiger, were among the 229 people killed in the 2 September crash of a Swissair jet off the coast of Nova Scotia.

Spanne, age 53, was a Swedish-born medical physics researcher who helped pioneer microbeam radiation therapy (MRT), an x-ray technique that shows promise for treating tumors in the brain and other sensitive tissue. He

had been in the US to attend a biophysics and synchrotron radiation conference at Argonne National Laboratory, and then to vacation with his wife and two daughters, before he returned to Europe.

Spanne held a PhD from Linköping University and since 1994 had been a senior sci-

P. SPANNE

entist at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France, where he was head of the medical beam line. He was also overseeing preparations for the first clinical trials of a heart-imaging technique called xray angiography, scheduled to begin later this year. "Per estimated that he was four years away from doing human studies on MRT," says Peter Lindley, director of research at ESRF. "But he was a very cautious and careful scientist, so that may have been an overestimate." Work on MRT will continue at ESRF, says Lindley, "but you don't replace someone of Per's stature without suffering a setback."

"Per was a very quiet person, but with a very deep sense of humor," says Bill Thomlinson, a long-time collaborator. "He was easy to work with, even in difficult times late at night on the beam line."

Kinder-Geiger, age 35, was a German-born associate scientist at Brookhaven National Laboratory who specialized in numerical simulations of high-energy collisions, including the parton cascade model, in connection with the lab's Relativistic Heavy Ion

K. KINDER-GEIGER

Collider. On 2 September, he had been on his way to give a talk at the European Centre for Theoretical Studies in Trento. Italy.

"He was clearly one of the dominant young people in his field," says Rob Pisarski, the head of Brookhaven's n11clear theory group.

"It's a devastating loss." Kinder-Geiger was "someone who could do abstract calculations and also talk to experimentalists about real measurements." Pisarski adds. "It's his breadth in particular that will be sorely missed."

Kinder-Geiger, who sported a crewcut and an earring and usually wore all black, was known for his high-spirited style, says Berndt Mueller, head of the physics department at Duke University, who served as his thesis adviser and later as a collaborator. "He motivated a number of young people to enter the field, by showing them that scientists can also be unusual and creative people." On 23 October.

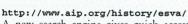
Brookhaven will hold a memorial workshop in Kinder-Geiger's honor.

JEAN KUMAGAI

IN BRIEF

n 31 October, the 323-year-old Royal Greenwich Observatory will close its doors for good—the recent hike in the UK's science budget having come too late to save the historic facility. (See PHYSICS TODAY, September 1998, page 50, and September 1997, page 60.) The RGO's activities, as well as its scientific and technical staff, are being disbanded: Ground-based instrument support will be transferred to the UK Astronomy Technology Centre in Edinburgh; the Nautical Almanac Office will be moved to Rutherford Appleton Laboratory; some staff members will join Telescopes Technologies Ltd, a telescope manufacturing business in Liverpool; others will do contract work at the University of Cambridge, where the RGO has been located for the past eight years; and most of the technical staff will be laid off or forced to retire. Some of the RGO's historical artifacts will go to the National Maritime Museum, which is run by the Old Royal Observatory at Greenwich. The ORO will also take over the RGO's educational and informational services. and hopes to be rechristened the Royal Observatory at Greenwich.

Web Watch


http://www.mhs.ox.ac.uk/geometry/content.htm

The Geometry of War, 1500-1750. Currently on display electronically at the University of Oxford's Museum of the History of Science is The Geometry of War, 1500-1750, an exhibition that describes how mathematical science was used on the battlefields of early modern Europe. The essay that accompanies the exhibition's 81 illustrations explores the historical and philosophical contexts in which kinematics was developed for warfare.

http://www.lhl.lib.mo.us/pubserv/hos/stars/welcome.htm

Art, history and science are all on display in the Linda Hall Library's on-line exhibition of celestial atlases. Entitled Out of This World, the exhibition contains 43 star atlases dating from between 1482 and 1851, including Johannn Bayer's monumental Uranometrica of 1603. The Linda Hall Library, located in Kansas City, Missouri, is an independent research library specializing in science, engineering and technology.

A new search engine gives quick access to the best of the historical photographs of physicists and astronomers in the Emilio Segrè Visual Archives of the American Institute of Physics' Center for History of Physics. There are now 1028 images available on-line, with more being added each month. Various types of searches can be performed, and copies of the photos can be ordered through a secure connection.

To suggest topics or sites for Web Watch, please contact ptwww@aip.org by e-mail. Compiled by CHARLES DAY

ELECTRON SOURCES

ION SOURCES

UHV COMPONENTS

GUNS, ELECTRONICS, SYSTEMS

5 eV to 100 keV / 10⁻¹⁵ A to 1 A Collimated, Focused, or Flood Beams: um to m Diameters Ultra Low Energy to High Energy Wide-Range Energy Sweeping Differential Pumping, Deflection Computer Control, Fast Pulsing

SURFACE PHYSICS / RHEED / IPES CHARGE NEUTRALIZATION / ESD CATHODOLUMINESCENCE / ISS

Cathodes / Cathode Cartridges Faraday Cups, Phos Screens Multi-CF™ Fittings, eV Parts® Miniature Vacuum Chambers OEM / Custom Designs

Excellence in Electron and Ion Optics

KIMBALL PHYSIGS ING. 🕾 311 Kimball Hill Road, Wilton, NH 03086-9742 USA

Tel: (888)KIM-PHYS [(888)546-7497] Fax: (603)878-3700 e-mail: info@kimphys.com web: http://www.kimphys.com