NONCLASSICAL EXCITATION
IN SPECTROSCOPY WITH
SQUEEZED LIGHT

he amplitude and phase

of all light fields are sub-
ject to fluctuations. Much of
this irregularity arises from
random and uncontrolled
changes that occur in any
light source and lead to ran-
dom changes in the light
wave’s frequency and ampli-
tude. Most of these factors
can in principle be elimi-
nated by a careful design of
the light source. Even if all
of these defects in the source
are removed, however, light fields are still subject to
fluctuations arising from the laws of quantum mechanics.
Even in a highly stabilized laser, the resulting coherent
electromagnetic field has an uncertainty in the phase and
magnitude of its amplitude. All conventional sources of
light fields have at least this noise level, which, in a fully
quantum description, arises from vacuum fluctuations. At
one time it was believed that this vacuum or coherent-state
noise could not be eliminated.

About 15 years ago the concept of “squeezed states”
was introduced into radiation theory, demonstrating how
the uncertainty in the field amplitude could be reduced
below the quantum noise level by a “Heisenberg trade-oft”
between complementary operators. For example, the un-
certainty of the phase could be decreased at the expense
of increased fluctuations of the magnitude. This possibil-
ity for obtaining light fields whose fluctuations are less
than those expected from stabilized lasers has attracted
a great deal of attention.! (See PHYSICS TODAY, August,
page 18, for a brief account of quantum state reconstruc-
tion of squeezed light, and June, page 18, for research on
squeezed phonon states.) Squeezed states of light require
field quantization for their explanation; they cannot be
understood by using semiclassical techniques that assume
a classical electromagnetic field interacting with quantized
atoms or detectors. They were first studied by theorists
interested in their properties as generalized minimum-
uncertainty states of two-photon coherent states.?

Figure 1 shows Wigner functions of three types of
state, a thermal state (a), a coherent state (b) and a
squeezed state (c). Notice that the horizontal spread of
the coherent state is comparable to that of the thermal
state. In contrast, the squeezed state is very narrow in
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An experiment with squeezed light has
demonstrated a new type of nonclassical
effect: Correlated two-photon absorption
can produce a two-photon excited
population with a linear intensity
dependence.
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one direction and wider in
the other, indicating the Hei-
senberg trade-off in its un-
certainties.

The first experimental
realization of squeezed light
was reported in the mid-
1980s by Richart Slusher
and coworkers?® at AT&T Bell
Laboratories. They used
four-wave mixing of light in
optical cavities crossing a
beam of sodium atoms, and
they observed a reduction of
optical noise to about 10% below the vacuum level. Robert
Shelby and coworkers* at IBM’s Almaden Research Cen-
ter used four-wave mixing in an optical fiber and gen-
erated squeezed light with a 12.5% reduction below the
vacuum level.

Jeffrey Kimble and coworkers® at the University of
Texas at Austin developed a frequency tunable source of
a squeezed vacuum field with about 70% noise reduction
below the vacuum level. In their experiment, a squeezed
field is generated by means of nondegenerate parametric
down conversion. In this nonlinear process, a pump mode
of frequency 2w, generates two modes, called the signal
and idler modes, of frequencies w; and w, such that
Wy + wy=2w,. In experimental terms, squeezed vacuum
is the squeezed state of light generated by an optical
parametric oscillator operating below threshold—that is,
below the level at which a field of significant intensity is
produced. For such a state, one can measure the instan-
taneous electric field by using techniques such as ho-
modyne detection. (See PHYSICS TODAY, August, page 18.)

The experimental successes in generating squeezed
light make possible its use in various applications. The
earliest applications to be considered were the reduction
of quantum noise in optical communications and the
detection of gravitational waves by optical interferometry.!
Several other applications of squeezed light have been
proposed, including computing, cryptography, spectroscopy,
laser technology and high-resolution measurement. Kim-
ble’s group at Caltech demonstrated high-resolution meas-
urements using squeezed light® in 1992. They reported
an improvement in sensitivity of 3 dB beyond the usual
quantum limit in the Doppler-free detection of hyperfine
transitions in cesium.

Nonclassical correlations

The photons produced in squeezed light experiments have
strong nonclassical correlations. As discussed in more
detail in box 1 on page 36, these correlations are charac-
terized by dimensionless parameters N(w) and M(w). For
any selected mode of the light, one can define quadrature
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operators X and Y, analogous to the ® and p operators of
a quantum particle in one dimension. The uncertainty
relationship for these quadrature operators is

AXAYZ%. (1)

In figure 1 the horizontal axes correspond to these
two operators. The squeezed state shown in the figure
corresponds to a state that is maximally squeezed in the
X quadrature—M = VN(IN+1)—and that has large photon
numbers, for which N > 1. Maximally squeezed states
saturate the Heisenberg limit (that is, AXAY =%4) and
for large N, AX =1/ 4\/]% In other words, these states
have the minimal uncertainty product, and at large photon
fluxes the uncertainty of the squeezed quadrature is much
smaller than the vacuum level.

Although this reduction of uncertainty is the usual
signature of a squeezed state, it is not the only signature.
In addition to this effect, the two-photon coherence term
IM| is increased. In the output of a standard laser,

FIGURE 1. WIGNER DISTRIBUTION FUNCTIONS, W(X,Y), for
a thermal field (a), a coherent field as typically produced by a
standard laser (b) and a squeezed field (c). The squeezed
nature of the state in ¢ is apparent from its narrowness in the
X quadrature. The quadratures X and Y are analogous to
position and momentum for a mechanical oscillator. The
Wigner distribution function is a generalization of the
wavefunction, suitable for describing mixed quantum states as
well as pure ones.

[M|=N and the normalized two-photon correlation func-
tion C(w) <1. For a maximally squeezed field, however,

1+ N(w)

C(w) zw.

2

The result is a highly nonclassical correlation as graphed
in figure 2, which is greatest for N < 1. Thus, unlike the
usual squeezing measurements, there is a maximal non-
classical effect at small photon flux levels (that is, less
than one photon per second in each one-Hertz interval of
frequency).

In summary, the presence of squeezing leads to both
an anisotropic distribution of the noise in the phase
space, with the noise significantly reduced in some
directions, and a relative increase in two-photon corre-
lations. The nonclassical character of the correlations
is manifested by the term 1 in equation 2, which arises
from the quantum nature of the field, so that the
operators a’(»;) and a(w;) do not commute. For a clas-
sical field, the correlations can have the maximum value
[M(w,)] = N(»;). Therefore, any effect arising from the
excess correlations over that for a classical field has a
nonclassical character.

Squeezed light spectroscopy

The idea of nonclassical atomic spectroscopy, or squeezed
light spectroscopy, was originally due to Crispin Gardiner,”
who showed theoretically that nonclassical effects, such
as inhibition of the decay of the atomic dipole moment
(which is sensitive to photon correlations), could occur in
spontaneous emission from two-level atoms. However, no
changes in atomic populations were predicted, making the
nonclassical effects in two-level atoms difficult to observe
experimentally.

Two-photon absorption between atomic levels of the
same parity has attracted considerable interest in
atomic spectroscopy. In general, a two-photon absorp-
tion in a system of atoms irradiated by an external field
can occur as a two-step process with one photon ab-
sorbed in each step. Since the intensity of the field is
proportional to the number of photons, a two-photon
process normally exhibits a quadratic dependence on
the intensity of the exciting field. The close connection
between squeezed light and two-photon processes? sug-
gests that two-photon transitions in multilevel atoms
may be especially sensitive to the correlations charac-
teristic of squeezed light. In the case of three-level
atoms, work in this area was pioneered by Julio Gea-
Banacloche® and also by Juha Javanainen and Philip
Gould,® who showed that the two-photon transition rate
could depend linearly on intensity (instead of quadrati-
cally) in a transient regime. But could this lead to a
nonclassical steady state population that also depends
linearly on intensity?

Let us consider a three-level atom in a cascade con-
figuration (see figure 3) interacting with two coherent or
thermal radiation fields of equal intensities I, each coupled
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FIGURE 2. NONCLASSICAL BEHAVIOR develops at very low
levels of photon flux N(w), because of the dramatic increase in
the relative correlation C(w), which can be at most 1 for a
field admitting a classical description.

to a one-photon transition. In this case the two-photon
transition |0)—|2) appears as a two-step transition
|0) — 1) —|2). At low intensity, each one-photon transition
rate is proportional to intensity I, resulting in a quadratic
intensity dependence for the two-photon transition rate.
In the steady state, the population p in level |2) is therefore
proportional to I2.

Recent theoretical'®? work has showed that corre-
lated photon pairs, characteristic of squeezed light, can
indeed affect the two-photon transition rate in a nonclas-
sical way that causes a linear rather than quadratic
intensity dependence of the population p. Detailed calcu-
lations show that the population exhibits both linear and
quadratic dependence on the intensity when the atom is
excited by a squeezed field. (See equation 14 in box 2 on
page 37.) This dependence is in contrast to the purely
quadratic intensity dependence produced by classical light
sources.

For low intensities (N < 1), the linear term of equa-
tion 14 dominates, which is the direct manifestation of
the modification of the two-photon absorption [0) —[2). In

Box 1. Correlations and Uncertainties of Squeezed Light

In experiments that produce squeezed light, the output modes
exhibit strong nonclassical correlations of the emitted pho-
tons. These are characterized by correlation functions for the
field-mode operators of the type

(a(w)al(w)) = [N(w) + 1]6(w; - ») ,
(a*(w,)a(wj» = N(w,) §(w; — w)) , &)
(a(w) a(w) = M(w;) 62w — ©; — W) ,

where af(w) and a(w) are the usual creation and annihilation
operators (respectively) of a photon of frequency w. Here,
N(w) has units of photons/[Hz:s], and so is a dimensionless
quantity, giving the output photon flux per unit frequency in
an external transverse mode that is matched to the internal
cavity mode of the squeezing generator.

The parameters N(w;) and M(w;) describe the spectral inten-
sity of the modes in photon units. When the output intensity
is symmetric (relative to wp), the correlations between the
output modes obey the inequality

|M(w,)] < VN(w)[NQwy — ;) + 1] . 0)

It is customary to simplify the quantum analysis to a single
longitudinal mode of an idealized cavity with frequency 2w in
the external field. Suppose this gedanken cavity has single-
mode electromagnetic annihilation and creation operators a, al.
We can define complementary second-quantized quadrature
operators, X and Y, analogous to the X and p operators of the
Heisenberg uncertainty relation. These are defined as

1
X = E(aT +a),
; ©)
Y - 2—1.(34r —a).
They have commutation properties of
1
X, Yl=—. ()
i
This implies an uncertainty relationship
1
AXAY 27, ?)

where AX is the quadrature standard deviation. (The factor %
is absorbed in the definition of the operators a and a'.)

These commutation relations are fundamentally due to the
commutator between the electric and magnetic fields in the
vacuum, expressed in a modal expansion form.

In a squeezed state of the type we are discussing here, the
values of the standard deviations are given by

AX =%\/1 Y2N-M),
®)
AY = %w F2N+M) .

Here we assume that the quadrature maximum and minimum

fluctuations are aligned with the X and Y axes, respectively.
. T AN

For a maximally squeezed state, [M] = VN(N+1) and

1

AXAY =
4

: ©

For a maximally squeezed state, squeezed in X and with large
N, AX = 1/ 4\/7\1)., In other words, these states have the minimal
uncertainty product, but the uncertainty of any given quadra-
ture can be much smaller than the vacuum level, at large N
values.

In addition to this reduction of uncertainty, there is an
increase in the two-photon coherence term, [#]. In the output
of a standard laser (coherent but unsqueezed), the normally
ordered correlations factorize, so that |M| = N. By comparison,
consider the normalized two-photon correlation functions de-

fined by

e >
i) = No)NQwy— w) e

In our idealized case of a maximally squeezed field, this ratio
increases dramatically at low intensity. The result is a highly
nonclassical correlation, which is greatest for N < 1, as can be
seen from the following equation, which is applicable to our
maximally squeezed gedanken mode:

1+ N(w)
Clw) = -—N—(QT : (1)

This is graphed in figure 2. Thus, there is a maximal nonclas-
sical effect at photon flux levels of less than 1 s'Hz ™.
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FIGURE 3. THREE-LEVEL ATOM in the cascade configuration.
A two-photon transition between states |0) and |2) can occur in a
single step when the fields have suitable correlations. The
population p in state [2) can be affected by this process. The
indicated spectroscopic states and frequencies are those relevant to
the experiment that tested these effects in cesium atoms.

a squeezed vacuum field, the two-photon correlations en-
able the transition |0) — |2) to occur effectively in a “single
step” proportional to N. Another way to think of this is
that amplitudes add coherently (because of the term 1 in
equations 2 and 4) for the |0) — |1) and |1) — |2) transitions,
rather than incoherently.

This single-step two-photon process has an immediate
effect on the populations of the atomic levels. For exam-
ple, in this process, the intermediate level is not populated.
This effect results in one-photon, as well as two-photon,
inversions between the atomic levels. The Boltzmann
distribution of the populations of the atomic states is
violated. All of these effects are essentially novel in the
field of spectroscopy.!®'?

For larger intensities (N 1), the quadratic term,
characteristic of classical-field excitation, dominates and
masks the linear, nonclassical term. Thus, to observe the
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Box 2. Steady State Populations

Consider the three-level system (shown in figure 3), driven
by a broadband squeezed vacuum field, in which the squeez-
ing bandwidths near the transition frequencies w; and w, are
greater than the relevant natural linewidths.' (The squeez-
ing bandwidth is the range of frequencies over which the
driving vacuum field exhibits squeezed fluctuations.)

The steady state population in the upper state |2) is

PN W - |MP (W~ 1~ a)
P=P2 = R aNT 3N+ 1 - 32| MP)

(12)

where a =T,,/T,, is the ratio of the spontaneous emission
rates I',, and Ty of the transitions |2) — [1) and [1) — |0),
respectively, and W= a + nN(1 + ), N = N(w,) = N(w,) and
|M] = |M(w,)| = |[M(w,)|. The parameter 7 describes the
matching of the incident squeezed vacuum modes to the
vacuum modes coupled to the atom. For perfect matching,
1 = 1 whereas for imperfect matching, n < 1.

For a thermal field without correlations between photons,
|M| = 0, and the populations have a thermal (Boltzmann-type)
distribution, with

‘l]ZNZ

e BRdn s 13
P3N+ 3N + 1 K

For low intensities (N < 1), this is proportional to N7,
showing that in thermal fields the population p exhibits a
quadratic dependence on intensity—as is also the case for
coherent lasers.

For a minimum uncertainty squeezed vacuum field, for
which |M]> = N(N + 1), the population p is given by

TN+ 7*N*(1 +a)(1 - 1)
E (a+anN+nN)BnN1 -—n)+1]1°

(14)

This population exhibits both linear and quadratic depend-
ence on the intensity of the squeezed vacuum field.

departure from the quadratic intensity dependence, it is
important to apply a squeezed vacuum field with low
intensity, since this relative change is due to the correla-
tion C(w), which is maximal when N < 1.

Another factor, important from
the experimental side, is the matching
of the input squeezed modes to the
vacuum modes coupled to the atom.
This matching is characterized by the
parameter 7, which is 1 for perfect

FIGURE 4. EXPERIMENTAL SETUP for
observing the nonclassical dependence on
intensity of the population p. The
pump field (orange) of the
frequency-doubled output of a
titanium-sapphire (Ti:Al,O5) laser is
transmitted through an optical
parametric oscillator (OPO) cavity to
produce a two-mode squeezed vacuum
field (purple) of wavelengths 852 nm and
917 nm. This vacuum field is coupled to
cesium atoms in a magneto-optic trap
(MOT), whose optical part (blue) is

produced by an 852 nm diode laser. The
cesium’s fluorescence (red) at 917 nm is
recorded with an avalanche photodiode

Ti:ALO,

laser

(APD) and analyzed by a computer.
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FIGURE 5. LINEAR AND QUADRATIC
DEPENDENCE of the population p as a function
of the photon number 74y, at 917 nm. The
black curve is obtained from equation 12,
whereas the red and green lines indicate the

linear and quadratic components, respectively.
(From ref. 13.)

matching. However, as can be seen from equation 14, the
linear dependence on the intensity is not destroyed by an
imperfect matching (n < 1), but the population is reduced.

Experimental verification

In 1995 the linear dependence of the population p on
the squeezing intensity N was observed experimentally
by Kimble’s group at Caltech,!® in a difficult and pio-
neering experiment. In their experiment (see figure 4),
the squeezed vacuum field was generated by an optical
parametric amplifier whose output consists of two low-
intensity but very strongly correlated beams of frequen-
cies w; and w,, symmetrically located about the carrier
frequency wy = (w; + wy)/2. The output exhibits nonclas-
sical correlations between the two beams, as charac-
terized by equation 2. This squeezed vacuum was then
focused into a cloud of cesium atoms in a magneto-optic
trap. The atomic cesium behaves as a three-level atom
with transition wavelengths Ay; =917 nm, A;, =852 nm.
The two beams of frequencies w; and w, are tuned to
these atomic transitions.

By monitoring the fluorescence at 917 nm (which is
proportional to the population p), the experimental team
observed that the population p deviated from the quadratic
intensity dependence observed with a coherent light. The
results are shown in figure 5 using a log—log scale. The
observed departure from the slope of 2, which is charac-
teristic for classical fields, gives compelling evidence for
the quantum, or nonclassical, nature of the excitation
process. As was predicted by the theory outlined here
(and confirmed by computer calculations that included
finite bandwidth effects'®), the departure from the slope
of 2 appears for low intensities of the squeezed vacuum
field. For N > 0.3 the slope is more or less the same as
the classical limit of 2. This somewhat smaller intensity
for the change in slope is due to mode matching, and is
also predicted by the detailed theory.

Conclusions

The effort to demonstrate the linear dependence on the
intensity of two-photon transitions is part of a broader
and very active field involving nonclassical excitation
of atomic systems. Many interesting modifications of
radiative properties of atoms in the presence of
squeezed light have been predicted. Examples include
inhibition of the atomic decay process, squeezing-induced
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transparency, population trapping, dispersive and sub-
natural profiles in the fluorescence spectrum and ampli-
fication without population inversion.'* (See the article
by Stephen Harris in PHYSICS TODAY, July, page 36, for
discussion of some of these processes, using classical
fields.) It should be noted that some of these features,
unlike the linear dependence of the two-photon transi-
tion rate, are not limited to low intensities of the
squeezed vacuum and appear even for very large inten-
sities. Kimble’s pioneering experiment demonstrates
that nonclassical spectroscopy offers new physical ef-
fects not obtained with conventional radiation sources.
Although this experiment was restricted to low inten-
sities, it is a clear indication that there is more to
nonlinear spectroscopy than meets the eye, when
squeezed fields are involved. :

References
1. See, for example, special issues on squeezed light: J. Mod. Opt.
84 (6/7) (1987); J. Opt. Soc. Am. B 4 (10) (1987), H. J. Kimble,
D. F. Walls, eds.
2. H. P. Yuen, Phys. Rev. A 13, 2226 (1976).
3. R.E.Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, J. F. Valley,
Phys. Rev. Lett. 55, 2409 (1985).
4. R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe,
D. F. Walls, Phys. Rev. Lett. 57, 691 (1986).
5. L. A. Wu, H. J. Kimble, J. L. Hall, H. Wu, Phys. Rev. Lett. 57,
2520 (1986).
6. E. S. Polzik, J. Carri, H. J. Kimble, Phys. Rev. Lett. 68, 3020
(1992).
C. W. Gardiner, Phys. Rev. Lett. 56, 1917 (1986).
. J. Gea-Banacloche, Phys. Rev. Lett. 62, 1603 (1989).
. J. Javanainen, P. L. Gould, Phys. Rev. A 41, 5088 (1990).
10. Z.Ficek, P. D. Drummond, Phys. Rev. A48, 6247 (1991); Phys.
Rev. A 43, 6258 (1991).
11. P. Zhou, S. Swain, Phys. Rev. A 54, 2455 (1996).
12. V. Buzek, P. L. Knight, I. K. Kudryavtsev, Phys. Rev. A44, 1931
(1991).
13. N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, A.
S. Parkins, Phys. Rev. Lett. 75, 3426 (1995).
14. H.J. Carmichael, A. S. Lane, D. F. Walls, J. Mod. Opt. 34, 821
(1987); S. Swain, Phys. Rev. Lett. 73, 1493 (1994); J. M. Courty,
S. Reynaud, Europhys. Lett. 10, 237 (1989); Z. Ficek, B. J.
Dalton, Opt. Commun. 102, 231 (1993); Z. Ficek, W. S. Smyth,
S. Swain, Phys. Rev. A 52, 4126 (1995); Z. Ficek, P. D. Drum-
mond, Europhys. Lett. 24, 455 (1993). | |

© o =



