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Singularities and Blowups 

We have gotten spoiled in physics. 
Our mathematics works so very 

well. Most of our problems involve 
differential equations, and most of our 
fundamental differential equations 
continue to make sense in a quite 
global fashion. Maxwell's equations or 
the Schrodinger equation have the 
property that, if you start out with a 
physically reasonable situation, the 
equation's time development gives you 
another physically reasonable solution 
and so on to eternity, or at least to the 
eternity defined by the equation. 

But these equations are quite spe­
cial. They are linear, and wonderfully 
robust. In recent years, physicists, 
mathematicians and others have 
turned their attention to equations 
that develop mathematical singulari­
ties from nothing. You start from a 
very smooth initial situation and just 
wait. After a time, an infinity shows 
up in the solution or in one of its 
derivatives. Sometimes you can con­
tinue the solution past the singularity. 
Sometimes you need new physics (per­
haps an additional boundary condition) 
to see what happens next. Sometimes 
you can say nothing at all beyond the 
singularity time. 

The simplest example of singularity 
formation is drawn from the elementary 
study of ordinary differential equations. 
Look at the equation dx I dt = ax, with 
a being positive and constant, and an 
x that is positive at time zero. This 
could be the growth equation for some­
thing-perhaps the concentration of 
some compound in the atmosphere. 
Note that the solution grows exponen­
tially in time, but x remains positive 
and well-behaved for all finite times. 
Perhaps this outcome is bad, but the 
worst takes an infinitely long time 
to arise . In contrast, imagine that 
the growth rate , a , is itself linear 
in the concentration of the contami­
nant: a = ex, with c being constant. A 
quick calculation shows that the con­
centration obeys: x(t) = 1 / c(t* - t ), 
with ct* being an abbreviation for the 
positive quantity 1 / x(O) . Notice that 
the concentration blows up at t* and 
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subsequently has the senseless prop­
erty of being negative. 

This example, drawn from the the­
ory of ordinary differential equations, 
is too trivial for research-style investi­
gation. However, examples of singu­
larity formation based upon partial 
differential equations are hot research 
topics. One example is provided by 
black hole formation in general rela­
tivity. Black holes are singularities. 
In an elegant numerical study, Matt 
Choptuik1 showed that in contrast to 
the generally held view, holes of mass 
smaller than the Chandrasekhar limit 
could be formed and that, in the process 
of formation, the solutions would oscil­
late periodically in ln(t* - t ). Many 
others published papers that agreed 
with and extended this conclusion. 

Choptuik's study is one of a series 
of recent works that study how partial 
differential equations develop singu­
larities that are universal and scale­
invariant. These properties go to­
gether. For example, a group of us 
(Michael Brenner, Peter Constantin, 
Leonid Levitov, Alain Schenkel, 
Shankar C. Venkataramani and I) are 
studying a problem in which bacteria 
are attracted by something that they 
produce. This attractant undergoes a 
rapid diffusion process.2 As the bacte­
ria produce a more concentrated region 
of attractant, they are bound together 
into a tight little clump in which their 
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density, p, goes to infinity near a sin­
gular point as 

p(r, t) = (t* - tt
1 
F ( (t~~ t~~

1

12 ) + 

(smaller terms) 

Note that the singular term always 
has the same basic shape, but its size 
and extension vary in time. Hence we 
call it scale-invariant. We use the word 
"universal" to suggest that the result 
will remain the same if the initial 
situation is varied slightly, or even 
perhaps if the differential equation is 
changed a little bit. The equation de­
scribes the simplest way in which a 
solution to a partial differential equa­
tion can "go bad." 

This same sort of mathematical 
structure appears time and time again. 
For example, scientists have long stud­
ied situations in which a mass of fluid 
forms a thin neck and that neck breaks 
so that the fluid separates into two 
pieces. (See the figure on page 11.) A 
group of theorists here at the Univer­
sity of Chicago looked for similarity 
solutions in these situations. Using 
simulations, we3 found a whole zoo of 
such solutions, one of which was, in 
parallel, achieved experimentally.4 In 
this solution, the derivative of the pres­
sure blew up at the breaking point. 
This situation of broken necks is part 
of a broader problem, discussed by 
Pierre-Gilles de Gennes5 and others, 
in which one must understand fluid 
flow on a surface that is partially wet 
and partially dry. The first time a dry 
spot appears on an initially wet sur­
face, there is a mathematical singular­
ity. After that time, one must somehow 
deal with the new boundary conditions 
required to describe the motion of the 
interface. The number and type of 
those boundary conditions can, in prin­
ciple, be determined by studying an­
other kind of similarity solution, the 
one that describes the wet-dry edge. 

There is a classical, and unsolved, 
problem related to these singularity 
issues. The most fundamental equa­
tions for fluid flow are the Navier­
Stokes and Euler equations. These 
equations5 have a large number of 
near-singular behaviors that interfere 
strongly with the construction of eco­
nomical, accurate and reliable simu­
lations. These difficulties, in turn, 
limit advances in such fields as 
weather prediction and the design of 
explosive devices. 

Accurate simulation of singular or 
near-singular behavior is both difficult 
to achieve and hard to assess. In the 
bacterial example, we ran into a par­
ticularly favorable situation in which 
we had theorems and stability analysis 
that told us what to expect. In one 

region of behavior, the theorems ruled 
out any singularity; yet each single simu­
lation that we did showed some apparent 
singularity. Only the most careful com­
parisons of solutions obtained by differ­
ent methods sufficed to show that the 
computed singularities were artifacts of 
the computational technique. 

Choptuik concluded that the best 
approach to computational under­
standing of singularity formation was 
to have a maximum opportunity for 
"on line" human intervention in the 
simulation process. He designed tech­
niques for achieving interactivity in the 
context of the Cray supercomputer at 
the University of Texas at Austin. We 
had a simpler computational problem 
so we could get where we wanted with 
workstations. For us too, interaction 
with the computer and extensive tests 
of computational technique were nec­
essary before we could feel any confi­
dence in our results. 

Perhaps this experience gives some 
practical lessons. The Department of 
Energy is now in the process oflearn­
ing how to use another generation of 
supercomputers, bigger and faster 
than the previous ones but, for the 
moment, more weakly supplied with 
software. These computers will be 
used in part to replace understanding 
that might have been obtained from 
testing of nuclear weapons. If the ex­
perience of the singularity work is any 
guide, in this new design and testing 
process, human understanding will re­
main essential. It is not sufficient to 
set up the code and let the computer 
zip along. It zips alright, but to where? 
It will remain crucially important to 
monitor the computational process in 
detail, to see and understand the steps 
involved in each stage of the computa­
tion. The weapons designers should 
require many internal tests of the con­
sistency of the numerical technique. 
To enhance reliability, they should test 
their computer results against pre­
vious experiment and observation as 
much as possible. Even then, one can­
not have absolute confidence that the 
computer will produce truth. Com­
puter simulation is, at the edge, an art 
as much as a science. 
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