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Singularities and Blowups

e have gotten spoiled in physics.

Our mathematics works so very
well. Most of our problems involve
differential equations, and most of our
fundamental differential equations
continue to make sense in a quite
global fashion. Maxwell’s equations or
the Schrodinger equation have the
property that, if you start out with a
physically reasonable situation, the
equation’s time development gives you
another physically reasonable solution
and so on to eternity, or at least to the
eternity defined by the equation.

But these equations are quite spe-
cial. They are linear, and wonderfully
robust. In recent years, physicists,
mathematicians and others have
turned their attention to equations
that develop mathematical singulari-
ties from nothing. You start from a
very smooth initial situation and just
wait. After a time, an infinity shows
up in the solution or in one of its
derivatives. Sometimes you can con-
tinue the solution past the singularity.
Sometimes you need new physics (per-
haps an additional boundary condition)
to see what happens next. Sometimes
you can say nothing at all beyond the
singularity time.

The simplest example of singularity
formation is drawn from the elementary
study of ordinary differential equations.
Look at the equation dx/d¢ = ax, with
a being positive and constant, and an
x that is positive at time zero. This
could be the growth equation for some-
thing—perhaps the concentration of
some compound in the atmosphere.
Note that the solution grows exponen-
tially in time, but x remains positive
and well-behaved for all finite times.
Perhaps this outcome is bad, but the
worst takes an infinitely long time
to arise. In contrast, imagine that
the growth rate, a, is itself linear
in the concentration of the contami-
nant: a = cx, with ¢ being constant. A
quick calculation shows that the con-
centration obeys: x(t)=1/ct* 1),
with ct* being an abbreviation for the
positive quantity 1/x(0). Notice that
the concentration blows up at ¢* and
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subsequently has the senseless prop-
erty of being negative.

This example, drawn from the the-
ory of ordinary differential equations,
is too trivial for research-style investi-
gation. However, examples of singu-
larity formation based upon partial
differential equations are hot research
topics. One example is provided by
black hole formation in general rela-
tivity. Black holes are singularities.
In an elegant numerical study, Matt
Choptuik! showed that in contrast to
the generally held view, holes of mass
smaller than the Chandrasekhar limit
could be formed and that, in the process
of formation, the solutions would oscil-
late periodically in In(#* —¢). Many
others published papers that agreed
with and extended this conclusion.

Choptuik’s study is one of a series
of recent works that study how partial
differential equations develop singu-
larities that are universal and scale-
invariant. These properties go to-
gether. For example, a group of us
(Michael Brenner, Peter Constantin,
Leonid Levitov, Alain Schenkel,
Shankar C. Venkataramani and 1) are
studying a problem in which bacteria
are attracted by something that they
produce. This attractant undergoes a
rapid diffusion process.? As the bacte-
ria produce a more concentrated region
of attractant, they are bound together
into a tight little clump in which their

A DROP IS PRODUCED by the flow
through a faucet of a glycerol/water mix-
ture with a viscosity of 1 poise. The sin-

gularities occur at the precise space/time
points at which the thread breaks.
(Photo from S. D. Shi, M. P. Brenner,
S. R. Nagel, Science 265, 219 (1994).)
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density, p, goes to infinity near a sin-
gular point as
|r — x| +
(t* _ t)l/ 2

(smaller terms)

plr,t)= (-t F

Note that the singular term always
has the same basic shape, but its size
and extension vary in time. Hence we
call it scale-invariant. We use the word
“universal” to suggest that the result
will remain the same if the initial
situation is varied slightly, or even
perhaps if the differential equation is
changed a little bit. The equation de-
scribes the simplest way in which a
solution to a partial differential equa-
tion can “go bad.”

This same sort of mathematical
structure appears time and time again.
For example, scientists have long stud-
ied situations in which a mass of fluid
forms a thin neck and that neck breaks
so that the fluid separates into two
pieces. (See the figure on page 11.) A
group of theorists here at the Univer-
sity of Chicago looked for similarity
solutions in these situations. Using
simulations, we? found a whole zoo of
such solutions, one of which was, in
parallel, achieved experimentally.* In
this solution, the derivative of the pres-
sure blew up at the breaking point.
This situation of broken necks is part
of a broader problem, discussed by
Pierre-Gilles de Gennes® and others,
in which one must understand fluid
flow on a surface that is partially wet
and partially dry. The first time a dry
spot appears on an initially wet sur-
face, there is a mathematical singular-
ity. After that time, one must somehow
deal with the new boundary conditions
required to describe the motion of the
interface. The number and type of
those boundary conditions can, in prin-
ciple, be determined by studying an-
other kind of similarity solution, the
one that describes the wet—dry edge.

There is a classical, and unsolved,
problem related to these singularity
issues. The most fundamental equa-
tions for fluid flow are the Navier—
Stokes and Euler equations. These
equations® have a large number of
near-singular behaviors that interfere
strongly with the construction of eco-
nomical, accurate and reliable simu-
lations. These difficulties, in turn,
limit advances in such fields as
weather prediction and the design of
explosive devices.

Accurate simulation of singular or
near-singular behavior is both difficult
to achieve and hard to assess. In the
bacterial example, we ran into a par-
ticularly favorable situation in which
we had theorems and stability analysis
that told us what to expect. In one

region of behavior, the theorems ruled
out any singularity, yet each single simu-
lation that we did showed some apparent
singularity. Only the most careful com-
parisons of solutions obtained by differ-
ent methods sufficed to show that the
computed singularities were artifacts of
the computational technique.

Choptuik concluded that the best
approach to computational under-
standing of singularity formation was
to have a maximum opportunity for
“on line” human intervention in the
simulation process. He designed tech-
niques for achieving interactivity in the
context of the Cray supercomputer at
the University of Texas at Austin. We
had a simpler computational problem
so we could get where we wanted with
workstations. For us too, interaction
with the computer and extensive tests
of computational technique were nec-
essary before we could feel any confi-
dence in our results.

Perhaps this experience gives some
practical lessons. The Department of
Energy is now in the process of learn-
ing how to use another generation of
supercomputers, bigger and faster
than the previous ones but, for the
moment, more weakly supplied with
software. These computers will be
used in part to replace understanding
that might have been obtained from
testing of nuclear weapons. If the ex-
perience of the singularity work is any
guide, in this new design and testing
process, human understanding will re-
main essential. It is not sufficient to
set up the code and let the computer
zip along. It zips alright, but to where?
It will remain crucially important to
monitor the computational process in
detail, to see and understand the steps
involved in each stage of the computa-
tion. The weapons designers should
require many internal tests of the con-
sistency of the numerical technique.
To enhance reliability, they should test
their computer results against pre-
vious experiment and observation as
much as possible. Even then, one can-
not have absolute confidence that the
computer will produce truth. Com-
puter simulation is, at the edge, an art
as much as a science.
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