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quent speaker.' One should rather be 
able to say: 'He is a gentleman!' " 
Eugene Wigner was a gentleman in 
every sense of the word. 

PAUL ROMAN 
Ludenhausen, Germany 

I would like to comment on Eugene 
Wigner's definition of a particle, 

which identifies an elementary parti­
cle as a unitary irreducible represen­
tation (UIR) of the Poincare group, as 
discussed in Arthur Broyles's letter to 
the editor (September 1996, page 13) 
in response to David Gross's article on 
Wigner's legacy (December 1995, page 
46). I believe there has been some mis­
understanding about this definition 
that has a profound implication. I also 
am interested to see that Wigner's 
definition is equivalent to, albeit not 
in a literal sense, Broyles's preferred 
definition that "a particle is a point 
object that moves on a world line" (as 
Wigner emphatically told Broyles). 

Wigner's definition not only is a 
correct concept but mathematically 
provides a unified approach to con­
struct relativistic field equations for 
all integer and half-integer spins. Un­
fortunately, most books on field the­
ory devote a lot of effort to providing 
a detailed classification of UIRs of 
the Poincare group but neither give a 
simple physical explanation (except 
for referring to them as a repre­
sentation that cannot be further sub­
divided) nor proceed to develop the re­
lativistic field equations for all spins 
from the point of view based on 
Wigner's classification. Instead, they 
simply follow the historical develop­
ment to introduce relativistic field 
equations (for example, Maxwell­
Dirac equations) as if the develop­
ment of UIRs were irrelevant to the 
construction of field equations. 

Gross's article provides an accurate 
and a pictorial description of UIRs. 
However, a more down-to-the-earth ex­
planation may be needed and would 
help to show that UIRs are equivalent 
to Broyles's preferred definition. Physi­
cally, an elementary particle is regard­
ed as a stable, pointlike, structureless 
entity (structureless except for having 
mass, spin and other possible quantum 
numbers), which, in its free state, moves 
on a world line with momentum k. 

Regardless of whether this notion 
of an elementary particle will con­
tinue to stand the test of time, mathe­
matically it requires that all the solu­
tions for the particle (which obeys the 
corresponding free-field equation) 
form an infinite dimensional solution 
space that is invariant under the ac-
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tion of all elements of the Poincare 
group, which consists of the usual 
Lorentz transformations, as well as 
translations in space and time (this is 
exactly what we mean by irreducibil­
ity). For example, if exp(ikx) is the 
solution for a spin-0 particle, it re­
quires that the state exp(ik'x), with 
k' =Ak, also be a solution. That is, 
there must be no other solutions form­
ing an invariant subspace that cannot 
be reached by the action of the group 
elements. Thus, the infinite dimen­
sional solution space {exp(ikx), k2 = m2l 
carries the UIR of the Poincare group. 
And unitarity is required on the repre­
sentation simply to preserve the norm 
(probability) of its inner product. 

This requirement, in turn, imposes 
a profound restriction on the construc­
tion of relativistic field equations­
that is, the equation should contain 
no invariant subspace. In principle, 
we can construct a field equation for 
spin-s by fixing the mass and the 
spin, which are the eigenvalues of 
two Casimir operators, P2 and S2, re­
spectively, by imposing field equations 
(D -m2)c/> = 0 and [S2

0 P - s(s + l )]c/> = 0, 
with cf> to be some tensor or spinor of 
rank s that contains spin s and lower 
spins. Usually, cf> is transformed ac­
cording to a finite nonunitary irreduc­
ible representation D(k,1) of the 
Lorentz group. However, Wigner's 
definition of an elementary particle al­
lows us to replace the relativistic non­
covariant second equation with a set 
of relativistic covariant subsidiary con­
ditions, cf> being a symmetric, trace­
less and divergenceless tensor or spi­
nor of ranks. By taking away those 
relativistic invariant subspaces for lower 
spins, we guarantee that there are no 
more distinct invariant subspaces in the 
solution space of the field equations, 
as is confirmed by counting the num­
ber of independent components in cf> 
to be 2s + I. By further carrying out 
the Fierz-Pauli program to construct 
a single equation that contains both 
the main equation and the subsidiary 
conditions (to introduce interaction later 
in a consistent manner), we will have 
achieved our final goal of establishing a 
general free-field equation for arbitrary 
spin-s.1 By substituting s = 0, 112, 1, 
3/2, 2, . . . in the general equation, we 
reproduce those familiar free-field equa­
tions: Klein-Gordon, Dirac, Maxwell, 
Rarita-Schwinger, Fierz-Pauli. . . . 

Yet Wigner's remarkable definition 
is not restricted to free-field equa­
tions. It also serves as a guiding prin­
ciple for introducing interactions 
among various fields. We can impose 
a mathematically consistent condition 
on a set of field equations to derive 
their mutual interactions, as well as 
self-interactions. This is based on the 

same notion of Wigner's UIR as our 
requirement that the number of inde­
pendent spin components 2s + 1 for 
each particle (or two helicity states 
for the massless particle) remains un­
changed even in interaction. This 
simple requirement leads to the usual 
minimum coupling for spin (1, 1/2) of 
the Maxwell-Dirac system, SU(N)­
type coupling for gauged spin-I photons 
and Einstein's equation for the spin-2 
system.2 

This definition of an elementary 
particle is truly simple and ingenious. 
It leads directly to relativistic field 
theory, bypassing the nonrelativistic 
quantum mechanics. And from the re­
lativistic field equation, we can derive 
the Feynman diagram rules and calcu­
late scattering amplitudes. The prob­
ability interpretation of nonrelativis­
tic quantum mechanics can be under­
stood now from a different perspective 
by looking at every Feynman diagram 
as a real physical process-how an 
electron is scattered depends on 
whether it encounters a photon. 
Maybe Einstein was right-God does 
not play dice with us. Maybe it's a 
game of marbles instead. 
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Schawlow Thinking 
Disputed about 
Diatomic Molecules 

In his very readable article "Chemistry: 
Blithe Sibling of Physics" (PHYSICS TO­

DAY, April, page 11), Dudley Herschbach 
quotes the well-known remark attrib­
uted to Art Schawlow, "A diatomic mole­
cule has one atom too many." 

My love affair with H3+ over many 
years,1 has led me to believe that 
some beautiful subtleties of physics 
do not appear until one faces a three­
particle system. I suspect quantum 
chromodynamicists agree with this. 

As for me, I say that a diatomic 
molecule has one atom too few. 
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