LETTERS (continued from page 15)

quent speaker.” One should rather be
able to say: ‘He is a gentleman!”
Eugene Wigner was a gentleman in
every sense of the word.
PAuL RoMAN
Ludenhausen, Germany

would like to comment on Eugene

Wigner’s definition of a particle,
which identifies an elementary parti-
cle as a unitary irreducible represen-
tation (UIR) of the Poincaré group, as
discussed in Arthur Broyles’s letter to
the editor (September 1996, page 13)
in response to David Gross’s article on
Wigner’s legacy (December 1995, page
46). I believe there has been some mis-
understanding about this definition
that has a profound implication. I also
am interested to see that Wigner’s
definition is equivalent to, albeit not
in a literal sense, Broyles’s preferred
definition that “a particle is a point
object that moves on a world line” (as
Wigner emphatically told Broyles).

Wigner’s definition not only is a
correct concept but mathematically
provides a unified approach to con-
struct relativistic field equations for
all integer and half-integer spins. Un-
fortunately, most books on field the-
ory devote a lot of effort to providing
a detailed classification of UIRs of
the Poincaré group but neither give a
simple physical explanation (except
for referring to them as a repre-
sentation that cannot be further sub-
divided) nor proceed to develop the re-
lativistic field equations for all spins
from the point of view based on
Wigner’s classification. Instead, they
simply follow the historical develop-
ment to introduce relativistic field
equations (for example, Maxwell—
Dirac equations) as if the develop-
ment of UIRs were irrelevant to the
construction of field equations.

Gross’s article provides an accurate
and a pictorial description of UlRs.
However, a more down-to-the-earth ex-
planation may be needed and would
help to show that UIRs are equivalent
to Broyles’s preferred definition. Physi-
cally, an elementary particle is regard-
ed as a stable, pointlike, structureless
entity (structureless except for having
mass, spin and other possible quantum
numbers), which, in its free state, moves
on a world line with momentum #.

Regardless of whether this notion
of an elementary particle will con-
tinue to stand the test of time, mathe-
matically it requires that all the solu-
tions for the particle (which obeys the
corresponding free-field equation)
form an infinite dimensional solution
space that is invariant under the ac-
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tion of all elements of the Poincaré
group, which consists of the usual
Lorentz transformations, as well as
translations in space and time (this is
exactly what we mean by irreducibil-
ity). For example, if exp(ikx) is the
solution for a spin-0 particle, it re-
quires that the state exp(ik’x), with

k' =Ak, also be a solution. That is,
there must be no other solutions form-
ing an invariant subspace that cannot
be reached by the action of the group
elements. Thus, the infinite dimen-
sional solution space {exp(ikx), k% = m?%
carries the UIR of the Poincaré group.
And unitarity is required on the repre-
sentation simply to preserve the norm
(probability) of its inner product.

This requirement, in turn, imposes
a profound restriction on the construc-
tion of relativistic field equations—
that is, the equation should contain
no invariant subspace. In principle,
we can construct a field equation for
spin-s by fixing the mass and the
spin, which are the eigenvalues of
two Casimir operators, P2 and S?, re-
spectively, by imposing field equations
O-m?¢ =0 and [S%,, - s(s + D]¢ =0,
with ¢ to be some tensor or spinor of
rank s that contains spin s and lower
spins. Usually, ¢ is transformed ac-
cording to a finite nonunitary irreduc-
ible representation D(k,1) of the
Lorentz group. However, Wigner’s
definition of an elementary particle al-
lows us to replace the relativistic non-
covariant second equation with a set
of relativistic covariant subsidiary con-
ditions, ¢ being a symmetric, trace-
less and divergenceless tensor or spi-
nor of rank s. By taking away those
relativistic invariant subspaces for lower
spins, we guarantee that there are no
more distinct invariant subspaces in the
solution space of the field equations,
as is confirmed by counting the num-
ber of independent components in ¢
to be 2s + 1. By further carrying out
the Fierz—Pauli program to construct
a single equation that contains both
the main equation and the subsidiary
conditions (to introduce interaction later
in a consistent manner), we will have
achieved our final goal of establishing a
general free-field equation for arbitrary
spin-s.! By substituting s =0, 1/2, 1,
3/2, 2, . . . in the general equation, we
reproduce those familiar free-field equa-
tions: Klein—Gordon, Dirac, Maxwell,
Rarita—Schwinger, Fierz—Pauli. . . .

Yet Wigner’s remarkable definition
is not restricted to free-field equa-
tions. It also serves as a guiding prin-
ciple for introducing interactions
among various fields. We can impose
a mathematically consistent condition
on a set of field equations to derive
their mutual interactions, as well as
self-interactions. This is based on the

same notion of Wigner’s UIR as our
requirement that the number of inde-
pendent spin components 2s + 1 for
each particle (or two helicity states
for the massless particle) remains un-
changed even in interaction. This
simple requirement leads to the usual
minimum coupling for spin (1, 1/2) of
the Maxwell-Dirac system, SU(N)-
type coupling for gauged spin-1 photons
and Einstein’s equation for the spin-2
system.?

This definition of an elementary
particle is truly simple and ingenious.
It leads directly to relativistic field
theory, bypassing the nonrelativistic
quantum mechanics. And from the re-
lativistic field equation, we can derive
the Feynman diagram rules and calcu-
late scattering amplitudes. The prob-
ability interpretation of nonrelativis-
tic quantum mechanics can be under-
stood now from a different perspective
by looking at every Feynman diagram
as a real physical process—how an
electron is scattered depends on
whether it encounters a photon.
Maybe Einstein was right—God does
not play dice with us. Maybe it’s a
game of marbles instead.
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Schawlow Thinking
Disputed about

Diatomic Molecules

n his very readable article “Chemistry:

Blithe Sibling of Physics” (PHYSICS TO-
DAY, April, page 11), Dudley Herschbach
quotes the well-known remark attrib-
uted to Art Schawlow, “A diatomic mole-
cule has one atom too many.”

My love affair with Hs+ over many
years,! has led me to believe that
some beautiful subtleties of physics
do not appear until one faces a three-
particle system. I suspect quantum
chromodynamicists agree with this.

As for me, I say that a diatomic
molecule has one atom too few.
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