
NEW LIGHT ON QUANTUM 
TRANSPORT 

Consider the following ex­
periment: Take a carton 

of eggs, open the lid and ac­
celerate the carton with a 
sudden jerk. If you try this 
at home, you will find that 
the outcome strongly de­
pends on the magnitude of 
the acceleration (the authors 
are not responsible for the 
results). 

Atoms moving in an accelerating 
optical lattice exhibit quantum behavior 

such as Bloch oscillations, W annier-Stark 
ladders and tunneling-phenomena 

usually associated with electrons in a 
crystalline solid. 

wavepacket can remain lo­
calized because Bloch tun­
neling is suppressed. The 
degree of localization in­
creases with the magnitude 
of the tilt. The particle mo­
tion, however, is periodic in 
time due to repeated Bragg 
scattering, a phenomenon 
known as Bloch oscillations. 

With this classical pic­
ture in mind, we can ask, 
What is the corresponding 
behavior of a microscopic 
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The Bloch period is Ta = 
h I Fd, where h is Planck's 
constant, d is the lattice 
spacing and F is the force on 

particle in an accelerating periodic potential? It is helpful 
to transform this potential to the comoving frame of 
reference, since that is what the particle "sees." The result 
is very simple: a tilted, or "washboard," potential, as shown 
in figure la. The tilt is proportional to the acceleration. 
Classical mechanics predicts that a particle is either 
trapped or not, depending on the initial conditions. A 
trapped particle will end up confined within a single well 
of the potential; one that's not trapped will roll down the 
slope. (In the lab frame, this corresponds to the particles 
either being carried along with the potential or getting 
left behind.) Beyond a certain acceleration, all particles 
will just roll down the hill, as illustrated in figure lb. 
When quantum mechanics is used to predict the particle 
motion, however, tJ-.e results can be strikingly different 
and counterintuitive. In the regime of quantum transport, 
motion is dominat 2d by quantum interference and tunneling. 

The system of quantum particles moving in a periodic 
potential has long been a basic model for electrons in 
crystalline solids. The acceleration is replaced in this case 
by a DC electric field, but the effect is the same. As early 
as the 1930s, Felix Bloch and Clarence Zener combined 
the ideas of the newly founded quantum mechanics and 
translational symmetry of lattices to show that stationary 
states of electrons in a lattice are plane waves modulated 
by periodic functions of position.1 A wavepacket that is 
initially localized in space will spread by way of resonant 
"Bloch tunneling," and will eventually become delocalized. 
The quantized energy levels are broadened into energy bands 
due to this tunneling process, as shown in figure le. 

When a tilt is imposed on the periodic potential, the 
translational symmetry is broken, and the initial 
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the particle (F = eE for an 
electron in an electric field E; F = ma for a particle of 
mass m in a potential undergoing acceleration a ). In the 
case of the accelerating potential, the phenomenon of 
Bloch oscillations means that the particle will track the 
accelerating potential only on the average, and will display 
periodic oscillations in space and in momentum. These 
oscillations can extend over many periods of the lattice 
and do not have a classical analog. For the case of 
electrons in an ideal lattice, an applied voltage should 
yield an AC current corresponding to the Bloch oscilla­
tions, but no DC current. This quantum effect is in sharp 
contrast to our everyday (room temperature) experience 
where we measure DC currents that obey Ohm's law. 

In the early 1960s, Gregory Wannier proposed that 
Bloch electrons in a constant electric field have an energy 
spectrum consisting of sets of equally spaced energy lev­
els,2 now referred to as Wannier-Stark ladders, with level 
spacing given by h I Ta. This effect constitutes a natural 
extension of the Stark effect in atoms, in which a degen­
erate electronic level splits into equally spaced levels 
under an electric field . The Wannier-Stark ladders 
marked such a dramatic departure from the Bloch bands 
that this prediction was very controversial.3 

As the tilt of the potential becomes comparable to one 
well depth per lattice spacing, a new tunneling process 
becomes important. This effect, known as Landau-Zener 
tunneling, corresponds to interband transitions. It inter­
rupts the coherent Bloch oscillations and broadens the 
linewidths in the Wannier-Stark ladder. In the accelerat­
ing lattice, the manifestation of this effect should be the 
escape of particles from the potential, as illustrated in 
figure ld. This tunneling loss should be the ultimate limit 
for the particle accelerator, and should occur for tilts that 
are much smaller than the classical limit (figure lb). For 
electrons in a solid, the wavefunction should become 
delocalized as the electric field is increased, an effect 
known as Zener breakdown. 

Bloch oscillations and Wannier-Stark ladders have 
not been observed in a crystalline solid because scattering 

© 1997 American Institute of Physics, S-003 1-9228-9707-020-8 



a 

b 

d 

e 

by impurities, phonons and other particles effectively pre­
vents the completion of even a single period of Bloch 
oscillation. Another problem is that the natural lattice 
spacing is very small (less than a nanometer), requiring 
enormous electric fields to obtain the substantial tilt of 
the potential needed for small Bloch periods. The situ­
ation becomes much more favorable in clean superlattices 
that are fabricated by epitaxial growth of GaAs and 
GaA!As. In a superlattice, alternating regions of GaAs 
and GaA!As produce a periodic potential seen by the 
electrons. The lattice constant of these structures can be 
tens of nanometers, yielding a much shorter Bloch period 
under the same electric field. In the late 1980s, Wan-

FIGURE 1. ACCELERATED PERIODIC POTENTIALS. a: In the 
comoving frame of reference, the potential is tilted. A 
classical particle either becomes stably trapped within a single 
well (red) or escapes down the hill (green). b: With enough 
tilt, there are no local minima and no particles are trapped. 
c: Quantum mechanics predicts the formation of Bloch bands 
in a periodic potential. The states corresponding to these 
bands involve particles spread across multiple wells of the 
potential. d: In a tilted potential, the Bloch bands are broken 
up into Wannier-Stark ladders of states. Arrows indicate 
resonant excitations used by the Texas group to observe the 
ladders. e: Quantum mechanics also allows Landau-Zener 
tunneling of a particle from a tilted potential. 

nier-Stark ladders were seen in optical absorption and 
photocurrent measurements of superlattices. Evidence for 
Bloch oscillations was seen in the time domain using the 
technique of four-wave mixing with picosecond lasers, and 
the observation of Zener breakdown was reported. The 
prospect of utilizing such a "Bloch oscillator" as a source 
of terahertz electromagnetic radiation has stimulated 
much work in recent years. (For a recent review, see the 
article by Emilio Mendez and Gerald Bastard, PHYSICS 

TODAY, June 1993, page 34.) 
These results represent an important breakthrough 

in the study of quantum transport of electrons, but many 
challenges remain. Dissipation and elastic scattering by 
impurities are still a central problem limiting the coherent 
evolution required for quantum transport. Such effects 
are evident in the broad lineshapes that smear out spectral 
and temporal detail. The control of initial conditions is 
difficult in condensed matter experiments, and direct 
measurement of electron motion is not possible. These 
difficulties provide motivation to identify a new testing 
ground for these striking quantum phenomena that can 
complement the superlattice experiments. 

Quantum transport in optical lattices 
With the recent development of techniques for laser ma­
nipulation and laser cooling of atoms,4•5 new systems have 
emerged to study Bloch oscillations, Wannier-Stark lad­
ders and Landau-Zener tunneling. These systems use 
atoms instead of electrons and a periodic light field instead 
of the periodic crystalline potential. The advantages of 
this approach are precise initial state preparation and 
final detection, negligible dissipation or defects and the 
possibility for time-resolved measurements of quantum 
transport. Two groups, one at the Ecole Normale 
Superieure (ENS) in Paris and the other at the University 
of Texas at Austin, have recently observed Bloch oscilla­
tions of atoms and the Wannier-Stark ladder.6•7 The 
experimental work in Paris was done by Maxime Ben 
Dahan, Ekkehard Peik, Jakob Reichel, Isabelle Bouchoule 
and Christophe Salomon, in collaboration with theorist 
Yvan Castin. The experimental work in Austin was done 
by Cyrus Bharucha, Kirk Madison, Steven Wilkinson, 
Patrick Morrow and Mark Raizen, in collaboration with 
the condensed matter theory group of Qian Niu (together 
with student Georgios Georgakis and visitor Xian-Geng 
Zhao), and with theorist Bala Sundaram. 

The experiments have several common features: 
I> A gas of laser-cooled atoms (sodium in Austin and 
cesium in Paris), provides very well defined initial condi­
tions. The atomic samples are sufficiently dilute that 
atom-atom interactions are negligible. The experiments 
therefore probe single-atom phenomena, although they are 
performed on an ensemble of atoms. 
I> The light field is created by a laser standing wave 
made of two counterpropagating, equal-intensity waves. 
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When these have exactly the same frequency, the potential 
is stationary. 
C> The standing wave is accelerated by chirping the fre­
quency difference of the two counterpropagating waves. 
This method is commonly used with resonant light in 
atomic fountain clocks to launch atoms upward.5 

First consider the stationary case. The light intensity 
along the standing wave is of the form I0 sin2(kz), where 
k is the laser wavenumber (k = 27T / A, where A is the optical 
wavelength), and has a periodicity d = A/2. For a suffi­
ciently large detuning between the laser and the atomic 
transition frequency, the atoms remain in the ground state 
and simply experience a potential V(z) that is proportional 
to the intensity, and is therefore of the form V0 sin2(kz). 
The well depth V0 in the experiments was typically several 
times the one-photon recoil energy, ER= li2 k2 I 2m. (ER is 
the energy an atom would have if it acquired the momen­
tum lik of one photon of the light field.) In the two 
transverse directions, the atoms undergo nearly free-par­
ticle motion because the variation in laser intensity is 
negligible over the size of the atomic cloud. 
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FIGURE 2. LASER BEAM CONFIGURATIONS to produce a 
standing wave that is (a) stationary or (b) moving to the right 
with velocity v = ,\8v in the laboratory frame. An 
accelerating standing wave is produced by increasing the 
frequency difference 28v linearly in time. In the Texas 
experiments, for example, a linear ramp of 4 MHz in 800 µ,s 
created a potential accelerating at 1500 m/s2. 

The periodic potential leads to energy bands separated 
by bandgaps, as shown in figure le. The band structure 
can also be represented in the reciprocal lattice as a 
dispersion relation between energy and quasi-momentum 
q (also known as the crystal momentum). Since the optical 
potential is created by light, an alternative description 
based on a time-dependent redistribution of photons can 
also be given,8,9 and it has been shown that this approach 
is fully equivalent to the Bloch theory. 

To understand how the potential is accelerated, sup­
pose first that, instead of forming the standing wave with 
two counterpropagating waves having equal frequencies 
v0, the wave coming from the left is upshifted in frequency 
by a small amount 8v, while the wave coming from the 
right is downshifted by the same amount, as shown in 
figure 2. In the reference frame moving to the right at 
a velocity v = Aov, the two waves are Doppler shifted to 
the same frequency and the periodic potential is stationary 
in this frame. Suppose now that over a time t. , 8v is 
increased linearly with time from O to a maximum value 
8vmax· This procedure produces a potential that, in the 
laboratory frame, is uniformly accelerated with an accel­
eration proportional to d(8v)/dt during t.. In contrast to 
resonant atom-light interactions, the large detuning from 
resonance in these experiments leads to a coherent atom­
field interaction that is dissipation-free. In the comoving, 
accelerated frame, the atoms experience an inertial force 
proportional to the acceleration, in addition to the force 
resulting from the periodic potential. 

Bloch oscillations 
Although they use similar physical systems, the two 
groups employ different methods of state preparation and 

FIGURE 3. BLOCH OSCILLATIONS OF ATOMS in the 
fundamental band. a: Momentum distribution of atoms in 
the accelerated frame for acceleration times t, ranging from 0 
to the Bloch period, 'TB = 8.2 ms. Bragg reflection of the 
matter wave occurs when the atomic momentum p approaches 
the Bragg condition, p = lik. (The small peak in the right wing 
of the first five spectra is an artifact created by a stray 
reflection of the Raman beams on the cell windows) . 
b: Measured mean atomic velocities (circles) in units of the 
photon recoil velocity vR compared to theory (solid line). 
Both sets of data are for a light potential depth V 0 = 2.3ER and 
acceleration a= - 0.85 m/s2• (From ref. 6.) 
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measurement, and explore somewhat different parameter 
regimes. The approach of the Paris group is best suited 
to measurements in the time domain (allowing observa­
tions of Bloch oscillations), while the focus of the Austin 
group is on measurements in the frequency domain (al-
lowing studies of the Wannier-Stark ladders). . . 

The Paris experiments are all performed with sohd 
state diode lasers. The first step is to trap cesium atoms 
in a magneto-optical trap.4•5 The atoms are then further 
cooled in one dimension to 12 nanokelvins using stimu­
lated Raman cooling.10•11 The corresponding root-mean­
square momentum spread 8p of the atoms along the 
direction of the periodic optical potential is then one-quar­
ter of the momentum hk of a single photon from the 
standing wave. The Heisenberg uncertainty relation for 
position and momentum then implies that the coherence 
length of the particles h I 8p = 81r I k extends over several 
periods d of the optical potential (d = 7T I k). This situation 
is very favorable for the study of quantum effects such as 
Bloch oscillations and tunneling between adjacent sites of 
the potential. 

After the cooling phase, the stationary light potential 
is switched on adiabatically, preparing a statistical mix­
ture of Bloch states in the ground energy band centered 
around q = 0 and having a quasi-momentum width 
8q = k I 4. The standing wave is then accelerated for an 
adjustable time t., simulating the external force m the 
comoving frame. Finally, the optical potential is abruptly 
switched off and the atomic momentum distribution is 
measured with a resolution of hk I 18. This method 
amounts to taking a snapshot of the velocity distribution 
of the Bloch states at time t. in the accelerating optical 
potential. . 

Various momentum distributions of the atoms m the 
fundamental band as a function of time are shown in 

FIGURE 5. TUNNELING LIFETIME as a function of 
acceleration. The experimental data are marked by solid dots. 

The dashed line is the prediction of Landau-Zener theory. 
Theoretical quantum simulations (empty diamonds and 

triangles) use the experimental parameters within the 
experimental uncertainty, and bracket the observed lifetimes. 

Q uantum interference effects cause the oscillation about the 
Landau-Zener curve. (From ref. 13 .) 

FIGURE 4. WANNIER-STARK LADDER RESONANCES obtained 
by adding a phase modulation of frequency vP to the 
accelerating standing wave, and measuring the number of 
surviving atoms. For this spectrum, the experimental 
parameters are U0 = 3ER and a= 1570 m/s2

• The _modulation 
amplitude is 1.5% of the well penod. The solid !me 1s a 
quantum numerical simulation that uses the expenmental 
parameters. (From ref. 7.) 

figure 3a, in the comoving frame. Under the influenc~ of 
the external force, the initial momentum peak shifts 
linearly with time to the right while its weight decreases. 
Simultaneously a second peak emerges at a momentum 
separated by - 2hk; it becomes equal in weight to the first 
peak when t. = TB/ 2, where TB= hk/ma. It keeps growing 
until t = TB, when the initial momentum distribution is 
recover~d. The atoms have performed a full Bloch oscillation. 
Further evolution reproduces this pattern periodically. This 
figure directly illustrates the Bragg reflection of the matter 
wave when the atomic momentum p approaches the Bragg 
condition, p = hk. 

The mean atomic velocity of the atoms as a function 
of time is presented in figure 3b for a potential depth 
U0 = 2.3ER. The results clearly show the oscillat~ry mo­
tion of the particles, and the measured Bloch penod (8.2 
ms for an acceleration of 0.85 m/s2

) agrees with the 
calculated value to better than 1 %. The corresponding 
oscillation of the mean position of the atoms has an 
amplitude of 2.3 µ,m and thus extends over 5.5 sites of 
the periodic potential, clearly defying classical laws. This 
coherent motion over several sites is also responsible for 
the pronounced asymmetry of the oscillation in figure 3b. 

The fine control of the light potential allows precise 
control of the initial conditions of the atoms in the light 
field. For instance, atoms can be prepared with a par­
ticular quasi-momentum within any band (n = 0, 1, 2, ... ). 
Bloch oscillations have thus been also observed in the first 
excited band (n = 1) and, by scanning over q, the Paris 
group have been able to measure the energies of the first 
two bands as a function of q.8 

Ladders and tunnels 
In the Austin experiments, a magneto-optical trap is also 
used to first trap and cool atoms, in this case sodium 
atoms. After the cooling and trapping stage, the trapping 
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Particles electrons Cs atoms Na atoms 

Potential superlattice laser light 

The survival probability, measured for 
a range of accelerations and well 
depths, was found to follow an expo­
nential decay law. In the Austin ex­
periments, tunneling was observed for 
accelerations in the range 4000-10 000 
m/s2, yielding lifetimes of 20-300 µ,s, 
as shown in figure 5. The oscillations 
around the Landau-Zener prediction 
(dashed line) are due to quantum in­
terference effects that become more 
dominant at smaller values of the ac­
celeration. 

Lattice constant 10nm 426 nm 295 nm 

1 meV 8 peV 100 peV 
Bloch bandwidth 

250 GH z 2 kHz 25 kHz 

Force eE ma 

Bloch period 0.4 ps 8 ms 25 µ, s 
Future directions 

Amplitude of oscillations several lattice constants To summarize, it is instructive to com­
pare the parameters for the atomic 

beams and magnetic field gradient are turned off. When 
the far-detuned standing wave is turned on, about 10% 
of the atoms are then trapped in the lowest energy band. 
In the experiments described here, the standing wave is 
accelerated at rates of up to 1800 m/s2, for interaction 
times of up to 1 ms. After interacting with the acceler­
ating standing wave, the atoms drift freely in the dark 
for 3 ms, then the near-resonant trapping beams are 
turned back on without the magnetic field gradient, form­
ing optical molasses. For short times, the atoms are 
essentially frozen in place in the molasses and a charge­
coupled device camera records their fluoresence. The 
resulting two-dimensional images are integrated across 
the transverse direction to give the one-dimensional dis­
tribution along the standing-wave axis. This system was 
previously used to study quantum chaos in atom optics 
(see PHYSICS TODAY, June 1995, page 18). 

To observe the Wannier-Stark ladder, a phase modu­
lation of frequency vP is added to the accelerating optical 
potential. This AC field can drive transitions between the 
first two bands when it matches the transition frequency. 
For appropriate values of the acceleration, the Landau­
Zener tunneling rate from the lowest band is negligible, 
while the tunneling rate from higher bands is large. 
Therefore only the atoms in the lowest band are acceler­
ated, while atoms in the higher bands (such as those 
excited to the second band by the phase modulation) are 
left behind. Thus one can study the probability of exci­
tation by applying a weak phase modulation and meas­
uring the number of atoms that are accelerated, as shown 
in figure ld. A theoretical analysis of this problem finds 
that the transition probability as a function of modulation 
frequency displays several equally spaced resonances, 
which are identified as an atomic Wannier-Stark ladder. 12 

A spectrum is measured by scanning vp, and figure 4 
shows the result. The spectrum has two clear resonances 
(at vP z 85 kHz and vP z 115 kHz), which are necessary to 
determine the Wannier-Stark splitting. The theoretical 
curve is obtained by numerical integration of the time­
dependent Schrodinger equation with parameters that 
match the experimental conditions. The observed split­
ting and lineshapes agree well with theory. One can also 
understand the spectrum as a quantum interference effect, 
and carry out a detailed study of the lineshapes. Repeat­
ing the experiment for various accelerations provides the 
Wannier-Stark splitting as a function of acceleration, and 
the results are consistent with the predicted linear scaling, 
within the experimental uncertainty. 7 

Both groups also have studied Landau-Zener tunnel­
ing in this system by measuring (in the absence of a phase 
modulation) the fraction of atoms that remain in the 
accelerating frame as a function of interaction time.8•13 
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physics and superlattice experiments 
(see the table above). These parameters span many orders 
of magnitude and illustrate the universal nature of quan­
tum phenomena. Beyond the study of fundamental phys­
ics, the atomic physics experiments may have important 
applications to atom optics. The accelerating standing 
wave is an ideal method of launching a subrecoil sample 
of atoms, forming an ultracold atomic beam for atom optics 
and atomic interferometry. Several hundred hk of mo­
mentum can be imparted to the atoms in a coherent 
manner. One could use such an atom accelerator to launch 
a Bose condensate, forming a coherent and well-controlled 
beam of atoms analogous to the laser. (See PHYSICS TODAY, 

March 1997, page 17.) One could also make high-precision 
measurements of the photon recoil momentum and thus 
of him. Another interesting research direction is the effect 
of decoherence on quantum transport. One can introduce 
spontaneous scattering or noise in a controlled setting, 
and study the transition to classical behavior. More com­
plicated beam configurations can also be used to study 
quantum transport in quasi-crystals. 14 It is clear that the 
study of atomic motion in optical lattices in this quantum 
regime should continue to provide new light and insight 
on quantum transport. 
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