hired Eleanor Ewing (later Ehrlich), then teaching mathematics at Pratt and Whitney.

The two young women supervised the crews carrying out the calculations and organized the day-to-day work. They shared an office with John von Neumann and gave him his first lessons in operating the IBM machines. One problem they faced was the risk of calculation errors being caused by the machines' interaction with dust from the unpaved New Mexico roads. Fortunately, an IBM repairman had been drafted and was thus on call 24 hours a day!

RUTH H. HOWES

Ball State University

Muncie, Indiana
(00rhhowes@bsuvc.bsu.edu)

CAROLINE L. HERZENBERG

Argonne National Laboratory

Argonne, Illinois
(herzenbc@anl.gov)

Letters on Diversity Article Prompt Antisemantic Reply

In letters responding to James Stith's article on ethnic diversity in physics, Steven Plaut, Luciano Blanco and Vincent Crespi launch a volley of complaints (December 1996, page 13). Among them are that diversification is really "homogenization," that ethnic diversity is really only "racial diversity," that perhaps we should also consider "age, sexual orientation, weight . . . ," that the consideration of "only" three ethnic groups is "arbitrary," that two of the three groups are not really "races" and therefore mixing the groups is "incorrect" and that perhaps it is racist to expect students to have role models from their own ethnic groups.

Good heavens, gentlemen, climb down out of your ivory towers and look around the room! All these complaints remind me much too much of the kind of semantic whining I used to hear in the 1950s in the Jim Crow South.

JIM FERGUSON
Oakland, California
(ferguson@viper.llnl.gov)

Make Science Links with Cuba Institutional, Not Solely Personal

Marcelo Alonso ("Letters," November 1996, page 108) thinks ties with Cuban physicists on an individual basis are fine, but he warns against ties on an institutional level

because they "imply support for a dictatorial government."

American scientists have cooperated with scientists of nondemocratic countries on both an individual and institutional basis, and I think the exchanges have had good results. Some years ago, I participated in a meeting, held under US government auspices, between American scientists and a visiting Soviet audiologist. And in a private talk with him, I raised the issue of his government's treatment of the physicist Andrei Sakharov (this was before Sakharov was released from exile). He didn't get his back up, and later asked that we exchange some of our papers.

But Cuba committed the unpardonable sin of humiliating the US by successfully repelling the Bay of Pigs invasion, and the US acts differently toward Cuba than toward any other country. For example, the Helms—Burton Act not only bars foreign executives from entering the US if their companies do business in Cuba; it also bars their wives and children.

I would not like to see this irrational fury of the US government against Cuba carried over to the field of science. Contacts between scientists and scientific institutions almost always do far more good than harm.

EDGAR VILLCHUR Foundation for Hearing Aid Research

Woodstock, New York

Currency Matters: Physicist Is Honored, Basic Physics Ignored

Joseph Pimbley's stimulating article "Physicists in Finance" (January, page 42) identifies Karl Friedrich Gauss, whose picture appears on Germany's 10-mark banknote, as a "physicist in finance."

Another good example is Erwin Schrödinger, who graces Austria's 1000-schilling banknote (see the accompanying illustration). Perhaps the Austrian National Bank is trying to subtly remind the knowledgeable few that *Tausend Schilling* is only an "expectation value," the real value being determined by those financial traders mentioned in Pimbley's article.

Gabriel Lengyel University of Rhode Island Kingston, Rhode Island

What is probably the first physics subject we learn in school, before we even know what physics is? Levers. What does PHYSICS TODAY do in its cartoon accompanying the article "Physicists in Finance" (see page 44)? It gets the lever the wrong way round, with Archimedes almost stepping on the fulcrum. People, I am deeply, deeply disappointed.

GIDEON LICHFIELD

The Economist

London, England
(gideonlichfield@economist.com)

Researcher Clarifies Story of Discovery of Axial Vector Anomaly

would like to augment O. W. Greenberg's review (January, page 67) of Steven Weinberg's excellent text entitled The Quantum Theory of Fields, Vol. II: Modern Applications, which, as with the first volume, I have found very useful. Specifically, I wish to make a historical comment on the discussion of the discovery of the axial vector anomaly given on page 361 of Weinberg's book. He says, talking about the problems in $\pi^0 \to \gamma \gamma$ decay, "In 1969 the source of this anomaly was traced by Bell and Jackiw to the violation of chiral symmetry by the regulator that is needed in order to derive the consequences of the conservation of the neutral axial vector current for one-loop Feynman diagrams. Their result was confirmed, generalized, and extended to higher orders

