the membrane. The membrane posi-
tion at each moment was a measure
of the pressure drop AP. At the same
time, the vibrations of the membrane
reflected the mass current oscillations.
At first, Packard, Davis and company
could not distinguish the oscillations
from the background noise just by look-
ing at the oscilloscope trace from their
detector. But when they connected the
output to audio headphones, their ears
were able to sort out the signal. Davis
says they were ecstatic when they first
heard the tone. They hadn’ expected
that the sound would be so clear.
With the confidence that the desired
signal was there, the Berkeley collabo-
ration was then able to extract the
graph of the frequency of the oscilla-
tions as a function of pressure, as
shown in the figure on page 18. All
the data from five temperatures fall
on a nice straight line, whose slope is

close to the expected value of m/ph.

Each of these frequencies was de-
termined by averaging over very short
time intervals because the pressure did
not remain constant at one value for
long; the researchers applied a pres-
sure pulse and listened to the frequen-
cies drop down the scale as the pres-
sure decayed.

Although the published data do not
determine the dJosephson current—
phase relationship embodied in equa-
tion 1, Packard, speaking at the Paris
symposium, discussed more recent
work in which the Berkeley team had
made a direct measurement of this
relationship.

An intriguing—and rewarding—as-
pect of their results is the demonstra-
tion that the separate flows through
the thousands of apertures in the mem-
brane apparently acted coherently: if
they hadn’t, the various oscillations

Exhaustive Searching Is Less Tiring
with a Bit of Quantum Magic

he elementary particle of informa-

tion used by modern digital com-
puters is the bit—a register or memory
element that can be in one of two
distinct states, 0 or 1. But we live in
a quantum world, and one can design
computers in which each elementary
unit of information is a quantum bit,
or qubit, which can be in any superpo-
sition of two quantum states, |0) and
[1). A quantum computer built with n
such components could itself be in a
superposition of 2" distinct states, each
splinter of the superposition perform-
ing its own computation in parallel
with all the rest.

What computational magic could be
performed on such a device? Three
years ago, much interest in quantum
computation was sparked when Peter
Shor of AT&T Laboratories devised a
quantum algorithm that could solve
the factorization problem much faster
than any known classical algorithm.
Now, Lov K. Grover of Bell Laborato-
ries, Lucent Technologies, has devised
a fast quantum algorithm to search for
an entry in an unordered database.!
(See figure at right.)

“If quantum computers are being
used a hundred years from now,” said
John Preskill of Caltech, “I would guess
that they will be used to run Grover’s
algorithm or something like it.” He
calls Grover’s algorithm “the simplest
example of an interesting problem for
which a quantum computer has a clear
advantage (in principle) over a classical
computer.”

Furthermore, Preskill said, “the

Quantum computers have been

shown to provide a dramatic
speedup over classical computers in
solving problems by exhaustive
searching. For example, the widely
used 56-bit Data Encryption Standard
could be cracked with a mere 200
million or so computations instead of
about 35 quadrillion.

Grover algorithm, much more so than
the Shor algorithm, can be adapted to
many different computationally hard
problems. In principle, the unsorted
database search can be used to solve
any NP problem—a problem for which
the solution may be hard to find but
is easy to verify. The database is all
the trial solutions; we can invoke quan-
tum parallelism to try them all at once
and search for the one that works.” If
there is only one correct solution
among N possibilities, an exhaustive

would have cancelled one another out.
The Berkeley researchers had gambled
on their expectation that the array
would act as a single coherent weak
link, and that gamble paid off. It en-
abled them to effectively magnify the
extremely faint signal one would hear
through a single opening.

BARBARA GoOss LEVI
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search like this will typically take N/2
trials before the answer is found. By
contrast, Grover’s quantum algorithm
almost certainly finds the correct an-
swer in about VN trials.

To get an idea of the significance of
this, consider an example cited? by
Gilles Brassard (University of Mont-
real): The widely used Data Encryp-
tion Standard relies on a 56-bit key.
In “a classic scenario in secret intelli-
gence,” to crack the code one must try
out keys from the 25 =7 x 10¢ possi-
ble keys. Classical methods will take,
on average, about 3.5 x 10 trials; Gro-
ver’s algorithm will need only about
200 million. At a million trials per
second, that’s more than 1000 years
versus less than 4 minutes.

The advantage of Grover’s algo-
rithm is known with certainty: The
N/2 time needed on average by a clas-
sical algorithm cannot be improved by
the discovery of some unexpectedly ef-
ficient algorithm. Furthermore, ear-
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SEARCHING AN UNORDERED DATABASE OF N RECORDS for a unique item
(represented by the green star in record m of the database) will take, classically, N/2
steps to have even a 50% probability of success. A quantum computer programmed
with Grover’s algorithm, however, achieves essentially 100% success in only 7VN/4
steps, a dramatic speedup for large N. The algorithm can be used to achieve a
comparable speedup in solving many other problems.
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lier work by Brassard, Charles Bennett
(IBM ThomasJ. Watson Research Cen-
ter), Ethan Bernstein (Microsoft Corp)
and Umesh Vazirani (University of
California, Berkeley) showed that a
N speedup is essentially as fast as
can be achieved with a quantum com-
puter for this type of problem.? As
Brassard told us, “We proved that
quantum magic cannot be used to go
faster than the square root of N. We
never believed that you could do the
square root of N, but to everybody’s
amazement, Grover found an algo-
rithm that does exactly that” The
speed limit found in the early work
included an overall arbitrary constant
factor, but more recent analysis by
Brassard, Michel Boyer and Alain Tapp
(both University of Montreal) and Pe-
ter Hgyer (Odense University, Den-
mark) shows that Grover’s algorithm
is essentially within a few percent of
the fastest allowed.*

Quantum diffusion

Grover told PHYSICS TODAY that the idea
for his algorithm came from the nature
of Schrodinger’s equation itself. “This
equation is like a diffusion equation,”
he said, “except if certain states have
a potential, their phase gets rotated.”
One can think of the quantum com-
puter as a particle, and the solution of
the search problem is a particular state
that we want the particle to end up in.
“If we want to get a particle into a
certain state,” Grover said, “the way is
to lower that state’s potential—that
is, rotate its phase, and then do the
diffusion.”

The computer begins in a superpo-
sition of all N possible solutions, and
the combination of phase rotations and
quantum diffusion works to transform
this gradually into a state very close
to the pure solution state, somewhat
like a recurrence. The diffusion trans-
fers amplitude among the various
states in the superposition; the phase
rotations single out the state that cor-
responds to the desired solution, en-
suring a steady accumulation of am-
plitude in that state. The box on this
page describes these iterations.

The precise number of iterations
that optimizes the amplitude of the
solution state was determined by Bras-
sard and coworkers. They demon-
strated that each iteration of the algo-
rithm corresponds to a rotation by an
angle 6, where sinf=1/VN and the
angle 7/4 corresponds to the desired
solution. For large N, after 7N /4
iterations the probability of obtaining
the wrong result is less than 1/N. If
one carries out more iterations, how-
ever, the probability of success starts
declining!
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The Steps of Grover’s Search Algorithm

a: Initialization. At
the start of the algo-
rithm, the computer
is put in a state corre-
sponding to an equal
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b: Phase rotation.
For each state |7), the
computer checks if
the sought item is in

v

record 7 of the database. If so, the phase of the state is rotated by 7. That is, the
correct state, |2), is multiplied by —1. The computer can do this for all N states in

the superposition in a single step.

c: Diffusion. This step amounts to an “inversion about the average”: A state
with amplitude w is mapped to one with amplitude 24 — w, where A is the average
amplitude (including phase) of the N states. For the illustrated first iteration, the
average amplitude is slightly less than 1/VN. The inversion about average thus flips
the amplitude of state 7 up to slightly less than 3/YN, and the amplitudes of
incorrect states are slightly reduced. The inversion about average can be represented
by a unitary N x N matrix and can be implemented as a product of three unitary
local transition matrices. In other words, the diffusion step can be physically

implemented.

Iteration. Each successive iteration of phase rotation and diffusion increases the
amplitude in the solution state until, after about 7VN/4 iterations, the solution state
has amplitude very close to 1. Measuring the computer’s quantum state at this stage
will, with near certainty, yield the correct solution, the location 7 of the desired
database entry. At the optimum integer number of iterations, the probability of

error is less than 1/N.

Decoherence must be avoided

As with any quantum computation,
loss of coherence must be avoided until
the quantum algorithm has been com-
pleted. Consider what this means
when the computer performs the phase
rotation step on a state |r): The com-
puter must (1) determine whether the
sought-after item is in record r of the
database, (2) perform the appropriate
phase rotation on |r) and (3) leave
nothing else in its total quantum state
(or the surrounding environment!) that
depends on the outcome of steps 1 and
2. If step 3 is unsuccessful, when the
computer acts on a superposition of
states the amplitudes of the different
states will not combine coherently in
the subsequent diffusion steps. Avoid-
ing decoherence of this sort is what

makes the construction of quantum
computers a tremendous technological
challenge.’ (See the article, “Quantum
Computing: Dream or Nightmare?” by
Serge Haroche and Jean-Michel Rai-
mond, in PHYSICS TODAY, August 1996,
page 51, and the subsequent letters to
the editor in the November 1996 issue,
page 107.)

Coherence provides an intuitive ex-
planation of how a quantum computer
can achieve a VN speedup. Consider
alight source with N elements emitting
light. If light from these N elements
all combines with the same phase, the
constructive interference results in an
amplitude VN times greater than if
they combine with random phases.
“Bquivalently,” Grover told us, “if we
think of the algorithm as a Feynman



path integral, summing over all possi-
ble paths, the paths leading to the
desired result interfere constructively
and add up. Those leading to unde-
sired states cancel out. All this is
achieved by adjusting phases.”

Extensions

A similar process can be carried out in
a continuous, or analog, fashion. Ed-
ward Farhi (MIT) and Sam Gutmann
(Northeastern University) describe
this “analog analogue” of Grover’s al-
gorithm.® In their model, they con-
sider an N-dimensional Hilbert space
with a Hamiltonian that has only one
nonzero eigenvalue, E. The task is to
find the corresponding eigenvector,
|[E). They show that if one starts with
an arbitrary normalized vector and
adds an appropriate driving term to
the Hamiltonian, after a time of order
#VN /E the system will typically have
a substantial amplitude in state |E).

Other extensions of Grover’s algo-
rithm apply it to more general prob-
lems. Boyer, Brassard, Hgyer and
Tapp consider the case in which the
database holds c items that satisfy the
desired condition.* If the number c is
known in advance, one of the ¢ items
can be found with near certainty after
mVN /4Vc iterations. (It is assumed
that ¢ is small compared to N.) For
the case in which ¢ is not known in
advance, they provide a modified algo-
rithm that achieves success, on aver-
age, after about 4VNN/c iterations.

Brassard and coworkers* have also
developed a quantum algorithm that
can estimate the number of items c,
using a combination of Grover’s algo-
rithm and techniques borrowed from
Shor’s factorization algorithm. The
number of steps required is propor-
tional to VN, with the details depend-
ing on the accuracy required and the
value of ¢ itself.

Christoph Diirr (University of Paris—
South) and Hgyer have devised a fast

quantum algorithm for finding the
smallest number in an unsorted table
of numbers.” Brassard, Hgyer and
Tapp have devised a quantum algo-
rithm that solves the “collision prob-
lem” faster than any possible classical
algorithm.® The collision problem for
a function F is to find two distinct
integers m, and m; such that
F(my) =F(m,;). The speedup, for F act-
ing on integers up to N, is from
N2 to N'/3. This may seem like a
small advance for an arcane problem,
but the security of cryptographic pro-
tocols that use hashing functions de-
pends on the difficulty of solving the
collision problem.

Quantum telecomputation

Grover has used techniques similar to
those of his search algorithm to develop
fast algorithms for estimating the me-
dian and mean of populations of num-
bers to a specified accuracy. He has
also shown how to further speed up
the mean calculation by a constant
factor by “quantum telecomputation,”
in which a number of quantum proc-
essors are run in parallel and linked
by quantum entanglement (as occurs
in Einstein—Podolsky—Rosen pairs of
particles).’

Grover and—independently—Bar-
bara M. Terhal (University of Amster-
dam) and John A. Smolin (IBM
Thomas J. Watson Research Center)
have devised fast quantum algorithms
for retrieving information from a da-
tabase in a single quantum query of
the database.l® (The result was also
implicit, but not emphasized, in a 1993
paper by Bernstein and Vazirani.) In
Grover’s search algorithm, each data-
base query returns one bit of informa-
tion relating to whether the sought
item is present in a particular location.
The single-query algorithms return
one bit of information that answers a
complicated question about many of
the database’s records. (For example:

“Is the sought item present in the
specified sequence of records?”) These
algorithms are of interest because clas-
sical algorithms must take at least
log N database queries to perform what
can be done in a single quantum query.
The quantum algorithms do not pro-
vide faster searches because about N
or more other quantum steps are
needed before or after the database
query, and large numbers of registers
are needed. Nevertheless, they are of
importance for showing another way
in which quantum operations can out-
perform classical systems.

The variety of these applications
suggests that, in Grover’s search algo-
rithm, quantum computer program-
mers may have the “killer app” that
will drive demand for working devices.

GRAHAM P. COLLINS

References

1. L. K. Grover, Phys. Rev. Lett. 79, 325
(1997).

2. G. Brassard, Science 275, 627 (1997).

3. C. H. Bennett, E. Bernstein, G. Bras-
sard, U. Vazirani, to appear in SIAM
J. Computing, October 1997; also
available on http:/xxx.lanl.gov/ as
quant-ph/9701001.

4. M. Boyer, G. Brassard, P. Hgyer, A.
Tapp, in PhysComp 96: Proc. 4th Work-
shop on Physics and Computation, T.
Toffoli, M. Biafore, J. Leéo, eds., New
England Complex Systems Institute,
Cambridge, Mass. (1996), p. 36.

5. J. Preskill, presentations given at the
ITP Conference on Quantum Coher-
ence and Decoherence, University of
California, Santa Barbara, 15-18 De-
cember 1996. Available as quant-
ph/9705031 and quant-ph/9705032.

6. E. Farhi, S. Gutmann, quant-ph/
9612026.

7. C. Diirr, P. Hgyer, quant-ph/9607014.

8. G. Brassard, P. Hgyer, A. Tapp, quant-
ph/9705002.

9. L. K. Grover, quant-ph/9607024;
quant-ph/9704012.

10. L. K. Grover, quant-ph/9706005. B. M.
Terhal, J. A. Smolin, quant-ph/9705041.

From Ethane to Benzene through a Supersonic Nozzle

Organic chemists have long been
challenged to find an easy way to
break apart, or activate, the single
bonds in methane so that they could
use this very abundant compound as
a building block to synthesize organic
compounds. But methane is stub-
bornly unreactive. Recently, Dudley
Herschbach and his colleagues at Har-
vard University found that they could
use a catalytic supersonic nozzle to
produce high yields of more reactive
intermediaries starting with ethane—
a cousin of methane.! The new method
is tantalizing, although it has not yet

By exploiting a nonequilibrium re-

action, Harvard chemists have
found they can readily produce a high
yield of unsaturated hydrocarbons
starting with a hydrocarbon that is nor-
mally rather unreactive.

worked with methane—and even if it
were to, it would have to be scaled up
from producing thimblefuls to churn-
ing out millions of barrels of hydrocar-
bons before it would be of interest to
the petroleum industry. Short of that,
the catalytic supersonic nozzle is of

interest as a way to do nonequilibrium
chemisty.

Methane (CH,) and ethane (CyHy)
are members of the alkane family
(C,Hy,,). All family members feature
single bonds between the carbon and
hydrogen atoms that are relatively
hard to break. The Harvard chemists
start with a chamber of ethane gas at
pressures around 85 torr and tempera-
tures of about 1000 °C. The gas flows
out of the chamber through a super-
sonic nozzle (essentially a pinhole)
made from either nickel or molybde-
num, elements known to catalyze the
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