
the membrane. The membrane posi­
tion at each moment was a measure 
of the pressure drop !::,P, At the same 
time, the vibrations of the membrane 
reflected the mass current oscillations. 
At first, Packard, Davis and company 
could not distinguish the oscillations 
from the background noise just by look­
ing at the oscilloscope trace from their 
detector. But when they connected the 
output to audio headphones, their ears 
were able to sort out the signal. Davis 
says they were ecstatic when they first 
heard the tone. They hadn't expected 
that the sound would be so clear. 

With the confidence that the desired 
signal was there, the Berkeley collabo­
ration was then able to extract the 
graph of the frequency of the oscilla­
tions as a function of pressure, as 
shown in the figure on page 18. All 
the data from five temperatures fall 
on a nice straight line, whose slope is 

close to the expected value of m/ph. 
Each of these frequencies was de­

termined by averaging over very short 
time intervals because the pressure did 
not remain constant at one value for 
long; the researchers applied a pres­
sure pulse and listened to the frequen­
cies drop down the scale as the pres­
sure decayed. 

Although the published data do not 
determine the Josephson current­
phase relationship embodied in equa­
tion 1, Packard, speaking at the Paris 
symposium, discussed more recent 
work in which the Berkeley team had 
made a direct measurement of this 
relationship. 

An intriguing-and rewarding-as­
pect of their results is the demonstra­
tion that the separate flows through 
the thousands of apertures in the mem­
brane apparently acted coherently: if 
they hadn't, the various oscillations 

would have cancelled one another out. 
The Berkeley researchers had gambled 
on their expectation that the array 
would act as a single coherent weak 
link, and that gamble paid off. It en­
abled them to effectively magnify the 
extremely faint signal one would hear 
through a single opening. 

BARBARA Goss LEVI 

References 

1. S. V Pereverzev, A. Loshak, S. Back­
haus, J. C. Davis, R. E. Packard, Nature 
388, 449 (1997). 

2. 0. Avenel, E. Varoquaux, Jpn. J. Appl. 
Phys. 26, Supplement 26-3, 1798 (1987); 
Phys. Rev. Lett. 60, 416 (1988). 

3. See, for example, P. W. Anderson, Rev. 
Mod. Phys. 38, 298 (1966). 

4. B. S. Deaver, J. M. Pierce, Phys. Lett. 
38A, 81 (1972). 

5. H . J. Paik, J. Appl. Phys. 47, 1168 
(1976). 

Exhaustive Searching Is Less Tiring 
with a Bit of Quantum Magic 
The elementary particle of informa­

tion used by modern digital com­
puters is the bit-a register or memory 
element that can be in one of two 
distinct states, 0 or 1. But we live in 
a quantum world, and one can design 
computers in which each elementary 
unit of information is a quantum bit, 
or qubit, which can be in any superpo­
sition of two quantum states, IO) and 
11). A quantum computer built with n 
such components could itself be in a 
superposition of2" distinct states, each 
splinter of the superposition perform­
ing its own computation in parallel 
with all the rest. 

What computational magic could be 
performed on such a device? Three 
years ago, much interest in quantum 
computation was sparked when Peter 
Shor of AT&T Laboratories devised a 
quantum algorithm that could solve 
the factorization problem much faster 
than any known classical algorithm. 
Now, Lov K. Grover of Bell Laborato­
ries, Lucent Technologies, has devised 
a fast quantum algorithm to search for 
an entry in an unordered database.1 

(See figure at right.) 
"If quantum computers are being 

used a hundred years from now," said 
John Preskill of Caltech, "I would guess 
that they will be used to run Grover's 
algorithm or something like it." He 
calls Grover's algorithm "the simplest 
example of an interesting problem for 
which a quantum computer has a clear 
advantage (in principle) over a classical 
computer." 

Furthermore, Preskill said, "the 

►Qua ntum computers have been 
show n to provide a dramati c 

speedup over class ica l computers in 
sol v ing probl ems by ex hausti ve 
searching. For example, the w idely 
used 56-bit Data Encryption Standard 
could be cracked w ith a mere 200 
million or so computations instead of 
about 35 quadrillion . 

Grover algorithm, much more so than 
the Shor algorithm, can be adapted to 
many different computationally hard 
problems. In principle, the unsorted 
database search can be used to solve 
any NP problem-a problem for which 
the solution may be hard to find but 
is easy to verify. The database is all 
the trial solutions; we can invoke quan­
tum parallelism to try them all at once 
and search for the one that works." If 
there is only one correct solution 
among N possibilities, an exhaustive 

m -1 m m+ 1 

search like this will typically take N/2 
trials before the answer is found. By 
contrast, Grover's quantum algorithm 
almost certainly finds the correct an­
swer in about W trials. 

To get an idea of the significance of 
this, consider an example cited2 by 
Gilles Brassard (University of Mont­
real): The widely used Data Encryp­
tion Standard relies on a 56-bit key. 
In "a classic scenario in secret intelli­
gence," to crack the code one must try 
out keys from the 256 = 7 x 1016 possi­
ble keys. Classical methods will take, 
on average, about 3.5 x 1016 trials; Gro­
ver's algorithm will need only about 
200 million. At a million trials per 
second, that's more than 1000 years 
versus less than 4 minutes. 

The advantage of Grover's algo­
rithm is known with certainty: The 
N/2 time needed on average by a clas­
sical algorithm cannot be improved by 
the discovery of some unexpectedly ef­
ficient algorithm. Furthermore, ear-

... 1+1°1 
N-1 N 

SEARCHING AN UNORDERED DATABASE OF N RECORDS for a unique item 
(represented by the green star in record m of the database) will take, classically, N/2 
steps to have even a 50% probability of success. A quantum computer programmed 
with Grover's algorithm, however, achieves essentially 100% success in only 7rffl/4 
steps, a dramatic speedup for large N. The algorithm can be used to achieve a 
comparable speedup in solving many other problems. 
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lier work by Brassard, Charles Bennett 
(IBM Thomas J. Watson Research Cen­
ter), Ethan Bernstein (Microsoft Corp) 
and Umesh Vazirani (University of 
California, Berkeley) showed that a 
N speedup is essentially as fast as 
can be achieved with a quantum com­
puter for this type of problem.3 As 
Brassard told us, "We proved that 
quantum magic cannot be used to go 
faster than the square root of N. We 
never believed that you could do the 
square root of N, but to everybody's 
amazement, Grover found an algo­
rithm that does exactly that." The 
speed limit found in the early work 
included an overall arbitrary constant 
factor, but more recent analysis by 
Brassard, Michel Boyer and Alain Tapp 
(both University of Montreal) and Pe­
ter H0yer (Odense University, Den­
mark) shows that Grover's algorithm 
is essentially within a few percent of 
the fastest allowed.4 

Quantum diffusion 
Grover told PHYSICS TODAY that the idea 
for his algorithm came from the nature 
of Schrodinger's equation itself. "This 
equation is like a diffusion equation," 
he said, "except if certain states have 
a potential, their phase gets rotated." 
One can think of the quantum com­
puter as a particle, and the solution of 
the search problem is a particular state 
that we want the particle to end up in. 
"If we want to get a particle into a 
certain state," Grover said, "the way is 
to lower that state's potential-that 
is, rotate its phase, and then do the 
diffusion." 

The computer begins in a superpo­
sition of all N possible solutions, and 
the combination of phase rotations and 
quantum diffusion works to transform 
this gradually into a state very close 
to the pure solution state, somewhat 
like a recurrence. The diffusion trans­
fers amplitude among the various 
states in the superposition; the phase 
rotations single out the state that cor­
responds to the desired solution , en­
suring a steady accumulation of am­
plitude in that state. The box on this 
page describes these iterations. 

The precise number of iterations 
that optimizes the amplitude of the 
solution state was determined by Bras­
sard and coworkers.4 They demon­
strated that each iteration of the algo­
rithm corresponds to a rotation by an 
angle 0, where sin0 = 1/ffe and the 
angle 1r I 4 corresponds to the desired 
solution. For large N, after 1rffe I 4 
iterations the probability of obtaining 
the wrong result is less than 1/ N. If 
one carries out more iterations, how­
ever, the probability of success starts 
declining! 
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The Steps of Grover's Search Algorithm 
a: Initialization. At 
the start of the algo­
rithm, the computer 
1s put in a state corre­
sponding to an equal 
superposition of all 
possible answers from 
I to N. This is "easy" 

► 
STATES 

b to set up on a quan­
tum computer: The 
n quantum bits, o r 
qubits , representing 

I Average 

JN F----------------~ 
the N = zn possible so­
lutions are each inde­
pendently rotated to 
the superposition 

IO) + ll ) 
-./2 

The resulting product 
state is the o ne 
shown. 

b: Phase rotation. 
For each state Ir), the 
co mputer checks if 
the sought item is in 

-I 

"Ti 

3 
JN 

2 
JN 

I 
JN I I I I I 

record r of the database. If so, the phase of the state is rotated by 1r. That is, the 
correct state, Im), is multiplied by - 1. The compute r can do this for all N states in 
the superposition in a single step. 

c: Diffusion. This step amounts to an "inversion about the average": A state 
with amplitude w is mapped to one with amplitude 2A - w, where A is the average 
amplitude (including phase) of the N states. For the illustra ted first iteration, the 
average amplitude is slightly less than 1/W. The in version about average thus flips 
the amplitude of state m up to slightly less than 3/W, and the amplitudes of 
incorrect states are slightly reduced. The inversion abou t average can be represented 
by a unitary N x N matrix and can be implemented as a product of three unitary 
local transition matrices. In other words, the diffusion step can be physically 
implemented. 

Iteration. Each successive itera tion of phase rotation and diffusion increases the 
amplitude in the solution state until , after about 1rWI 4 iterat ions, the solution state 
has amplitude very close to l. Measuring the computer's quantum state at this stage 
will, wi th near certainty, yield the correct solution, the location m of the desired 
database entry. At the optimum integer number of iterations, the probability of 
error is less than I/ N. 

Decoherence must be avoided 
As with any quantum computation, 
loss of coherence must be avoided until 
the quantum algorithm has been com­
pleted. Consider what this means 
when the computer performs the phase 
rotation step on a state Ir ): The com­
puter must (1) determine whether the 
sought-after item is in record r of the 
database, (2) perform the appropriate 
phase rotation on Ir ) and (3) leave 
nothing else in its total quantum state 
(or the surrounding environment!) that 
depends on the outcome of steps 1 and 
2. If step 3 is unsuccessful , when the 
computer acts on a superposition of 
states the amplitudes of the different 
states will not combine coherently in 
the subsequent diffusion steps. Avoid­
ing decoherence of this sort is what 

makes the construction of quantum 
computers a tremendous technological 
challenge.5 (See the article, "Quantum 
Computing: Dream or Nightmare?" by 
Serge Haroche and J ean-Michel Rai­
mond, in PHYSICS TODAY, August 1996, 
page 51, and the subsequent letters to 
the editor in the November 1996 issue, 
page 107.) 

Coherence provides an intuitive ex­
planation of how a quantum computer 
can achieve a -.fN speedup. Consider 
a light source withN elements emitting 
light. If light from these N elements 
all combines with the same phase, the 
constructive interference results in an 
amplitude N times greater than if 
they combine with random phases. 
"Equivalently," Grover told us, "if we 
think of the algorithm as a Feynman 



path integral, summing over all possi­
ble paths, the paths leading to the 
desired result interfere constructively 
and add up. Those leading to unde­
sired states cancel out. All this is 
achieved by adjusting phases." 

Extensions 
A similar process can be carried out in 
a continuous, or analog, fashion. Ed­
ward Farhi (MIT) and Sam Gutmann 
(Northeastern University) describe 
this "analog analogue" of Grover's al­
gorithm.6 In their model, they con­
sider an N-dimensional Hilbert space 
with a Hamiltonian that has only one 
nonzero eigenvalue, E. The task is to 
find the corresponding eigenvector, 
IE ). They show that if one starts with 
an arbitrary normalized vector and 
adds an appropriate driving term to 
the Hamiltonian, after a time of order 
hffe IE the system will typically have 
a substantial amplitude in state /E ). 

Other extensions of Grover's algo­
rithm apply it to more general prob­
lems. Boyer, Brassard, H0yer and 
Tapp consider the case in which the 
database holds c items that satisfy the 
desired condition.4 If the number c is 
known in advance, one of the c items 
can be found with near certainty after 
7rffe/ 4'-lc iterations. (It is assumed 
that c is small compared to N.) For 
the case in which c is not known in 
advance, they provide a modified algo­
rithm that achieves success, on aver­
age, after about 4 ✓NI c iterations. 

Brassard and coworkers4 have also 
developed a quantum algorithm that 
can estimate the number of items c, 
using a combination of Grover's algo­
rithm and techniques borrowed from 
Shor's factorization algorithm. The 
number of steps required is propor­
tional to ffe, with the details depend­
ing on the accuracy required and the 
value of c itself. 

Christoph Durr (University of Paris­
South) and H0yer have devised a fast 

quantum algorithm for finding the 
smallest number in an unsorted table 
of numbers.7 Brassard, H\>lyer and 
Tapp have devised a quantum algo­
rithm that solves the "collision prob­
lem" faster than any possible classical 
algorithm.8 The collision problem for 
a function F is to find two distinct 
integers m 0 and m1 such that 
F(m0) =F(m1). The speedup, for Fact­
ing on integers up to N, is from 
N 112 to N 113 . This may seem like a 
small advance for an arcane problem, 
but the security of cryptographic pro­
tocols that use hashing functions de­
pends on the difficulty of solving the 
collision problem. 

Quantum telecomputation 
Grover has used techniques similar to 
those of his search algorithm to develop 
fast algorithms for estimating the me­
dian and mean of populations of num­
bers to a specified accuracy. He has 
also shown how to further speed up 
the mean calculation by a constant 
factor by "quantum telecomputation," 
in which a number of quantum proc­
essors are run in parallel and linked 
by quantum entanglement (as occurs 
in Einstein-Podolsky-Rosen pairs of 
particles). 9 

Grover and-independently-Bar­
bara M. Terhal (University of Amster­
dam) and John A. Smolin (IBM 
Thomas J. Watson Research Center) 
have devised fast quantum algorithms 
for retrieving information from a da­
tabase in a single quantum query of 
the database. 10 (The result was also 
implicit, but not emphasized, in a 1993 
paper by Bernstein and Vazirani.) In 
Grover's search algorithm, each data­
base query returns one bit of informa­
tion relating to whether the sought 
item is present in a particular location. 
The single-query algorithms return 
one bit of information that answers a 
complicated question about many of 
the database's records. (For example: 

"Is the sought item present in the 
specified sequence of records?") These 
algorithms are of interest because clas­
sical algorithms must take at least 
logN database queries to perform what 
can be done in a single quantum query. 
The quantum algorithms do not pro­
vide faster searches because about N 
or more other quantum steps are 
needed before or after the database 
query, and large numbers of registers 
are needed. Nevertheless, they are of 
importance for showing another way 
in which quantum operations can out­
perform classical systems. 

The variety of these applications 
suggests that, in Grover's search algo­
rithm, quantum computer program­
mers may have the "killer app" that 
will drive demand for working devices. 

GRAHAM P. COLLINS 
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From Ethane to Benzene through a Supersonic Nozzle 
O rganic chemists have long been 

challenged to find an easy way to 
break apart, or activate, the single 
bonds in methane so that they could 
use this very abundant compound as 
a building block to synthesize organic 
compounds. But methane is stub­
bornly unreactive. Recently, Dudley 
Herschbach and his colleagues at Har­
vard University found that they could 
use a catalytic supersonic nozzle to 
produce high yields of more reactive 
intermediaries starting with ethane­
a cousin of methane.1 The new method 
is tantalizing, although it has not yet 

►By exp loiting a nonequilibrium re­
ac ti o n, Harva rd chemi sts have 

found they ca n readil y produce a high 
y ield of unsaturated hydroca rbons 
starting w ith a hydroca rbon that is nor­
mally rather unreactive. 

worked with methane-and even if it 
were to, it would have to be scaled up 
from producing thimblefuls to churn­
ing out millions of barrels of hydrocar­
bons before it would be of interest to 
the petroleum industry. Short of that, 
the catalytic supersonic nozzle is of 

interest as a way to do nonequilibrium 
chemisty. 

Methane (CH4) and ethane (C2H6) 
are members of the alkane family 
(CnH 2n+2). All family members feature 
single bonds between the carbon and 
hydrogen atoms that are relatively 
hard to break. The Harvard chemists 
start with a chamber of ethane gas at 
pressures around 85 torr and tempera­
tures of about 1000 °C. The gas flows 
out of the chamber through a super­
sonic nozzle (essentially a pinhole) 
made from either nickel or molybde­
num, elements known to catalyze the 
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