

SURFACE TECHNOLOGIES
Specialty Ceramics
(Formerly SSC)

Specializing in the synthesis and processing of high purity, single and multi-component ceramic oxides.

Call for spec sheets.

POWDERS

- Superconductors
- Solid Oxide Fuel Cells
- Electrocatalysts
- Garnets: YIG, YAG
- Custom Stoichiometries To date, we have successfully made 7-element systems.

Volume: 5 kg test runs – Metric ton production runs

Typical powder characteristics: Ave. particle size: 50 nm to $5 \mu \text{m}$ Surface Area: $2-100 \text{ m}^2/\text{g}$

TARGETS & SHAPES

- RF Sputtering (1" to 12")
- Laser Ablation
- PVD Billets
- Evap Pellets

POWDER PROCESSING

Toll spray drying to achieve flowable powder for:

- Thermal Spray Deposition
- Dry Pressing

Call us today at

(800) 745-7457

16130 Wood-Red Rd., #7 Woodinville, WA 98072

Voice: (425) 487-1769 Fax: (425) 487-1859

Our Technology is the Difference

Visit Us at AVS Booth #1111
Circle number 71 on Reader Service Card

pansions, he immediately extended the method to more general systems, showing that a general weakly dispersive system of nonlinear equations reduces to the KdV equation, whereas a general strongly dispersive system reduces to the nonlinear Schrödinger equation. He applied this method to many different areas, including plasma physics and hydrodynamics, and contributed greatly to the elucidation of nonlinear wave phenomena. Even today, his work is a sine qua non for researchers in the field of nonlinear waves.

Staying within the Nagoya University system, Taniuti moved in 1966 to the physics department, where he served as a professor for 22 years. Highly regarded by his physics peers, he was instrumental in guiding many promising young researchers, and under his strong leadership, he established and organized research in nonlinear wave theory.

He actively contributed to many research collaborations, both in Japan and abroad. In addition to publishing numerous papers, he wrote six well-known books, including Non-Linear Wave Propagation (Academic Press, 1964) with Alan Jeffrey; Magnetohydrodynamic Stability and Thermonuclear Containment (Academic Press, 1966), also with Jeffrey; and Nonlinear Waves (Pitman, 1983) with Katsunobu Nishihara.

In the two years after his retirement from Nagoya in 1988, Taniuti made a number of extended international visits, invited as a guest scientist by his friends. He also taught at Chubu University until 1994.

Tosiya Taniuti's lifelong commitment to nonlinear physics and plasma physics was an inspiration to all who discussed with him new ways to tackle difficult problems. Loved and respected, he will be greatly missed by his colleagues and students worldwide.

KATSUNOBU NISHIHARA AKIRA HASEGAWA Osaka University Osaka, Japan

MARTIN D. KRUSKAL NORMAN J. ZABUSKY Rutgers University Piscataway, New Jersey

JAMES W. VAN DAM University of Texas at Austin

James Raymond Lawson

James Raymond Lawson died on 21 December 1996 in Nashville, Tennessee, after a long and distinguished career as an experimental infrared spectroscopist, university president and science administrator. He was 81.

A native of Louisville, Kentucky, he became the first student to graduate from Fisk University (a traditionally black institution) with a major in physics. That was in 1935. He went on to

earn his PhD in physics at the University of Michigan in 1939.

Following the untimely death of Elmer Imes, his mentor at Fisk, Lawson returned to the university in 1942 as chair and professor of the physics department. He immediately began efforts to develop a research program in infrared spectroscopy. With the help of former colleagues in the Michigan physics department's instrument shop, he ordered an infrared spectrophotometer like one the department was building for its own use. By 1948, when the instrument was shipped to Fisk, Lawson had recruited five Fisk physics majors, then seniors, to stay on to do their MA theses in infrared spectroscopy on the new instrument. That was the beginning of the Fisk Infrared Research Laboratory (FIRL).

In 1950, Lawson along with Nelson Fuson began the Fisk Infrared Spectroscopy Institute, which sponsored week-long courses. Also, Fisk graduate students began reading scientific papers at meetings of the American Physical Society and American Chemical Society, thereby effectively integrating those groups.

After spending the years 1955–57 at Tennessee A&I State University (now Tennessee State University), Lawson returned to Fisk in 1957. He became vice president of the university in 1966 and president in 1967. While president, he was very active in both the local Nashville community and in national affairs. His activities included service on the board of directors of Oak Ridge Associated Universities and the joint advisory committee of the American Institute of Physics and American Association of Physics Teachers.

During Lawson's tenure, Fisk had its largest-ever enrollment—1500 students. He also attracted a strong faculty. However, the social turmoil that accompanied the civil rights movement was felt strongly in Nashville, and Fisk suffered declining external financial support that led to sharp decreases in faculty, staff and enrollment. Lawson resigned from the university in 1975.

During the next decade, Lawson lived in Washington, DC, where he served as special assistant to the director of the office of university programs for the Energy Research and Development Administration (forerunner to the Department of Energy) and later as head of NASA's University Affairs Office. After a series of illnesses, he went into full retirement and eventually returned to Nashville.

Known as the "gentle giant," he will long be missed as a friend, scholar, good family man and a compassionate human being.

RONALD E. MICKENS
Atlanta, Georgia ■