HE PRESENT widespread use of polymer plastics
- has made necessary the study of the mechanical
properties of these substances and thus has focussed
the interest of the engincer and the physicist once again
upon the general problem of the fow properties of solid
materials. This is a classical problem; over a period of
nearly 100 years it has repeatedly made headlines in
physics. The empirical foundations were laid by men
whose names mark the development of classical physics
—Maxwell, Hopkinson, Kohlrausch. Boltzmann and
Wiechert developed a phenomenological, e.g. descrip-
tive, theory which is still unsurpassed. The great Italian
mathematician V. Volterra recognized the mathemati-
cal implications of this theory and therefrom estab-
lished the theory of the integral equation that carries
his name. The applied physicists and engineers joined
forces, bringing with them the tools of modern tech-
nology and extending the field of experimental re-
search to a point undreamed of some years ago. And
now the theorists of modern physics begin to see a
way in which the observed macroscopical behavior of
matter may be explained in detail by a satisfactory
molecular theory. But in spite of all this combined
effort the problem is far from being completely solved.
A problem that in itself is of a rather particular kind
seldom remains for so long a time in the front line of
scientific interest. When this happens there must be
something about it which definitely sets it apart from
the great majority of related problems. In the present
case one clearly discerns two outstanding features: (1)
the time scale of flow phenomena is completely differ-
ent from that of ordinary laboratory observations; and
(2) the behavior of the flowing system depends not
only on the conditions prevailing at a given moment of
observation, but on the entire history of the system.
This situation hardly fits into the pattern of theory
which is current in other fields of physics.

HE BEHAVIOR of solid materials under stress
can be studied in many different ways. A funda-
mental method of observation to which frequent refer-
ence will be made in the following is the simple stretch-
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ing experiment. A rod of the material to be studied is
firmly suspended at one end and a weight attached at
the other end. The deformation, here mainly an elonga-
tion of the rod, is observed for different values and at
different times after the application of the weight. The
results of this experiment lead to a classification of
solid substances into elastic, viscous, and viscoelastic
malerials,

Elasticity. A material is perfectly elastic when the
application of the weight produces a deformation which
is directly proportional to the value of the weight, re-
mains constanl so long as the weight is kept the same,
and disappears immediately upon its removal (Fig. 1a).
Such an effect can be characterized by a single constant
of material, the modulus of elasticity, which is the re-
lation between the force and the deformation for a
sample of standard dimensions. Hardened steel and ob-
jects constituted of it approach this ideal picture as
nearly as is possible. The spring has become the proto-
type of the perfectly elastic element.

Viscosity, In a perfectly viscous medium the sudden
application of an external force does not at once pro-
duce a deformation. A deformation reveals itself only
when the load is kept constant for a while. It increases
at a linear rate as time goes on, the rate of growth
being proportional to the value of the load. Upon re-
moval of the load, however, the deformation does not
recede but remains at its ultimate value (Fig. 1b). A
single constant is still sufficient for the description of
this effect; it is the relation between the force and the
rate of deformation or velocity of flow for the standard
sample and is called the coefficient of viscosity. Only
liquids are ideal viscous substances. A mechanism ex-
hibiting perfect viscous behavior is the dashpot, which
is simply an oil-filled cylinder in which a piston moves.
Between the piston and the wall there is provided some
escape for the oil to flow through, and when the piston
is loaded it begins to move, pressing the oil out of the
escape. In its movement the piston meets with a viscous
resistance which is strictly proportional to its velocity,
but not with a reaction force trying to reestablish its
initial position. Therefore when unloaded (abstraction
being made of its own weight) it stops just where it is
left at that moment.

Viscoeleasticity, Although a body may show super-
posed viscous and elastic behavior under certain cir-
cumstances, this is not identical with viscoelastic be-
havior as understood here. A truly viscoelastic body
will not suffer any instantaneous deformation upon ap-
plication of a load; it will, however, become deformed
when the load is kept constant, the rate of deforma-
tion becoming smaller and smaller as time goes on and
eventually reaching an ultimate value, Upon removal
of the load the deformation decreases in exactly the
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same way as it had increased before, and after a suffi-
ciently long time the body will have regained its initial
undisturbed shape (see Fig. 1c¢). Another characteristic
of viscoelastic behavior is stress relaxation; this will
be discussed below, The amplitudes of deformation are
still proportional to the imposed forces and therefore
the phenomena are linear. But a single constant is now
insufficient for an adequate description; instead, a time
function must be introduced which will give the de-
formation of a standard specimen under unit stress.
The progressive deformation is called creep and the
time function is the creep function. Its special shape
and significance will be discussed later. Suffice it to say
here that together with the modulus of elasticity and
the coefficient of wviscosity it will prove sufficient for
the formal theory of the linear viscoelastic body under
the most general conditions. The viscoelastic effect
contains aspects of elasticity and viscosity together —
elasticity because all deformations are reversible, vis-
cosity because deformations occur not instantaneously
but with some delay. It seems that in the case of rub-
ber this picture is very nearly approached.

Complex viscoelastic behavior. Most real bodies be-
have in a more complex form. Thus, loading produces
an instantaneous deformation which under a constantly
applied load goes on increasing with a slope that even-
tually tends to a final value different from zero. Un-
loading gives an instantaneous contraction followed by
a further gradual recovery, but even after a very long
time a finite “plastic” deformation may remain. It is
easy to see how such a behavior can be obtained as a
superposition of the idealized cases mentioned above
(See Fig. 1d).

Relaxation. Instead of constant load one may al-
ternatively have constant deformation. Think for in-
stance of a rubber strip which after having been
stretched is kept at constant length. Subsequently not
the deformation is measured, but the force necessary
to maintain the strip in a stretched condition. In a per-
fectly elastic body the force would remain constant;
in a viscoelastic body it decreases with time from its
initial rather high value to a final quite low one, be-
cause the material slowly yields to the applied stress.
The grip which holds the outstretched rubber can be
relaxed, which is termed stress relaxation.

Energy loss. A purely elastic system like a spring
can be, and frequently is, used for energy storage. The
mechanical energy spent in the process of deformation
is converted into elastic energy and stored in the elas-
tically deformed body. It can be recovered entirely
when the system is released. A truly viscous system
cannot be used for any sort of energy storage, because
heat — frictional heat —is produced. Thus the energy
consumed for the deformation is completely lost. A
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viscoelastic system  (and for the sake of simplicity
consider a perfect system, not the complex one) can
again be used for energy storage, but lacks the 100%
efficiency of the elastic system, because some heat is
produced in creep, and the corresponding amount of
mechanical energy is irreparably lost. There exists a
type of energy loss which is entirely due to the visco-
elastic mechanism, This is particularly important in ap-
plications where alternating stresses or deformations
appear. Consider, for instance, the transmission of
sound through a rubber sheet in which each volume
element of the sheet is compressed and extended a
great number of times per second. In each cycle of
compression and extension some heat is produced. The
corresponding energy is extracted from the travelling
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sound wave which therefore suffers an energy loss and
consequently damping. Another example of the energy
loss associated with creep is given by the healing of
the rubber tires of fast moving vehicles. The tires con-
tinually experience periodic deformations; during each
rotation of the tire a certain amount of heal is pro-
duced and, if low grade material were to be used, this
heat, together with that resulting from friction with
the ground, could be sufficient to bring about a dan-
gerous rise of the temperature of the tire.

HE TIME SCALE.* Let us now fix our attention
more closely upon the shape of the creep curve and
the problem of its measurement. As an example, con-
sider an elementary process of observation which con-
sists in measuring periodically, say from minute to
minute, the distance between two fixed points on a
suspended and loaded rod. Suppose that the rod con-
sists of a viscoelastic material that does not suffer
plastic deformations, The result of such an observation
invariably would be a considerable increase in length
during the first minutes, so much so that the first meas-
urement is rather difficult and it is hard to say exactly
what the length of the rod might be immediately after
loading. But as time goes on the movement becomes
slower and slower and the displacements smaller and
smaller. And after a certain time the rod apparently
will have ceased to creep (Fig. 2a). However, if a more
refined method of observation is employed — if the am-
plification of the measuring microscope or the length of
the levers in the testing apparatus is increased — it will
again be possible to discern the creep of the rod. But
even refined methods of observation have their limita-
tions and the differences between subsequent measure-
ments will again become minute. Then the observer will
perhaps find it expedient to increase the interval be-
tween one measurement and the following one from
minutes to hours, and from hours to days or perhaps
weeks (Figs. 2b and 2c). But eventually even the pa-
tience of a physicist may come to an end, and rather
than concede that this has happened, some observers
have in the past concluded that ultimately the creep-
ing rod has come to rest, the period assigned to it thus
depending rather more on the character of the observer
than on the characteristics of the rod.
However, the way in which the results of Fig, 2 have
been plotted, together with the previous reference to a
continuous increase of the intervals between measure-

* This section contains material from an article Puhlishu;[ by the au-
thor in Oil, the journal of the M.O.R. Group of refineries.
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ments, suggests another type of interpretation, Curves
of similar aspect are obtained when successively greater
units of time are chosen. Actually the time-scales of the
three plots are different. 1 cm is respectively equivalent
to 4 minutes, 4 hours, and 4 days. Or, conversely, 1
minute corresponds successively to 2.5 mm, 1/24 mm,
and 1/576 mm, Thus the time scale of the last plot is
contracted with regard to that of the preceding one by
a factor of 24 and with regard to the first one by a
factor of 1440. But time is not discontinuous. Generali-
zation from the discontinuous to the continuous case
leads to the introduction of a uniformly contracting
time scale. Experiments point to a logarithmic scale,
Plotted on such a scale, the increase in length of the
rod is approximately linear over a wide interval (Fig.
3) so that events reaching from microseconds to years
can now be packed into a single plot. The success of
this new representation convinces us that the creeping
rod has a time scale of its own, one that is contracting,
not linear like that of the phenomena with which we
are accustomed to deal in daily life.

Short times and high frequencies. Even with the in-
troduction of the new time scale not all problems are
resolved. One of the unsolved problems is the measure-
ment of the creep function for very short time in-
tervals. How does this function behave near zero time?
What is the deformation of the rod immediately after
loading (admitting for a moment the possibility of the
rod being loaded instantaneously). The answer to these
questions is important because on it will depend the
value to be assigned to the instantaneous elastic modu-
lus. Zero time of the ordinary linear scale corresponds
to minus infinite on the logarithmic scale (cf. Fig. 3).
Therefore this scale does not lend itself readily to ex-
trapolation into the region of the very short times, and
an entirely new method of measurement has to be de-
vised. A solution has been found in the application of
alternating stress by the transmission of waves within
the specimen. Nowadays, sound and ultrasonic waves
are easily produced over a wide range of frequencies.
An alternative technique is the transmission of detona-
tion waves set up by an explosion produced at one end
of the sample. The wave pattern and the intensity of
the transmitted wave are observed throughout the sam-
ple, from which the creep function can be calculated by
rigorous mathematical methods. Since the period of an
oscillation varies inversely with frequency, short times
are translated into high frequencies. An oscillation
which has a frequency of one hundred-thousand cycles
per second has a period of one-hundred-thousandth of
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a second and will yield a point of the creep curve be-
longing to approximately the same time. To obtain
other points along this curve, other frequencies must
be used. In this way the difficult problem of measuring
deformations at very short times has been reduced to
the much simpler one of measuring amplitudes of stand-
ing waves and high frequencies.

Temperature and time. Another puzzle is the behav-
ior of the creep curve for very long times. Some con-
clusions may be reached by extrapolation, but the con-
scientious physicist, even if not shunning this method,
wants to see his predictions confirmed by direct ob-
servation. Since even a very patient observer will
hardly wish to waste some years of his life for the pur-
pose of getting some more points of the creep curve,
possibly to find only that the new points perpetuate
the trend of the curve defined by the old ones, he will
perhaps try to discover the means for speeding up the
creep process. This is indeed possible by the applica-
tion of heat, because creep proceeds faster at a higher
temperature. Thus, when the rod is loaded at a suffi-
ciently high temperature, it may reach within hours a
state of deformation which at room temperature it
would perhaps not reach in a saeculum. Mathematical
methods have been developed which show for a given
temperature increase its worth in time and allow one
to join together creep curves obtained at different
temperatures. It is in this way that more precise in-
formation has now been gained about the final equi-
librium state of the creeping rod. The same method has
also been applied to the study of the short-time sector
of the creep curve. Here the process of creep must be
slowed down; this is done by cooling of the rod to a
sufficiently low temperature, thus decelerating the phe-
nomenon.

The results of these different methods, represented
in the contracting time scale, give at least in some cases
a rather complete picture of the entire creep curve. It
has been found that this curve extends over an interval
of time covering not less than 14 decades.

EMORY. It was stated that the experiments with

sound waves and oscillations could be inter-
preted in terms of the creep function, This statement
tacitly implies the assumption that even under rather
complicated conditions of stress and strain one single
time function is sufficient for the theory. This is by no
means self-evident. Consider again the simple loading
experiment, but suppose that after a while the load is
increased to twice its original value. Can the ensuing
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deformation of the rod be predicted? Experiment has
shown that the answer is affirmative, It has been found,
for example, that an increase of the load from 5 to 10
kg after the load of 5 kg had remained applied for
some time, gives rise to a creep effect of exactly the
same shape as that which started at zero time when
the load had been increased from zero to 5 kg Inde-
pendent of this “belated” creep the original creep still
goes on all the time as if nothing else had happened.
Therefore after the second loading two creep effects
are proceeding simultaneously — the original one, al-
ready slowed down in view of the time elapsed since it
had started, and the “secondary” one starting afresh
later and therefore prevailing. Neither of the two effects
seems to mind the presence of the other. The total de-
formation at any time is given as the sum of both.
This behavior is not dependent upon a particular type
of load or upon the time of application of the load.
(Quite generally, the same loading — and the term “load-
ing’" is here used in the transitive sense of the word,
meaning “the same act of applying a load” — always
produces the same effect irrespective of the time of its
occurrence or the state of the system at this time. Any
creep or recovery effect, once started, proceeds at its
own rate quite oblivious to whatever else may happen
to the specimen. The deformation at a given moment
therefore depends not only on the load applied at that
moment, but also on what the sample has been through
before. It seems as if the sample remembers what has
been done to it in the past — faintly if the previous
treatment lies a long time back and vividly if the event
is recent, In a quantitative way this “memory” finds
its expression in a time function which is a measure of
the gradual disappearance of the creep effect; it has
been called “memory” function. The curve of creep re-
covery (which is an image of the creep function) does
this service. The superposition of the deformations
associated with successive mechanical usage finds its
quantitative expression in a very general mathematical
theorem, the “principle of superposition”, which is
valid for linear systems and constitutes the founda-
tion of an important class of theories of mathematical
physics.

An experiment was devised may years ago that shows
in a very impressive manner the superposition of effects
caused by successive deformations. A firmly suspended
metal or plastic wire is twisted first in one direction for
a long time and then in the other direction for a short
time. Immediately after release the deflection will be
in the direction of the last twisting, but it decreases
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rapidly. Presently a reversal occurs, and the wire be-
gins to turn in the other direction corresponding to the
first twisting — the memory of the recent short-term
handling has been obliterated by that of the more re-

mote but longer lasting and therefore more impressive
one. The behavior of the specimen in this experiment
could be predicted correctly with the help of the

memory function

HE MODEL. To review the foregoing conclu-

sions: The behavior of the linear viscoelastic body
under any type of stress or deformation can be for-
mally accounted for in terms of the memory function
and two constants, provided the history of the body is
known, An analogous situation may be commonplace
for a psvchoanalyst who understands the reactions of
the objects of his studies only in terms of their past,
but it is not commonplace for the physicist. Within the
framework of classical physics of continuous media,

he state of a system is always sufficiently defined by

et of 1al and boundary conditions. Once these
data are given, the general laws of dynamics provide
he means for calculating the evolution of the system
from its initial state under any specified external con-
ditions, and in particular under the action of a unil
force, One can do without a knowledge of the system’s

history, because its present condition is fully known;
one does not need an empirically determined memory
function, because the behavior for unit force (which
orresponds to the memory function) follows from
theory itself. One must conclude that the formal creep
theory is insufficient. The macroscopical stress and de-
formation data do not precisely define the state of the
system and therefore do not constitute sufficient prem-
ises for the theory. The heuristical principle of super-
position is not a legitimate substitute for the funda-
mental laws of mechanics or thermodynamics. But it
would be an injustice to put all the blame on the
In reality the task of this theory is nol
In the present case the

formal theory
that of the classical 1|'Ir'lll')'
fundamental parameters of the system are not ob-
but must be inferred from observation. The
viscoelastic body is like a carefully closed box which
contains a very complicated mechanism. One knows the
forces acting on the box and the way it reacts to them.

servable

One can predict what the box will do fram a certain
momenl on, once one knows what it has done up to
this moment. But what one really wants is to open the
box and find out what the complicated mechanism in
the box looks like. The additional knowledge would
permit formulation of a satisfactory theory. The right
way Lo execute this program is to study the problem
from the point of view of the modern theory of solids,
However, the objects one is dealing with are very com-
plex ones, multicrystalline metals with lattice defects,
high polymers with complicated molecular structures,
the rigorous mathematical treatment of which is un-
inviting. An alternative procedure might be to attempt
to construct a model consisting of known classical ele-
ments in the hope that in this way the behavior of the
complex viscoelastic system can be duplicated.

It was recognized at an early stage that complex
models can be constructed with springs and dash-
pots which behave like a viscoelastic body. Several ar-
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rangements were studied and it has been found that the
simplest forms which at least qualitatively exhibit this
hehavior are those represented in Fig. 4. Once the ar-
rangement of the elements of a model is given, the
form of the memory function can be calculated. The
two models depicted above will give an exponential
function. Comparison with experiment, however, shows
that the memory function rarely takes this simple
shape. The next step is to assemble a multiplicity
of the elements shown in Fig. 4. In some cases a
few of them may be sufficient for a representation of
the memory function within a limited interval of time.
But a really satisfactory representation is obtained only
when an infinite number of elements is assumed to exist
with parameters distributed over an enormous range of
values. Each element can be labeled by a characteristic
time constant, the relaxation time of that particular
element. The distribution of the relaxation times is in-
ferred from the experimentally determined memory
function and adjusted so that the theoretical and the
experimental curves coincide everywhere. Thus a me-
chanical model is constructed that behaves exactly like
the complex creeping system. The concepts of classical
mechanics can be applied; when the deformations of
the springs and dashpots at a given moment are known,
the subsequent behavior can be calculated.
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The models have done a great service in visualizing
the very complicated behavior of the viscoelastic body
and relating it to that of well-known mechanical ele-
ments. But what is their physical significance? Using
again the analogy of the box, one may wonder whether
one has not by chance taken out what was in the box
and substituted something completely different.

It is true that a certain danger lies in the exagger-
ated application of the concept of a mechanical model.
On the other hand it has its definite value. Nobody
will, or at least should, pretend that the springs and
dashpots actually do exist. Instead they must be taken
figuratively — they serve in a general way for elemen-
tary phenomena which obey linear differential equations
and can be characterized by relaxation times. The deter-
mination of the relaxation time distribution then indi-
cates the way in which these elements are grouped to-
gether, Therefore information is derived about the con-
stitution of the complex body. Once understood in this
way, there remains the final task of discovering the na-
ture of the elementary process and of associating it
with a physically significant entity. This means that
while so far the theory has been phenomenological and
therefore rather general, now specialization becomes
necessary. The composition of the body (whether it is
crystalline or amorphous) and its constitution (single
crystal or polycrystalline) will have to be considered.
Briefly, we now have to do what we have avoided so
far, we must leave the domain of descriptive theories
and enter that of the interpretative ones,

HEN TRYING TO DEVELOP the interpreta-
tive theory one must search for a complete set
of fundamental parameters. The deformation of the
loaded system never depends on the load alone. Tem-
perature, chemical composition and physical constitu-
tion, degree of order of the lattice in the case of a
metal or of the molecular arrangement in the case of
a polymer, are among the factors which play a role.
Temperature fluctuations. The temperature effect
provides perhaps the best example of the manner in
which such factors can cause delayed deformation. It
is well known that a rise in temperature of a metallic
specimen always causes expansion. But the converse is
true also. When the specimen is suddenly stretched it
suffers a sudden reduction in temperature. Heat will
then flow into it from its surroundings until tempera-
ture equilibrium is reached again. Therefore, sudden
stretching is followed by a period of gradual tempera-
ture increase. Consequently the specimen will undergo
a subsequent further increase in length (creep). Be-
sides temperature exchange with the surroundings, tem-
perature fluctuation can occur within the specimen
itself and will give the same result, This happens in a
metallic body which is not a chemical compound, but
is instead a mixture of two or more elements in solid
solution. The stretching will differently affect each of
the separate constituents and will therefore produce in-
ternal temperature fluctuations, Internal conduction of
heat will equalize the temperature. The attainment of
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equilibrium conditions is accompanied by further di-
mensional changes.

Lattice deformations. A similar effect is related to
modifications of the atomic lattices of metals. In the
absence of external stress the atoms in the lattice are
distributed isotropically and the lattice points are oc-
cupied by the different atoms in an established order.
Application of slress sometimes induces nonisotropic
distribution in which some of the atoms prefer certain
well-defined directions, or it changes the order of the
atoms in the lattice. In either case a new equilibrium
will be reached. Usually any change in the lattice oc-
curs parallel with a macroscopic deformation. Approach
to equilibrium is not instantancous but delayed, and
one is therefore again confronted with creep and re-
laxation effects.

Heterogeneily of composition or structure. Some-
times an apparently uniform metallic solution actually
consists of a mixture of two phases, one perfectly
elastic and the other perfectly viscous. Within each
phase, fluctuations of the elastic modulus and the co-
efficient of viscosity exist, caused by differences in the
size and shape of the metallic grains which make up a
polycrystalline metal. Here the elements of the two
phases correspond to the springs and dashpots of the
model and similarly give rise to relaxation effects.

The presence of two different phases is not an in-
dispensable prerequisite. An effect of heterogeneity is
already caused by the existence of distinct grains in a
metallic body. Each grain represents a single crystal
and may respond to stress as a perfectly elastic me-
dium. But, besides deformations, relative movements
of grains are observed, one grain slipping over ad-
jacent ones. The movement along grain boundaries is
opposed by frictional forces governed by the laws of
viscous motion and the grain boundaries therefore play
the role of the viscous phase of the foregoing example.

Molecular structure. In amorphous materials, par-
ticularly high polymers, the structure of the molecules
interferes. The molecules frequently form long chains
which normally are contracted and interwoven, form-
ing a complicated and disordered pattern. Under load
they become uncoiled and untangled, tending to consti-
tute a pattern of a higher degree of order. But they will
spring back into their initial disordered state upon re-
lease of the load. The thermal movement interferes
with the orientation and disorientation of the molecules
and ultimately causes delay in the expansion and con-
traction of the specimen.

A detailed description of the different mechanisms
which have been mentioned here and of many others
which are known to exercise some influence on the be-
havior of solid materials would presuppose a detailed
knowledge of the theory of the solid state. It would
furthermore have to account for nonlinear phenomena,
for fatigue, and for fracture. This would go far be-
vond the scope of the present article which will have
achieved its purpose if it has explained why the study
of the flow of solids has attracted so many scientists
from so many different branches of science.



