ards Association and of the French National Academy of Arts and Sciences, were presented with honorary degrees by the Polytechnic Institute of Brooklyn at the Institute's 97th commencement exercises in June.

H. C. Longuet-Higgins of Manchester University has been appointed professor of theoretical physics at King's College, University of London. Before going to Manchester, Dr. Longuet-Higgins spent a year at the University of Chicago.

John R. Madigan, physicist from the National Bureau of Standards, has joined the staff of the visual and microwave spectroscopy section of the Armour Research Foundation. Illinois Institute of Technology.

Walter H. Mais has been elected chairman of the department of physics at Brooklyn College. Professor Mais succeeds Morris F. Weinrich who retired at the end of the spring semester.

Dana L. Mock has joined the staff of the Atlantic Research Corporation, Alexandria, Virginia, where he will be concerned with correlating the dielectrical properties of materials with their physical characteristics. Before joining ARC Mr. Mock worked on the betatron and atomic energy projects at the Naval Research Laboratories.

Adair Morrison, formerly head of the radiology laboratory of the physics division, National Research Council of Canada, has joined the staff of Arthur D. Little, Inc., as assistant to the newly appointed science director, Howard O. McMahon.

Lorenzo A. Richards, chief physicist of the United States Salinity Laboratory at Riverside, California and a participant last May in the symposium at Jerusalem on desert research sponsored by Unesco and the Research Council of Israel, has received one of the first honorary degrees to be awarded by the Hebrew Institute of Technology of Haifa.

Jacob Schroeder has recently been named chief of the mechanisms branch of the electrical evaluation division of the U. S. Naval Ordnance Laboratory at White Oak, Maryland.

F. H. Spedding, director of the Institute for Atomic Research and Ames Laboratory of Iowa State College; David T. Griggs, professor of geophysics, University of California; Chaim L. Pekeris, geophysicist at the Institute for Advanced Study, Princeton, New Jersey; and Lyman Spitzer, Jr., director of the Princeton University Observatory, have been named to the National Academy of Sciences. (Five physicists who were also elected members of the Academy were listed in the July issue.)

D. P. Stevenson has been appointed head of the physics department of the Shell Development Company, Emeryville, California. Dr. Stevenson replaces J. N. Wilson who has been named to head the department of catalysis and surface chemistry.

A. Taylor, former head of the physics section of the Mond Nickel Co., Ltd., in England, and a specialist in x-ray metallurgy, has been appointed project supervisor in the physics department of the Horizons Incorporated laboratory in Cleveland.



## AAPT Summer Meetings

## With Colloquium of College Physicists

The 1952 summer meeting of the American Association of Physics Teachers was held on June 11-14, in conjunction with the Colloquium of College Physicists at the State University of Iowa, Iowa City. This first association of these two meetings, dedicated alike to the common objectives of the improvement of the teaching of physics and the encouragement of originality and creative efforts among teaching physicists, was more than successful. The Association brought to the colloquium a larger and more varied group than would ordinarily be present, while it benefited from the round table discussions, the exhibits, and the other features which the colloquium has developed during the past thirteen years under the leadership of G. W. Stewart. Approximately 200 attended the sessions, representing 100 different institutions.

During the Wednesday afternoon and Thursday morning meetings, 28 contributed papers and two invited papers were presented. The short contributions dealt with such varied aspects of the teaching of physics as library facilities, the use of films, the development of student projects in both elementary and advanced laboratories, and the pros and cons of multiple choice quizzes. The longer papers, by Verne F. Swaim and Sanborn C. Brown, presented respectively a description and analysis of the Raydist system and a study of the problems encountered in the teaching of the laboratory portion of general physics courses.

In two lectures, given Wednesday evening and Thursday afternoon, R. M. Bozorth discussed some of the researches in magnetic phenomena in which he and his colleagues at the Bell Laboratories have been engaged. The first lecture, which was concerned with the growth of ferromagnetic domains and the movements of domain walls, was illustrated by the latest version of the Williams-Kittel moving pictures showing changes of magnetization in single crystals. The second lecture, built on the foundation of the first, dealt with the permalloy problem and with the progress which has been made, experimentally and theoretically, in accounting for the variations of the magnetic properties of alloys with composition and with heat treatment.

A round table discussion, with a panel consisting of R. H. Cook, H. C. Jensen, M. J. Pryor, and Paul Rood, was devoted to the role of demonstration experiments. Samples of favorite demonstrations were presented. The discussion centered not so much on the details of the



Frank E. Verbrugge (left), Carleton College, demonstrates his prizewinning magnetic resonance model at the exhibit of teaching devices during the State University of Iowa's 14th annual Colloquium of College Physicists, held June 11–14 in conjunction with the 1952 summer meeting of the American Association of Physics Teachers. Watching the demonstration are (left to right) Father J. V. Bonet, St. Louis University; Wendell Plum, Manchester College, Indiana; and Robert L. Henry, Carleton College.

particular devices and methods used as on the relative importance of demonstrations and laboratory exercises and on the advantages and disadvantages of qualitative and quantitative demonstrations. No general agreement was reached on the latter question, but there was a consensus of opinion that the demonstration lecture and the laboratory should be supplementary, with as much student participation as possible in the demonstrations.

So many excellent teaching devices were included in the exhibit, which is an annual feature of the colloquium, that only a few can be described in a report of this sort. Twenty-five "experimental" and six "nonexperimental" devices were submitted. Prizes in both classes were awarded on the basis of ballots cast by those attending the meeting. In the experimental class the first prize of \$40 was awarded to Frank Verbrugge, of Carleton College, for his dynamic model of magnetic resonance phenomena. This model consisted of an air-jet-driven magnetized top, spinning in crossed dc and ac magnetic fields. The Larmor precession, and its dependence on the magnetic flux density, are apparent in the model, and magnetic resonance may be shown with "radio frequencies" of the order of half a cycle per second. The \$50 prize in the nonexperimental class was divided between P. J. Haigh of the University of Illinois for his apparatus for demonstrating the interaction of free electrons with the atoms of a metal, and I. Walerstein of Purdue University for his lecture table model of Rutherford and Thomson scattering. Considerable amusement was offered by two exhibits not entered in the competition, one an early magnetic detector for radio reception, shown by Otis B. Young of Southern Illinois University; the other a

mechanical Nim player, constructed by P. W. Williams, of South Dakota State College. The efforts of the attenders to identify the first device and to beat the second were, in general, marked by equal lacks of success.

ins for

磁线

Davis

of t

ret.

tid Zo

detgT

2200

Ilak shil

101

100

100

原理

世東

= 104

prid to

三世 1

क्षेत्रां

senat

To 19

die

lig fo

51

251

122.

1

Em!

=1

100

The

E

hom

Pas

10 日

=8

4

betic

bai

四

動

10

100

MEY

di

On Friday morning, invited lectures were given by W. L. Whitson on operations research; by H. K. Schilling on edge tones and whistles; and by H. G. Hershey on geophysical exploration. These presentations served as introductions to specialized fields with each of which only a small portion of the audience had had previous experience.

The climax of the meeting was supplied by four lectures, sponsored by the Research Corporation and given by George Uhlenbeck. In the first two of these, under the title of "The So-called Elementary Particles", the speaker outlined in a brief, yet thorough, manner the experimental evidence which has led to our present knowledge of the properties of mu-, pi-, kappa-, and tau-mesons, as well as the more recently discovered heavy V-particles. He then departed from the relatively solid ground of experimental physics into the speculations involved in some of the proposals put forward by Wigner, Pais, and others as to the relations among this multitude of elementary particles. The second set of lectures, entitled "Some Famous Unsolved Problems in Statistical Physics", was devoted to the experimental and theoretical progress made in recent years on the nature of turbulent flow.

Arrangements for the meeting, including housing in the new Hillcrest Dormitory and a dinner and a luncheon in the River Room of the Iowa Memorial Union, were uniformly successful. While a formal vote of thanks to the University and to Professor Stewart was expressed at the final session, probably a greater tribute to the excellence of the arrangements and program was paid by the almost unanimous attendance at every session, in spite of temperatures which hovered in the upper nineties most of the time.

Walter C. Michels Bryn Mawr College

## AAPT, Oregon Section

## A New Science Building Dedicated

Formal dedication of the University of Oregon's new science building coincided in late April with the sixtieth meeting of the Oregon Section of the American Association of Physics Teachers. The principal address of the dedication ceremonies was delivered by Alan T. Waterman, director of the National Science Foundation, who spoke on the principal phases of the Foundation's work. The program of the AAPT meeting consisted of a session of contributed papers and several invited addresses, including a review of nuclear physics research by S. K. Allison of the University of Chicago. Drs. Allison and Waterman, together with G. W. Beadle, Donald Stother, Clarence Diebel, P. J. Van Rysselberghe, and E. G. Ebbighausen, also joined in a panel discussion on the subject of education in science.