
How THINGS BREAK 
Solids fail through the propagation of cracks, whose speed is controlled by 

instabilities at the smallest scales. 

Michael Marder and Jay Fineberg 

Galileo Galilei was almost seventy years old, his life 
nearly shattered by a trial for heresy before the 

Inquisition, when he retired in 1633 to his villa near 
Florence to construct the Dialogues Concerning Two New 
Sciences. His first science was the study of the forces that 
hold objects together and the conditions that cause them 
to fall apart-the dialogue taking place in a shipyard, 
triggered by observations of craftsmen building the Vene­
tian fleet. His second science concerned local motions­
laws governing the movement of projectiles. 

The two subjects Galileo founded have fared differ­
ently over the centuries. One has become a respectable 
branch of mechanical engineering, while the other has 
become a core subject that physicists learn at the begin­
ning of their education. Although now, as in Galileo's 
time, shipbuilders need good answers to questions about 
the strength of materials, the subject has never yielded 
easily to basic analysis. Galileo identified the main dif­
ficulty: "One cannot reason from the small to the large, 
because many mechanical devices succeed on a small scale 
that cannot exist in great size."1 Nearly three hundred 
years elapsed after Galileo wrote these lines before science 
reached the atomic scale and began to answer the ques­
tions he had posed on the origins of strength and the 
relation between large and small. 

Despite the tremendous development of solid-state 
physics in this century, physicists have paid slight atten­
tion to how things break. In part, this neglect has oc­
curred because the subject seems too hard. Cracks form 
at the atomic scale, extend to the macroscopic level, are 
irreversible and travel far from equilibrium. Many of the 
tools with which solid-state physics was built do not work. 
For example, there is no perfect lattice left in which to 
calculate the quantum mechanical motion of electrons, and 
cracks move so quickly that even basic quantities such as 
temperature are ill defined near their tips. There is also 
the embarrassment of explaining to colleagues that one is 
working on failure. The strength of solids calculated from 
an excessively idealized starting point comes out com­
pletely wrong; it is not determined by performance under 
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ideal circumstances, but instead by the survival of the 
most vulnerable spot under the most adverse of conditions. 

Failure of perfect solids 
Here is how a perfect solid would break. Take a block of 
material, of height h, and cross-sectional area A, pulled 
by a force F. (See figure 1.) The block separates into 
halves when its atoms are pulled beyond the breaking 
point. To estimate the force , F B, needed to reach this goal, 
recall that Young's modulus, Y, relates the stress, l, on a 
body to its extension, 8h, through the relation 

F 8h 
r =A= hy Cl ). 

Suppose that the block snaps when the atoms move 
apart by 20% of their original spacing; the critical stress 
2-c to make this happen is 

l e = Y / 5 (2) . 

A glance at the table on page 25 shows that the theoretical 
strength as estimated in equation 2 is about two orders 
of magnitude larger than the practical strength of a 
material. Although it is natural to dismiss this discrep­
ancy as resulting from the crude approximations used to 
obtain equation 2, enough effort has been put into carrying 
out much more sophisticated quantum mechanical ver­
sions of the calculations to show that the estimate is really 
quite good and that the error lies elsewhere. 

An engineer and a physicist compete to find the best 
material to build a house. The engineer chooses brick 
because she knows it is what everyone else uses. The 
physicist decides to conduct some basic research. Turning 
to the periodic table, he finds the element with the highest 
bonding strength and melting point, and first proposes 
diamond. Trying to find something cheaper, he next 
proposes a vitreous mixture of silicon and oxygen, since 
the raw materials are abundant and safe and form strong 
bonds. All is well until someone throws the first stone. 
In fact, the relation between bonding energies and strength 
of materials is far from direct; physicists had best respect 
the practical experience of engineers until they can really 
explain why one should not build glass houses. 

Introduction of cracks 
Flaws in materials determine strength, so it is necessary 
to move from an ideal material to one in which a flaw 
occupies the center of attention. This task was first 
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A FLAWLESS SOLID, initially of length h, increases in length by an amount 8h, which is proportional to the force, F, applied to it. 
When 8h exceeds a critical value, the solid breaks as a single unit into two equal pieces. However, only carefully prepared fibers 
of glass or certain metals have ever been made to fail in this way.2 FIGURE 1 

carried out in 1913 by G. E. Inglis . He considered a large 
plate of elastic material with an elliptical hole. Pulling 
upon the plate with a uniform stress 1 far from the hole, 
he found that stresses near the narrow end of the hole 
were much larger than 1-by a factor 2(l / p)112, where l 
is the length of the hole and p is its radius of curvature. 
Just as a lightning rod generates huge electric fields , so 
a slit creates enormous tensions near its tip. If a flaw is 
sufficiently thin, it need not be particularly long to pose 
a threat to the body in which it lives. According to the 
table, brittle materials fail at stresses one hundred times 
smaller than one at first expects. Suppose, as A. A. 
Griffith did in 1921, that the materials are plagued with 
slits, whose tips reach a destructive stress while the rest 
of the body remains safely below it. Taking p = 1 ang­
strom, and l = 1 micrometer gives (l I p)112 "' 100. This 
argument explains the practical strength of brittle solids, 
since it is quite a challenge to prepare materials without 
micrometer-sized flaws at the surface, ready to spring into 
action at stresses smaller than expected.2•3 Notice that 
there is no requirement of a critical density of flaws. A 
single one will do. Therefore, for structures of great 
importance such as airplanes or nuclear containment 
vessels, arguments based upon the statistical likelihood 
of flaws are unable to guarantee safety, and case-by-case 
examination of the structures is essential. In addition, 
structures must be designed with special care to avoid making 
growth of flaws more likely. (See the box on page 26.) 

Brittle and ductile materials 
Many of the greatest successes of solid-state theory have 
flowed from explaining qualitative properties of solids. 
Why are some materials conductors and others insulators? 
Electron band theory provides an answer. Why are some 
transparent and others opaque? Calculations of the in­
teraction of matter with light show why. The most im­
portant qualitative fact in the mechanical properties of 
solids is that some are brittle and shatter in response to 
a blow, while others are ductile, and the blow merely 
causes them to deform. Why? 

This question is nothing but the question-in a new 
guise-of what makes a crack grow. Take a slab of 
material, make a saw cut in it, and pull. In a brittle 
material, the tip of the saw cut spontaneously sharpens 
down to atomic dimensions, and like a knife blade one 
atom wide, it slices its way forward. 3 In a ductile material 
the tip of the saw cut blunts, broadens and flows, so that 
great effort is required to make it progress. 

There is no completely satisfactory answer to the 
question of why some materials are brittle and others are 
ductile, as the manufacturers of atoms seem to omit this 
property when writing down their technical specifications. 
The most well developed attack on the problem considers 
stationary, atomically sharp cracks in otherwise perfect 
crystals, and asks what happens when slowly increasing 
stresses are inflicted upon them. In 1974, James Rice 

The practical and theoretical strengths of materials. 

Material Young's Y/5 Theoretical Practical 
Modulus Y strength strength 

{10 11dyne/cm2
) {10 11 dyne/cm2

) {10 11 dyne/cm2
) {10 11 dyne/cm2

) 

Iron 16 3 3 .085 

Copper 19 4 3 .049 

Silicon 18 4 3 .062 

Glass 7 4 .002 

SEPTEMBER 1996 PHYSICS T ODAY 25 



The Origin of Fracture Mechanics 
arge advances in the understanding of fracture have tended 
to follow great public disasters. In 1919, a molasses tank 

50 feet high and 90 feet wide burst in Boston, killing twelve 
people and several horses. The court audi tor concluded that 
"the only rock to which he could safely cling was the obvious 
fact that at least one-half of the scientists must be wrong."18 

The most important case in this century occurred during World 

and Robb Thomson showed4 how to estimate whether the 
crack will move forward in response to such a stress, or 
whether instead a crystal dislocation will pop out of the 
crack tip, causing the tip to become blunt. Figure 2 shows 
a very large computer simulation in which an elliptical 
crack is placed in copper, one of the most pliable of metals. 
The tip of the crack spawns clouds of dislocations, appear­
ing as stringy white vortex cores, which travel off into the 
crystal in unexpected directions and provide strong im­
pediments to further motion. 

Brittleness and ductility, in fact, are not inherent in 

SIMULATION OF A DUCTILE MATERIAL 
with 35 million atoms. An elliptical 

crack (outlined in red atoms) in a 
0.1 µ,m thick copper sheet is placed 

under tension in the vertical direction. 
As the crack attempts to propagate 

horizontally, it emits clouds of 
dislocations (white), some of which have 
collided directly above the crack. Only 
the atoms at the surface of the crack, or 

within the cores of dislocations, are 
depicted. The supercomputer 

calculation was performed by Shujia 
Zhou, David Beazley, Peter Lomdahl, 

and Brad Holian of the Theoretical 
Division at Los Alamos National 

Laboratory. FIGURE 2 
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War II. Wartime demands for ocean-going freighters led to 
the production of the Liberty ship, the first ship to have an 
all-welded hull. Of the nearly 4700 Liberty ships launched 
during the war, over 200 suffered catastrophic failure, some 
splitting in two while lying at anchor in port, and over 1200 
suffered some sort of severe damage due to fractures. The 
discipline of fracture mechanics emerged from these catastro-

phes. The all-welded ships were redesigned, 
eliminating, for example, sharp corners on 
hatches, and systematic procedures were de­
veloped for testing the fracture resistance of 
materials. In the early 1950s, failure by frac-
ture cursed the airline industry's efforts to 
establish passenger service using jet aircraft. 
Ill-placed rivet holes destroyed two of Brit­
ain's Comet aircraft, and played a role in 
moving the center of civilian jet aircraft pro­
duction to the United States. Aircraft are 
now subject to a systematic program of in­
spection that acknowledges that every struc­
ture has flaws, but that flaws greater than a 
certain size are intolerable. Procedures have 
continued to evolve in response to accidents, 
most recently after an incident where part of 
the top of the fuselage of an airliner peeled 
off during flight. 

the atoms that make up a solid. Most solids have a 
definite temperature at which they make a transition from 
brittle to ductile behavior. For silicon, this temperature 
is around 500 °C.3 This transition is not as well under­
stood as the more familiar equilibrium phase changes. 

Crack Dynamics 
Cracks would cause no one any trouble if they never 
moved, so it is natural to investigate their dynamics in 
some detail. The first calculations along these lines were 
carried out by Neville Mott in response to the Liberty ship 



disasters during World War II (see the box on page 26); 
Mott's work led to an amazingly successful scaling theory 
described in the box at right. 

The scaling theory stood up remarkably well to in­
creasingly sophisticated mathematical improvement. Its 
only defect was that it never agreed with experiment.5 

All equations of motion for cracks predicted that cracks 
should accelerate up to the Rayleigh wave speed-the 
speed of sound traveling over a flat surface, or of_earth­
quakes traveling over the surface of Earth. Expenments 
dating back as far as 19376 showed that cracks_ m glass 
went at most, at half this speed. For a field m which 
the ~ain goal is to keep large tankers from splitting in 
half, the question of precisely how fast a crack_ runs across 
the hull seems rather esoteric. But if the goal is a detailed 
understanding of the conditions under which a crack can 
move getting the velocity right is a necessary first step. 

One hint that the motion of cracks might be more 
complicated than that of particles moving in straight lines 
came from examining the new surfaces that cracks left 
behind them. The surfaces often have visibly rough fea­
tures (as shown in figure 3), which develop only after the 
crack has traveled some distance. Several years ago, with 
Harry Swinney and Steve Gross, we developed a technique 
that made it possible to measure the velocity of a crack 
twenty million times per second, tens of thousands of times 
in succession and to an accuracy of around twenty meters 
per second.7 ' The method involved depositing a very thin 
layer of aluminum on a Plexiglas or glass sample, and 
then monitoring its resistance as a crack ran through it. 
The great detail in data from our experiments on long 
samples of brittle materials, prepared with a note~ sawed 
in one side, clearly showed that crack mot10n m such 
materials could pass through three distinct phases: 
I> Birth: Long, sharp initial notches turn into rapidly 
running cracks at low stresses, while short blunt notches 
refuse to move until the stress energy density is as much 
as ten times greater. However, in almost all cases, cracks 
accelerate in less than a microsecond to a substantial 
fraction of the speed of sound, at least 200 meters per 
second. 
I> Childhood: The early phases of crack motion involve 
calm and efficient progress through the sample. The new 
surfaces left behind the crack are smooth and mirrorlike, 
as shown on the lower right-hand part of figure 4; the 
crack velocity is smoothly and slowly increasing, as shown 
in the left half of figure 4. For long, sharp initial cracks, 
the entire sample is severed in this fashion. . . 
I> Crisis: However, cracks that pass beyond a cntical 
threshold in velocity begin to buck and plunge, as shown 
by the black curve in the left half of figure 4. Th_ey leave 
increasingly rough surfaces in their wake, shown m figure 
3, and their velocities undulate at frequencies of hundreds 
of kilohertz. 

Thus cracks in brittle materials suffer a dynamical 
instabilit;, which makes them unable to accelerate up to 
the high velocities predicted by classic theories of dynami­
cal fracture. 

Origin of dynamical instability 
Lurking behind the theories of dynamical fracture have 
always been certain puzzling contradictions. Elizab_eth 
Yoffe carried out the first detailed calculation of dynamical 
fracture,8 and pointed out that cracks are strongly influ­
enced by special r elativity-as they approach not the speed 
of light, but that of sound. Stresses in the neighborhood 
of the crack adopt a universal form near the tip, and this 
universal singularity contracts in the direction of rapid 
motion. Yoffe observed that at around 60% of the speed 
of sound, lobes developed in the stress field surrounding 

How Cracks Grow 
crack of length l grows at race v in a place. (See the 

figure below right.) There are three important energies: 
I> Potential energy: The potential energy decreases as the 
crack extends, and since the size of the region where this 
happens scales as l 2, the potential energy released scales as 
- / 2; it also scales as the square of the applied stress. 
I> Fracture energy: Making the crack move forward 
requires breaking bonds, creating new surfaces and gener­
ating heat; the energy 
required scales as the 
length of the crack, l. Stress 
I> Kin etic Energy: 
The total kinetic en­
ergy due to the mo-
tion of the crack scales 
as /2v 2, sin ce th e 
amount of mass that 
moves as the crack V 
opens scales as 12. 

For very slowly 
moving cracks, only 
po tential . and frac­
ture energies are im­
portant, and the sum 
of these energies as a 
fun c ti o n of l is 
shown in the sketch 
at the bottom of chis 
box. Since potential energy decreases as l 2 and fracture 
energy increases as /, for very small cracks the fracture 
energy is always larger, and the total ener~ m~reases with 
/. This is a fo rtunate fact, or else all solid obJeccs would 
be completely unstable if subjected to the slightest mechani­
cal stress. But eventually the potential energy overwhelms 
the fracture energy at the critical crack length, lc,_called the 
G riffith point, and from here on, more energy 1s release_d 
than consumed by crack extension. Now extens10n 1s 
rapid and spontaneous. Since the sum of fracture and 
potential decreases as (l - /J2 for I> ( and energy 1s con­
served by convening potential co kinetic energy, one easily 
finds that the velocity of the crack must be 

v(t) = Vm, .(1 - V l) (3) 

The critical stress needed to snap a body wi th a crack 
of size I scales as / ll2. Like the resulcs of many other scaling 
arguments, equation 3 is better than one has any right to 
expect. Fifteen years of careful mathematical work, docu­
mented in the book by L. Ben Freund,8 extracts the same 
fo rmula from a remarkably general boundary-value prob­
lem of classical elasticity. In the rigorous fo rmulation Vmax 

turns out to be the Rayleigh wave speed. 

Runnin crack 

( 
CRACK LENGTH, I 
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WHEN CRACKS EXCEED a critical velocity 

in Plexiglas, the fracture surface acquires 

visible roughness with a wavelength of 
approximately one millimeter. The 

roughness results from the violent creation 

of subsurface branches. The amplitude of 
the surface roughness is two orders of 

magnitude smaller than the depth of the 
subsurface branches. FIGURE 3 

the crack that might be expected to force it to deviate 

from a straight line. 
Moving cracks are even more prone to instability than 

Yoffe's calculation shows. Emily Ching, Hiizu Nakanishi 

and James Langer9 have pointed out that, if one looks out 

in front of a crack moving at any speed and asks in what 

direction the stresses act most strongly to tear material 

apart, the answer is that the largest stresses are straight 

ahead of the crack, but at right angles to its direction of 

motion. According to this calculation, cracks should al­

ways move perpendicular to themselves, and stable motion 

should be impossible. 
Thus, from the viewpoint of classical elasticity, as­

suming that cracks are stable leads to an equation of 

motion the cracks do not obey, and probing stability of 

cracks more deeply makes it seem puzzling that they are 

able to propagate at all. 
These difficulties have partly been answered by cal­

culations at the atomic scale. There is a very special set 

of forces between atoms, discovered by Leonid Slepyan, 10 

which makes it possible to find analytical solutions for 

cracks moving in lattices. The behavior of cracks in these 

models has several surprising features, but all of them 

are mirrored in the experiments. These features are:11 

t> Birth: There is a range of velocities at which steady 

crack motion is forbidden. The range starts at zero and 

lasts until around 20% of the speed of sound, after which 

crack motion becomes possible. 
t> Childhood: Following the forbidden band, a range of 

velocities exists for which steady crack motion is allowed 

and perfectly stable. At exactly the same externally ap­

plied stress, however, a stationary crack could also be 

a 
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stable. 
t> Crisis: Above a critical velocity, steady crack motion 

becomes unstable. 
Careful investigation of solutions of these models 

shows both how to defeat the instabilities lurking behind 

continuum theory and how the crack tip disintegrates 

when pressed too hard. For a range of low velocities, 

steady, moving crack solutions are completely stable. As 

the crack speeds up, the relativistic contraction discovered 

by Yaffe becomes more and more important, until eventu­

ally horizontal bonds above the crack line begin to snap. 

Whether the crack arrives at this point depends, of course, 

on how hard it is being pulled; once it happens, however, 

perfect steady motion along a line becomes impossible. 

Simulations, such as that in the upper right of figure 5, 

have shown that the crack might decide to build treelike 

patterns of subsurface cracks once steady motion becomes 

impossible. 
Having seen fracture trees in simulation, 12 we set out 

to find them in experiment. Our first try involved an 

ill-considered attempt to sand down a piece of Plexiglas 

that nearly set a milling machine on fire (Fineberg takes 

no responsibility for Marder's fine efforts in the labora­

tory), but soon we did better,13 as shown in the upper 

right of figure 4. So extensive does the network of 

branches in Plexiglas become that it explains the inability 

of cracks to accelerate to the predicted limiting speed. 14 

Once instability sets in, pulling more on a crack simply 

makes it dig in its heels harder, generating that much 

more subsurface damage but scarcely leading to any more 

acceleration. In some simulations, as shown on the left 

side of figure 5, pulling harder on a crack can actually 

60 

CRACKS IN PLEXIGLAS travel differently, depending on the force with which they are pulled. 

a: For relatively gentle forces, cracks travel calmly, their velocity increasing smoothly and 

slowly with time (red trace). Beyond a critical velocity, cracks move with wildly undulating 

speed (black trace). b: Slowly moving cracks tend to leave smooth surfaces (lower image). 

Cracks propagating at speeds above the critical velocity leave a thicket of small branches 

penetrating the surface behind them (upper image). FIGURE 4 
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COMPUTER SIMULATIONS in a simple atomic-scale model display a transition between smoothly moving cracks (red trace and 
lower right) and a violent, branching instability (black trace and upper right) that is surprisingly similar to experiment. Just as 
in experiments, the transition is a function of the energy stored per unit length to the right of the crack. The velocity, v, is 
measured relative to the shear wave speed and the time, t, relative to the vibrational period of the atomic bonds. FIGURE 5 

slow it down. Over 90% of the energy being fed to the 
tip of a crack can be consumed by subsurface instability. 

The key and the glass 
Engineering fracture mechanics has had enormous success 
in improving the safety of structures in this century. 
Attempts to understand the mechanism of fracture at an 
atomic level have not yet had a comparable impact. The 
main reason is not hard to find. 

Structural materials in common use have evolved 
from a process of trial and error that has occupied thou­
sands ofyears.2 At a microscopic level, they are incredibly 
complex. For example, Plexiglas, which in figures 4 and 
5 we blithely compare with a triangular lattice, is actually 
composed of molecules a million units long, tangled about 
one another in an amorphous web. Iron only becomes 
useful after the addition of subtle impurities in elaborate 
industrial processes. The most widely used structural 
material of all-wood-obtains marvelous mechanical 
properties in ways that humans have not yet learned to 
imitate. 

Green twigs bend and dry twigs snap, but while the 
dislocations shown in figure 2 provide an explanation for 
the ductility of copper crystals, they help little with some­
thing as noncrystalline as Plexiglas, let alone a tree. 
Almost all of solid-state physics rests upon calculations 
carried out in crystals, but whereas the perfect crystal 
makes a wonderful electrical conductor, it makes a lousy 
brick. The largest remaining challenge for physics in the 
study of how things break is to begin to bridge the gap 
between simple model systems and the rich diversity of 
the real world. Computer simulations have an important 
role to play15•16 and can treat an imposing number of 
atoms, but conceptual understanding of how to reason 
from the small to the large will play an equally important 
role . The computer can treat 100 million atoms for a few 
times 10-12 seconds, but we need to understand 1023 atoms 
on time scales of minutes or years. 

Eugene Wigner remarked that solid-state physics 
"deals in a scientific way with those subjects with which 
we must deal in our everyday experience. For example, 
we are never afraid when dropping a key that it will fly 

to pieces, as a glass would."17 This first fact that children 
learn about solids seems, however, to be one of the last 
that scientists will be able to explain. A microscopic 
picture of the strength of solids has begun to emerge, but 
much more remains to be learned. 
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