Go ahead...stretch your budget

T2a = 1a+ 00.014087

When Picoseconds aren't necessary... your best solution ...QC 9000 Series Pulse Generators

9314 - four pulse outputs with independent pulse width and delay controls.

9412 - dual outputs with independent pulse width and delay controls.

9318 - eight pulse outputs with independent pulse width and delay controls

Feature-Packed Units

- · Designed for EO Use Up to 8 Channels
- Standard RS232 Interface
- Special Modes
- · Digital Control

Call (406) 586-3159 to speak with a systems engineer about your specific application.

Quantum Composers, Inc Intelligent Software, Instruments & Controls

PO Box 4316, Bozeman MT 59772 70252.3410@compuserve.com

Phone (406) 586-3159 Fax/BBS (406) 586-3220 http://ourworld.compuserve.com/homepages/QuantumCom

Circle number 160 on Reader Service Card

Our quality system is registered to ISO 9001 (608) 787-6700, FAX (608) 787-2226

A division of ALTEC International, Inc

AVS Show-Booth #231 Circle number 161 on Reader Service Card those superconducting samples in which the Cooper pairs form at temperatures well above $T_{\rm c}$.

Such infrared absorption bands were subsequently observed by Dirk Van der Marel and collaborators at the University of Groningen and were reported in a paper published in 1995.2 Their work supported our proposal that it is the phase winding mechanism that leads to the lowering of T_c in the underdoped samples.

Another significant consequence of the phase winding mechanism discussed in our 1990 paper is the concept that phase winding is a manifestation of the tendency of Cooper pairs to localize in this region of the high- $T_{\rm c}$ phase diagram. This leads to an extraordinary sensitivity of the superconducting phase coherence in these materials to d-band blockers such as zinc, or to other localizing agents such as praesodymium. The existence of localized pairs on the insulating side of the superconductor/insulator phase boundary can explain the anomalously long ranged proximity tunneling observed recently in YBCO/PBCO multilayers. Here, regions of a high- $T_{\rm c}$ YBCO superconductor are separated by spacers that are driven insulating by replacing yttrium with praesodymium.³ praesodymium leads to Cooper pair localization, which is overcome by the injection of mobile Cooper pairs from the adjoining YBCO. The injected pairs can then propagate the phase of the order parameter for hundreds of angstroms through the insulating spacers, thus leading to long-range phase coherence in the multilayer samples.

References

- 1. S. Doniach, M. Inui, Phys. Rev. B 41, 6668 (1990).
- J. H. Kim et al., Physica C 247, 297 (1995). 3. S. Doniach, J. Phys. Chem. Solids 57,
 - 506 (1996).

SEBASTIAN DONIACH Stanford University Stanford, California

Quarternionic QM Updates Provided at ASI Web Site

R eaders of David Finkelstein's review of my book Quarternionic Quantum Mechanics and Quantum Fields (June, page 58) may want to know that I have set up a page at the Institute for Advanced Study's Web site on which I briefly describe new work on topics discussed in the book and indicate how the relevant papers can be obtained. One such paper, cowritten with Andrew Millard,

addresses issues raised in Finkelstein's review concerning the trace action principle. The Web page is at http://www.sns.ias.edu/~adler/Html/ quaternionic.html.

STEPHEN L. ADLER

Institute for Advanced Study Princeton, New Jersey

More on Vavilov's Contributions to 20th-century Physics

Sergei Vavilov's nephew Yu. N. Vavilov, writing with B. M. Bolotowsky in your December 1995 issue ("Letters," page 11), pleads that his uncle's role in the discovery of Čerenkov radiation, as well as other scientific achievements, be more fully recognized in the West.

We agree that Sergei Vavilov was a distinguished figure in 20th-century physics, and, in particular, we support the suggestion that the term "Vavilov-Čerenkov radiation" be used more widely in the West.

What Yuri Nikolaievitch and his colleague omitted to say, but may be of interest to your readers, is that Sergei Vavilov was probably the first scientist to observe a nonlinear optic effect. In 1926, with Vadim L. Levshin, he found a reduction in the absorption of light by uranium glass with an increase of intensity of 454 nm light from a high-intensity spark source.1 And it was Vavilov who introduced the term "nonlinear optics" into the literature, in a passage in his 1950 book Mikrostruktura sveta ("The Microstructure of Light").

We include a translation of that passage in our 1995 article entitled "A History of Optics and Optoelectronic Physics in the Twentieth Century,"2 in which we discuss Vavilov's contributions. In fact, in our discussion of the discovery of Čerenkov radiation, we point out that Vavilov was the author of a 1934 paper,3 which immediately followed the experimental paper of his student Pavel Čerenkov, in Doklady Akademii Nauk SSR in which he correctly postulated fast electrons as the origin of the new phenomenon.

We also describe a brush that Vavilov had with Fritz Weigert in 1922, when Vavilov incorrectly disputed Weigert's claim to have observed polarized fluorescent light at a time when it was universally believed not to be polarized.

We would also like to draw your readers' attention to two useful sets of biographical essays about Vavilov that appeared in *Uspekhi fizicheskikh* nauk in 1973 and 1975.⁵ The essays include two by Ilya Frank, a col-

For Your Optics Library

Free 130-page catalog from Rolyn, world's leading supplier of "Off-The-Shelf' optics, offers 24-hour delivery of simple or compound lenses, filters, prisms, mirrors, beamsplitters, reticles plus thousands of other stock items.

off-the-shelf-optics 24-hour delivery ROLYN OPTICS

706 Arrowgrand Circle, Covina, CA 91722-2199
Phone (818) 915-5707 • (818) 915-5717
Fax (818) 915-1379

Circle number 165 on Reader Service Card

JOURNAL OF

MATHEMATICAL PHYSICS

Creative Application of Mathematical Techniques to Physics and Engineering Problems

This international journal cuts across all fields of study to bring original research to theoretical and mathematical physicists. Providing a unique link among specialists, the *Journal of Mathematical Physics* applies mathematical solutions to problems in physics, then develops mathematical methods suitable for the formulation of physical theories.

Research is presented in context, always addressing a general physical or mathematical problem before proceeding to a specific approach.

There are no page charges for publication.
Keep current with the latest developments in this exciting field...Subscribe today!

To For rates and ordering information call toll-free: 1-800-344-6902.

American Institute of Physics Circulation & Fulfillment 500 Sunnyside Boulevard Woodbury, NY 11797-2999 league of Vavilov's who shared the 1958 Nobel Prize with Čerenkov and Igor Tamm, as well as Vavilov's own reminiscence entitled "Recollections of Physicists." (The essays are available in Soviet Physics—Uspekhi, an English-language version of the Russian journal published by the American Institute of Physics.⁶)

References

- S. I. Vavilov, V. L. Levshin, Z. Phys. 35, 920 (1926).
- R. G. W. Brown, E. R. Pike, in Twentieth Century Physics, B. Pippard, A. Pais, L. Brown, eds., Bristol (England)/Boston, Institute of Physics/American Institute of Physics (1995), p. 1385.
- S. I. Vavilov, Dok. Akad. Nauk SSR 11, 457 (1934).
- P. A. Čerenkov, Dok. Akad. Nauk SSR 11, 451 (1934).
- 5. Usp. fiz. nauk **111**, 702 (1973); **114**, 533 (1974).
- 6. Sov. Phys. Usp. **16**, 702 (1974); **17**, 950 (1975).

ROY PIKE
University of London
London, England

ROBERT G. W. BROWN
University of Nottingham

Nottingham, England Sharp Laboratories of Europe Ltd Oxford, England

Swann's Way Helped Shape Lawrence's Work on Cyclotron

L iverpool and Berkeley: The Chadwick-Lawrence Letters" by Andrew Brown (May, page 34) includes some interesting but fragmentary comments concerning the construction of Ernest Lawrence's first cyclotron. However, like so many other accounts of the early days of the cyclotron, the article makes it sound as though both Lawrence and the cyclotron emerged from a vacuum. They did not.

When Lawrence was a graduate student in the 1920s, he gained much from having as his mentor a professor of physics named W. F. G. Swann. Formerly at the Carnegie Institution of Washington in Washington, DC, Swann was already teaching at the University of Minnesota in 1923, when Lawrence enrolled there to study for a master's degree.

In the next two years, Lawrence accompanied Swann as a continuing graduate student when Swann became a professor of physics first at the University of Chicago and then at Yale University. Throughout their association, Swann made calculations of the effects of static and oscillating electric and magnetic fields upon the energies and momenta of the cosmic-ray parti-

cles. It was at Yale that Lawrence completed work on his PhD, which included preparing a dissertation on the photoelectric effect in potassium vapor. He stayed on as a research fellow and assistant professor, but then, in 1928, accepted an offer to become an associate professor at the University of California, Berkeley.

From 1946 to 1959, I worked at the Bartol Research Foundation in Swarthmore, Pennsylavnia, and had many discussions concerning developments in physics with the foundation's long-time director—Swann. Those conversations became intense between 1954 and 1959, at teatime on Saturday afternoons. Swann was forever seeking fresh viewpoints and new concepts that might lead to advances in physics. Consequently, he often reviewed the procedures that he and Lawrence had developed and he discussed some of the studies they had undertaken back in the 1920s.

For example, he described how they had asked Irving Langmuir, then at General Electric's research laboratory in Schenectady, New York, for information on high-vacuum techniques and lowest attainable pressures. From those data, they had calculated the lengths of mean free paths of particles. The estimates of path lengths were very small in comparison with the distances to be traversed by particles experiencing an appreciable increment of energy in the accelerating electric field. In other words, attainable kinetic energies would be much limited by collisions of the accelerated ions with neutral molecules pervading the entire region of the magnetic field. Consequently. Lawrence and Swann had shelved the idea of creating a particle accelerator.

During my teatime conversations with him in the 1950s, Swann maintained that he had always emphasized to Lawrence that a particle could be brought to a high kinetic energy either by applying one great "push" to the particle, as was later done by Robert J. Van de Graaff, or by supplying many "small pushes," which is what Lawrence did.

Lawrence certainly went to Berkeley in 1928 with the idea of developing the cyclotron very much in mind. And it is clear that the calculations, thinking and discussions he engaged in with Swann must have provided him with a strong foundation and impetus for going forward with the design and construction of his first cyclotron. Swann, on the other hand, turned his attention again specifically to cosmic rays.

C. E. MANDEVILLE

Phoenix, Arizona ■