Go ahead...stretch your budget

T2a = 1a+ 00.014087

When Picoseconds aren't necessary... your best solution ...QC 9000 Series Pulse Generators

9314 - four pulse outputs with independent pulse width and delay controls.

9412 - dual outputs with independent pulse width and delay controls.

9314E - provides control of eight edges, generating four pulses.

9318 - eight pulse outputs with independent pulse width and delay controls

Feature-Packed Units

- · Designed for EO Use
- Up to 8 Channels
- Standard RS232 Interface
- Special Modes
- · Digital Control

Call (406) 586-3159 to speak with a systems engineer about your specific application.

Quantum Composers, Inc Intelligent Software, Instruments & Controls

PO Box 4316, Bozeman MT 59772 70252.3410@compuserve.com

Phone (406) 586-3159 Fax/BBS (406) 586-3220 http://ourworld.compuserve.com/homepages/QuantumCom

Circle number 160 on Reader Service Card

A division of ALTEC International, Inc AVS Show-Booth #231 Circle number 161 on Reader Service Card those superconducting samples in which the Cooper pairs form at temperatures well above $T_{\rm c}$.

Such infrared absorption bands were subsequently observed by Dirk Van der Marel and collaborators at the University of Groningen and were reported in a paper published in 1995.2 Their work supported our proposal that it is the phase winding mechanism that leads to the lowering of T_c in the underdoped samples.

Another significant consequence of the phase winding mechanism discussed in our 1990 paper is the concept that phase winding is a manifestation of the tendency of Cooper pairs to localize in this region of the high- $T_{\rm c}$ phase diagram. This leads to an extraordinary sensitivity of the superconducting phase coherence in these materials to d-band blockers such as zinc, or to other localizing agents such as praesodymium. The existence of localized pairs on the insulating side of the superconductor/insulator phase boundary can explain the anomalously long ranged proximity tunneling observed recently in YBCO/PBCO multilayers. Here, regions of a high- $T_{\rm c}$ YBCO superconductor are separated by spacers that are driven insulating by replacing yttrium with praesodymium.³ praesodymium leads to Cooper pair localization, which is overcome by the injection of mobile Cooper pairs from the adjoining YBCO. The injected pairs can then propagate the phase of the order parameter for hundreds of angstroms through the insulating spacers, thus leading to long-range phase coherence in the multilayer samples.

References

- 1. S. Doniach, M. Inui, Phys. Rev. B 41, 6668 (1990).
- J. H. Kim et al., Physica C 247, 297 (1995). 3. S. Doniach, J. Phys. Chem. Solids 57,
 - 506 (1996).

SEBASTIAN DONIACH Stanford University Stanford, California

Quarternionic QM Updates Provided at ASI Web Site

R eaders of David Finkelstein's review of my book Quarternionic Quantum Mechanics and Quantum Fields (June, page 58) may want to know that I have set up a page at the Institute for Advanced Study's Web site on which I briefly describe new work on topics discussed in the book and indicate how the relevant papers can be obtained. One such paper, cowritten with Andrew Millard,

addresses issues raised in Finkelstein's review concerning the trace action principle. The Web page is at http://www.sns.ias.edu/~adler/Html/ quaternionic.html.

STEPHEN L. ADLER

Institute for Advanced Study Princeton, New Jersey

More on Vavilov's Contributions to 20th-century Physics

Sergei Vavilov's nephew Yu. N. Vavilov, writing with B. M. Bolotowsky in your December 1995 issue ("Letters," page 11), pleads that his uncle's role in the discovery of Čerenkov radiation, as well as other scientific achievements, be more fully recognized in the West.

We agree that Sergei Vavilov was a distinguished figure in 20th-century physics, and, in particular, we support the suggestion that the term "Vavilov-Čerenkov radiation" be used more widely in the West.

What Yuri Nikolaievitch and his colleague omitted to say, but may be of interest to your readers, is that Sergei Vavilov was probably the first scientist to observe a nonlinear optic effect. In 1926, with Vadim L. Levshin, he found a reduction in the absorption of light by uranium glass with an increase of intensity of 454 nm light from a high-intensity spark source.1 And it was Vavilov who introduced the term "nonlinear optics" into the literature, in a passage in his 1950 book Mikrostruktura sveta ("The Microstructure of Light").

We include a translation of that passage in our 1995 article entitled "A History of Optics and Optoelectronic Physics in the Twentieth Century,"2 in which we discuss Vavilov's contributions. In fact, in our discussion of the discovery of Čerenkov radiation, we point out that Vavilov was the author of a 1934 paper,3 which immediately followed the experimental paper of his student Pavel Čerenkov, in Doklady Akademii Nauk SSR in which he correctly postulated fast electrons as the origin of the new phenomenon.

We also describe a brush that Vavilov had with Fritz Weigert in 1922, when Vavilov incorrectly disputed Weigert's claim to have observed polarized fluorescent light at a time when it was universally believed not to be polarized.

We would also like to draw your readers' attention to two useful sets of biographical essays about Vavilov that appeared in *Uspekhi fizicheskikh* nauk in 1973 and 1975.⁵ The essays include two by Ilya Frank, a col-