DyNAMICS OF CARDIAC
ARRHYTHMIAS

n elderly gentleman

with heart disease was
admitted to hospital for
treatment of an abnormal
heart rhythm called ven-
tricular tachycardia. This
potentially fatal rhythm can
occur days, or even years, af-
ter a heart attack. It is as-
sociated with an abnormally
rapid heartbeat that arises
from tissue in the heart at-
tack-damaged portions of the
ventricles—the two main pumping chambers of the heart.
(See the box on page 41.)

Treatment of ventricular tachycardia is difficult:
Drugs are often ineffective, and they can produce adverse
side effects; surgery is possible only in a small minority
of patients; and implantable devices that terminate this
arrhythmia by direct electrical stimulation of the heart
do not prevent its recurrence. In the case of the elderly
gentleman, the physicians decided to use a new approach
called catheter ablation.! With the patient under local
anesthetic, they first inserted three catheters into blood
vessels and advanced them into specified sites in the
patient’s heart. (See figure 1.) The function of the three
catheters was to record electrical activity at these sites
and deliver short electrical stimuli. (See figure 2.)

With the three catheters in place, the physicians
reinitiated the ventricular tachycardia. They could then
localize the abnormal region in the left ventricular wall
by delivering short stimuli during the induced tachycardia
and carrying out an on-line analysis of the subsequent
changes in timing of the arrhythmia from different sites
within the ventricle. Then they guided a fourth, “ablative”
catheter to the pathological region thus identified. This
catheter is designed to ablate the abnormal tissue by
delivering 40 to 50 watts of radio-frequency heating di-
rectly to the offending spot. The local temperature was
thus raised above 50 °C, destroying the abnormal tissue.

The RF ablation put an end to the patient’s induced
tachycardia. After that it could not be reinitiated, and
the patient went home the next day.

This episode happened at Beth Israel Hospital in
Boston, where I was spending a sabbatical year. That
year strengthened my conviction that complex cardiac
arrhythmia is as much a problem in physics and mathe-
matics as it is a medical problem.

I will describe some basic properties of excitable media
and pacemaker oscillations, and show how they can lead
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Physicists, considering the heart as an
excitable medium driven by limit-cycle
oscillators, can help cardiologists gain
important insights into the prevention
and control of deadly arrhythmias.

Leon Glass

to novel theoretical insights
into the dynamics of cardiac

arrhythmias. I make two
main theoretical assump-
tions:

> The heart is an excit-
able medium. That is to
say, a small but finite per-
turbation from equilibrium
can lead to a large excursion
away from equilibium—an
excitation—before equilib-
rium is restored.? In the
case of the heart, the excitation is associated with an
electromechanical wave that induces the cardiac-muscle
contractions that pump deoxygenated blood to the lungs
and oxygenated blood to the rest of the body.

In a spatially extended system the excitation waves
propagate through the medium following three rules:

(1) Some time after a wave has passed through the
medium, a so-called refractory period sets in, during which
a second wave cannot be initiated.

(2) The longer the elapsed time between one excita-
tion wave and the next, the greater will be the duration
of the refractory period following the second excitation
wave. This correlation is called the restitution property.

(3) The propagation velocity of an excitation wave
increases with the time elapsed since the passage of the
last excitation wave. This correlation is called the recov-
ery property, or the dispersion property.
> The heart’s natural pacemakers can be thought
of as limit-cycle oscillators. The heart walls normally
have a single specialized pacemaker region. In general,
perturbations delivered to this pacemaker tissue will lead
to a resetting of its rhythm. This resetting can be partially
understood in terms of the topology of nonlinear oscilla-
tors, without recourse to details of the heart’s physiological
mechanisms. The oscillation is rapidly reestablished by
a single stimulus. Therefore the effects of multiple stimuli
delivered to the heart can be predicted in terms of the
resetting of pacemakers by a single stimulus.®? (See the
article by Arthur Winfree in PHYSICS TODAY, March 1975,
page 34.)

Though these basic properties are straightforward,
their playing out in concrete experimental and clinical
settings leads to unexpected subtleties. To illustrate, I
will briefly survey theoretical analyses of two different
cardiac problems: atrioventricular heart block and re-
entrant tachycardia.

Atrioventricular heart block

In the normal heart rhythm, there is a synchronization
between the activity in the atria and the ventricles. This
synchronization is accomplished by a conductive pathway
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that propagates the electrical activation from its origin in
the sinus node to the ventricles by way of the atrioven-
tricular node. But abnormalities in the region of the
atrioventriclar node can upset the synchronization be-
tween the atria and the ventricles. In one type of abnor-
mality, called atrioventricular heart block, there are regu-
lar repetitive sequences in which there are more atrial
contractions than ventricular contractions. In a so-called
2:1 atrioventricular block, for example, there is a repeating
pattern of two atrial contractions for each ventricular
contraction. Physicians readily diagnose artioventricular
heart block by means of electrocardiograms, and serious
cases are treated by implanting a prosthetic pacemaker
that drives the ventricles at a sufficiently rapid rate.

An early theoretical model of atrioventricular heart
block was put forward in 1924 by the German physician
Woldemar Mobitz.* He showed that if the conduction time
through the atrioventricular node depends only on the
recovery time since the previous excitation, then suffi-
ciently rapid activation of the atria should induce the
rhythms of atrioventricular heart block. The block would
appear, he argued, when the stimuli became so premature
that they began to infringe upon the refractory period.

A direct test of Mobitz’s theory was not carried out
until 1987, when Michael Rosengarten, a clinical colleague
of mine at McGill University, carried out specialized stimu-
lation protocols during clinical electrophysiological test-

HUMAN HEART’S electrical
system, with three catheters
(shown in colors) inserted for
clinical investigation of an
abnormally fast rhythm called
ventricular tachycardia. The
catheter termination points are:
near the sinus mode in the
high right atrium (purple
catheter), in the right atrium
near the bundle of His (green),
and in the right ventricular
apex (blue). (Adapted from E.
Horowitz, Electrophysiology
Study, Health Trend Publ.,
Menlo Park, Calif., 1996.)

Left atrium

Bundle of His FIGURE 1
Purkinje ing.®> First he paced the atria
fibers with a fixed period of 1000

milliseconds. Then he deliv-
ered premature stimuli at
various intervals following
every eighth regular stimu-
lus. Figure 3a shows the re-
sults from a human subject.
As the recovery time between
an activation of the His bun-
dle (labeled H) and the appli-
cation of the next stimulus
(labeled S) is made succes-
sively shorter, the following
conduction time (to the next
activation) becomes progres-
sively longer. Finally, when
the recovery time becomes too
short, the conduction is
blocked.

These results let us con-
struct a nonlinear iterative
model based solely on clinical
measurements and the hypothesis that the conduction
time depends on the recovery time. The effects of periodic
stimulation at any frequency can be predicted by iteration.
The stimulation-period dependence of the ratio of con-
ducted beats to stimuli, as shown in figure 3b, is a Cantor
function—the so-called Devil’s staircase.® This interesting
sequence of ratios often appears when an oscillator “locks

Left ventricle

The Heart’s Electrical System

he mammalian heart is separated into four chambers: the

right and left atria and the right and left ventricles. (see
figure 1.) The atria collect blood returning from the body,
and pass it down to the ventricles, which pump it back out
into the arterial system. The normal cardiac rhythm is
generated in a specialized region in the right atrium called the
sinus node, an autonomous natural pacemaker, whose fre-
quency can be modulated by environmental needs. For
humans at rest, the normal heart beats between 60 and 100
times per minute. Faster rhythms are called tachycardias. In
the normal heart, the atria are electrically insulated from the
ventricles except in the region of the atrioventricular node.
The excitation originating in the sinus node travels through
the atria, through the atrioventricular node and then into the
ventricles through a specialized conduction system consisting
of the bundle of His and the Purkinje fibers.
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CARDIAC ELECTRICAL ACTIVITY recorded by the catheters
shown in figure 1, during normal sinus rhythm (a). The black
reference trace is a standard surface electrocardiogram. The
colored traces shows activity recorded by the internal catheters
of figure 1. With atrial, His-bundle and ventricular deflections
labeled, respectively, by A, H and V, one sees the passage of
excitation activity from the atria to the ventricles. Traces
recorded during ventricular tachycardia (b) indicate the
retrogade travel of the pathological rapid rhythm to the atria
from its origin in the ventricles. Every second excitation is
blocked, so that the atria are excited at only half the frequency
of the ventricles. (Courtesy of T. Hadjis and M. E. Josephson,
Beth Israel Hospital, Boston.) FIGURE 2

STIMULUS AND BLOCKED RESPONSE. a: After a string of
His-bundle activations (H) paced by regular atrial stimuli (S) at
1-second intervals, the recovery time (red bars) between
activation and subsequent stimulus was gradually shortened,
causing a progressive lengthening of the following conduction
time (blue bars) to the next response. In the last panel the
recovery time 1s so short that the response is blocked.> b:
Theoretical calculation of the ratio of successfully conducted
heart beats to imposed atrial stimuli, shown as a function of
stimulation period. The result, from a nonlinear iterative model
based on the dependence of the conduction time on the
immediately previous recovery time, is a Cantor function—the
sort of “Devil’s staircase” often encountered when two
oscillators compete.® ¢: In fairly good agreement with the Devil’s
staircase prediction, atrial stimulation with a period of 460 ms
(top pair of traces) produces one His-bundle response every atrial
stimulus pulse (marked in red). At the faster 310-ms stimulation
rate, by contrast, the bottom pair of traces shows a His-bundle
response only for every second stimulus pulse. The failed
excitations have been blocked in the atrioventricular node.
(Adapted from ref. 5.) FIGURE 3
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on” to a periodic driver with a competing period. (See the
article by Per Bak in PHYSICS TODAY, December 1986, page 38.)

For any stimulation period, there is a predicted per-
centage of conducted beats. Any rational ratio is permit-
ted, but the relevant issue is the parameter range for a
particular rational ratio. The range of stimulation peri-
ods for most ratios is small. The most common patterns
of atrioventricular heart block, such as 4:3, 3:2 and 2:1,
have the greatest ranges in parameter space. In the
situation under discussion, stimulation of the atria with
a period of 460 milliseconds yields a 1:1 rhythm; a stimu-
lation period of 310 ms yields 2:1; and various interme-
diate periods generate other rhythms. (See figure 3c.)
The observed boundaries for different atrioventricular
heart block rhythms correspond to the predictions within
about 10%.

Reentrant tachycardia

From the perspective of a cardiologist, these theoretical
results are largely of academic rather than clinical inter-
est. Atrioventricular heart block is easily diagnosed with-
out mathematics, it is often benign and it can readily be
treated. By contrast, reentrant tachycardias, in which an
excitation travels a circuitous path, are often dangerous
or even fatal. Ventricular tachycardias following a heart
attack are believed to occur generally as a consequence of
reentrant arrhythmias.

The beginning of the theory of reentrant tachycardias
also goes back to the turn of the century. In 1913 the
Canadian physiologist George Mines generated a re-
entrant excitation in a ring of cardiac muscle derived from
a dog’s heart.” (See figure 4a.) Rapid stimulation of one
point on the ring led to the development of a circulating
pulse, and cutting the ring stopped the activity. The first
theoretical analysis of the circulation of an excitation on
a one-dimensional ring was carried out in 1946, by the
mathematician Norbert Wiener and the physiologist Ar-
turo Rosenblueth.® If v is the propagation velocity and
L is the ring’s circumference, there should be a stable
excitation wave of period L/v if that period exceeds the
refractory time.
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REENTRANT ARRHYTHMIA IN A RING of heart muscle. a: A
ring of tissue cut from a dog’s right ventricle in 1913 by
George Mines.” He demonstrated that the ring could
support periodic circulating excitation and suggested that
such a mechanism might underlie some tachycardias in
people. b: Experimental measurement, in 1988, of the
timing of impulses traveling around a ring of canine heart
tissue shows fluctuations in cycle time from one beat to the
next. (Adapted from ref. 9.) ¢: Theoretical computation of
cycle time fluctuation, which is associated with degenerate
Hopf bifurcation. (Adapted from Ito and Glass, ref. 11.)
FIGURE 4

A reexamination of Mines’s ring experiment by
Lawrence Frame and Michael Simson in 1988 showed
unexpected results. In a ring of canine heart muscle,
Frame and Simson observed complex fluctuations in the
cycle times during reentrant excitation.” (See figure 4b.)
Numerical studies of excitation propagation in rings have
also shown the appearance of fluctuations as the ring size
becomes smaller.!?

These observations led my colleagues and me to ex-
tend the Wiener—Rosenblueth analysis by taking into
account the recovery and restitution properties during
reentrant excitation. If, in our models, there is a steep
decline in the duration of the contraction phase with
decreasing recovery time, we find that shrinking the ring
size calls forth a kind of instability called a degenerate
Hopf bifurcation. This instability in our numerical and
analytical studies leads to the development of local alter-
nating fluctuations of cycle time and contraction-phase
duration that are quite similar to experimental observa-
tions with heart muscle rings.! (See figure 4c.)

Excitation waves traveling around a one-dimensional
ring spring additional surprises. Cardiologists recognize
that a single stimulus delivered during reentrant tachy-
cardia can either reset or annihilate the tachycardia,
depending on the phase and location of the stimulus.!
Theoretical models of reentrant excitation in a one-dimen-
sional ring provide a mathematical underpinning for these
clinical observations. These models demonstrate that the
outcome of a single, low amplitude stimulus depends on
its amplitude, phase and spatial location. Moreover, one
can predict the effects of periodic stimulation from the
resetting induced by a single stimulus pulse.?

Wiener and Rosenblueth also proposed that waves on
two-dimensional sheets of tissue might underly serious
arrhythmias. But they did not recognize that two-dimen-
sional reentrant waves could be found in a homogeneous
two-dimensional medium. The demonstration of spiral
waves in spatially homogeneous chemical media in the
1960s and 1970s led to increased interest in theoretical
and experimental studies of reentrant waves.!> Nowadays
the work is focused on analysis of reentrant waves in the
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heart itself. Theoretical computations of the propagation
of excitable waves in anatomically correct models of the
heart demonstrate the possibility of spiral waves,4 as
shown in figure 5a.

Another outstanding recent success is the optical
observation of spiral reentrant waves in intact rabbit
hearts. Voltage-sensitive dyes injected into tissue can
exhibit differential fluorescence that depends on the local
membrane voltage. One can thus record wave propagation
in heart tissue by measuring fluorescence during the
course of induced ventricular tachycardias in laboratory
animals.’® (See figure 5b.)

Despite such successes, it is often difficult to deter-
mine the anatomical and physiological basis of serious
cardiac arrhythmias in an individual patient. If, for
example, an arrhythmia is associated with a reentry path
of which a portion is essentially one-dimensional, then
catheter ablation might be the most effective therapy. But
if the reentrant wave is essentially two- or three-dimen-
sional, always activating broad fronts, the small lesion
inflicted by an ablation catheter would be unlikely to
succeed.

The recent lively debate in the pages of Sciencel®
over the stability of single and multiple reentrant waves
in cardiac tissue has highlighted the difficulties of under-
standing the geometry of ventricular tachycardia or its
lethal cousin, ventricular fibrillation. These are areas in
which a blending of theoretical, experimental and clinical
insights is essential for progress. The ongoing research
is focusing on the many challenges of measuring and
analyzing reentrant wave propagation in the clinic, the
laboratory and the nonlinear partial differential equations.
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REENTRANT SPIRAL WAVE
excitation. a: In this
anatomically correct model of
a dog heart the excitable
medium was modeled by the
FitzHugh-Nagumo equation,
a partial differential equation
that provides a simplified
model. The color code
indicates calculated activation
times (in milliseconds) of
various regions of the heart
muscle. (Adapted from ref. 14.)
b: Reentrant spiral-wave
excitation observed in a rabbit
heart with voltage-sensitive
dyes demonstrates the
theoretically predicted spiral
waves of excitation on the
heart’s surface. The color
code indicates measured
activation times in
milliseconds. (Adapted from
ref. 15.) FIGURE 5.




Prospects
If the work of physicists in this area is to have an impact
in the practice of medicine, it is essential to translate our
mathematical and physical insights into useful guidelines
for clinical procedures. Here I discuss two different
approaches:

Extensive clinical data have indicated that the tran-
sition from the normal sinus rhythm to reentrant tachy-
cardia is often preceded by alternation in the timing of
complexes recorded on the electrocardiogram. Although
such alternations may be theoretically attributed to insta-
bilities or blocked conduction, their origin in particular
clinical settings is often obscure. Nevertheless, Richard
Cohen (MIT) and colleagues have demonstrated that the
appearance of such alternation in electrocardiograms dur-
ing normal sinus rhythm places patients at high risk for
reentrant tachycardia and sudden death.!” Cohen and his
colleagues are developing specialized software and hard-
ware to guide therapy and facilitate risk stratification for
seriously ill patients.

An alternative strategy for the clinical application of
nonlinear dynamics is based on the hypothesis that cardiac
arrhythmias may be associated with complex dynamics in
comparatively simple mathematical models. For example,
laboratory experiments have demonstrated deterministic
chaos in laboratory experiments with parts of animal
hearts.’® Because it is likely that some cardiac arrhyth-
mias can be modeled by deterministic equations for wave
generation and propagation in the heart, understanding
the dynamics may well yield fruitful new proposals for
forestalling or controlling dangerous arrhythmias through
the application imposed stimuli.

In the study of chaotic phenomena in recent years,
attention has been given to the notion of controlling chaos.
(See the article by Edward Ott and Mark Spano in PHYSICS
TODAY, May 1995, page 34.) Experimental cardiac studies
motivated by progress in this area have been initiated,
but they are still at the very early stages.!® The widely
used cardiological devices, such as pacemakers, defibrilla-
tors and antitachycardia devices, have been developed
largely by engineers and cardiologists using empirical
methods. Though these devices have proven themselves
highly reliable, I expect that development of the theory
will lead to new breakthroughs.

Many of the heart’s rhythms can be classified and
analyzed through methods of nonlinear dynamics. Direct
electrical stimulation of the heart leads to predictable
changes that can often be interpreted with simple theo-
retical models. The analysis and classification of complex
arrhythmia parallels similar advances in our qualitative
understanding and mathematical modeling of dynamics
and bifurcations in inanimate physical systems.

Mathematics can predict what will happen in human
hearts in a wide variety of settings. But the development
of this area has been hampered by the physician’s lack of
formal training in mathematics and physics, and by the
physical scientist’s lack of appreciation of the beautiful
and deep problems of clinical cardiology. In each patient,
the playing out of the basic principles sketched out in this
article, perhaps in concert with important phenomena we
don’t yet understand, leads to rhythms of unexpected
complexity. This is an area in which interdisciplinary
studies are absolutely essential. I encourage physicists
to seek out their local cardiologists and get started.
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Simon Guggenheim Memorial Foundation for supporting my sab-
batical leave at Beth Israel Hospital in Boston. I benefited from
many interactions with staff, fellows and physicians there, but my
greatest thanks go to Ary Goldberger and Mark Josephson, for
their gracious sharing of resources, knowledge and time. Thanks
to A. Panfilov for figure 5a, and to R. Gray for figure 5b. Thanks
also to T. Hadjis and A. Winfree for helpful suggestions on the
preparation of this article.
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