
How To Improve Your Image.

Improve your image by illustrating your scientific data with publication-quality graphs. Whether for journals, grants, or to demonstrate the results of your analysis, you'll find the easy-to-use SigmaPlot* scientific software the tool for you.

Powerful graphing flexibility

This powerful, award-winning program gives you stunning customized graphs that will show off your work in ways that plain text and graphs from spreadsheets simply cannot touch. With SigmaPlot, you have the flexibility to create graphs that communicate your scientific studies clearly and concisely. And with amazing ease.

Experience from the experienced

Thousands of your colleagues have already seen how SigmaPlot can help them create compelling graphs – like the one shown here. Researchers. Technicians. Professors. Scientists. Engineers. Over 100,000 of them! They've all come to rely on SigmaPlot for their publication-quality graphs.

To find out how you, too, can improve your image and illustrate your research data using SigmaPlot, call Jandel Scientific Software today.

Ask for your copy of our FREE full-color brochure.

1-800-452-6335

(International calls: 415-453-6700)

New versions for Macintosh® and Windows® 3.1, NT, and 95

APTSP066

Circle number 51 on Reader Service Card

William B. Thompson

n 17 October 1995, William B. Thompson died while swimming at Scripps Beach, a place close to both his university and his home. Bill was born on 27 February 1922 in Belfast, Northern Ireland, but he spent his student years in Canada. He graduated from the University of British Columbia in 1944 with a BA degree in physics and mathematics, and in 1947 with an MA degree in physics. He received a PhD in 1950 from the University of Toronto, having completed a thesis on solar physics under the supervision of Edward Bullard.

Bill was a pioneer in the development of plasma physics and its application to controlled thermonuclear research. In 1950 he became the theorist for the small group that began this research at Harwell Laboratory in the UK. Research on controlled fusion was declassified by international agreement in 1958, and shortly thereafter the UK Atomic Energy Authority established the Culham Laboratory for Fusion, where Bill served as head of the theoretical division. Following the declassification, Bill made it a personal goal to bring this new field of research to universities, and he became the UK's first professor of plasma physics and fusion in 1963, when a chair was established at the University of Oxford. He wrote one of the first monographs on plasma physics and its applications to controlled fusion, and he served as cochairman for the first international workshop on the subject. This workshop was the first activity of the International Atomic Energy Agency's new Center for Theoretical Physics in Trieste, Italy, and the proceedings of the workshop became a very important educational resource for a new generation of plasma physicists.

In 1965 Bill joined the physics faculty at the newly created campus of the University of California, San Diego, where he served as chairman of the department from 1969 to 1972. He was a founding associate editor of the Journal of Plasma Physics and worked on the publication from 1965 until 1990

Most of Bill's research was in basic plasma physics and magnetic fusion. He worked on the basis of magnetohydrodynamics, the calculation of transport coefficients, plasma heating, instabilities, diffusion, relativistic kinetic theory, counterstreaming plasmas, resonances, toroidal systems and guiding-center plasmas. He also contributed to a number of other fields, including cosmic rays, the origin of terrestrial magnetism, planetary dynam-

ics, antimatter, space science diagnostics and oceanography.

Bill retired in 1990 but remained active in many pursuits. He was a man of wide-ranging interests, broad erudition and great sociability. His friends and colleagues around the world fondly remember him as a brilliant scholar and Renaissance man who enlivened any conversation with wit, wisdom and good humor.

THOMAS M. O'NEIL University of California, San Diego La Jolla, California

Juan José Giambiagi

Juan José Giambiagi, a professor of physics at the Brazilian Center for Physics Research (known by its Brazilian initials, CBPF), died of cancer in Rio de Janeiro on 8 January.

Born in Buenos Aires on 18 June 1924, Giambiagi obtained the degree of doctor in physics at the University of Buenos Aires in 1950 and then worked as a postdoc in England with Leon Rosenfeld at the University of Manchester. In 1953 he came to Rio de Janeiro and worked as an associate professor at the CBPF until 1956. In that year, as Argentina moved toward democracy after the overthrow of dictator Juan Perón, Giambiagi returned to Buenos Aires as a professor of theoretical physics and head of the physics department of the faculty of natural and exact sciences of the University of Buenos Aires. In 1958 he went to Caltech on a Rockefeller Foundation fellowship and worked with Murray Gell-Mann. Back in Buenos Aires, he created an important group of physicists, including some who now work in Europe. He also became one of the founders of the Latin American School of Physics, together with Marcos Moshinsky (National Autonomous University, Mexico) and Leite Lopes in Rio.

Giambiagi gained an international reputation in 1972 when he published a paper in collaboration with Carlos Guido Bollini, on dimensional regularization. This method, which was independently and simultaneously discovered by Gerard 't Hooft and Martinus Veltman, is indispensable for the calculation of processes that involve the gauge fields that describe the basic interactions in particle physics. One of his major interests was to increase the cooperation among research institutes in Latin America. To that end, he served as director of the Latin American Center of Physics in Rio for eight years.

Giambiagi resigned his chair at the University of Buenos Aires in 1968 as

FIND ANGULAR POSITION WITH EASE AND PRECISION

GRAVITY
REFERENCED
INSTALL
ANYWHERE
UP TO ±60°
OPERATING
RANGE

Our precision tiltmeters give you new abilities to measure the angular movement and position of: • Antennae

- Lasers Telescopes Foundations
 Any machine or structure
- Use to find level, measure static tilts or determine pitch and roll. Choose from our:
- 500 Series nanoradian resolution ■ 700 Series – microradian resolution
- 900 Series 0.01 degree resolution

1336 Brommer St., Santa Cruz, CA 95062 USA Tel. (408) 462-2801 • Fax (408) 462-4418

Circle number 53 on Reader Service Card

PDE2D A General - Purpose PDE Solver

PDE2D is a finite element program which solves nonlinear systems of time-dependent, steady-state and eigenvalue partial differential equations in general 2D regions (and now also in 3D boxes). Up to fourth degree elements are used on a triangulation which can be automatically refined and graded, and extensive graphical output capabilities are provided. An interactive user interface makes PDE2D exceptionally easy-to-use, and all documentation, including examples, is on-line.

PDE2D is based on IMSL's PDE/PROTRAN, and is the result of over 20 years development.

A free copy of the interactive driver, a list of over 65 journal articles containing numerical results generated by PDE2D or PDE/PROTRAN, and other documentation, can be obtained from:

Granville Sewell P.O. Box 12141 El Paso, TX 79913 (915) 747-6845 gsewell@aol.com

Circle number 54 on Reader Service Card

a protest against the military dictatorship in Argentina. For the next nine years he lectured at the International Center for Theoretical Physics in Trieste, Italy, at several universities including those of Stasbourg, Paris and Turin, and at CERN. Returning to Brazil, he became a full professor at the CBPF in 1977.

J. LEITE LOPES

Brazilian Center for Physics Research Rio de Janeiro, Brazil with other people. His humor, sharp wit, deep concern and intellectual curiosity were a leavening agent for all his friends. He was one of the kindest, most sociable and truly concerned individuals that many of us have known.

SITARAM JASWAL JOHN HARDY

University of Nebraska Lincoln, Nebraska

PAUL M. PARKER Michigan State University East Lansing, Michigan

Donald J. Montgomery

Donald J. Montgomery, long a research professor at Michigan State University, died suddenly from a stroke on 19 January at the age of 78.

He received his BS in chemical engineering in 1939 and PhD in physics in 1945, both from the University of Cincinnati. He was an assistant professor at Princeton University in 1945-46, and then spent a couple of years in the UK, where he was a scientific liaison officer for the Office of Naval Research in London and also a visiting physicist at the University of Manchester. Subsequently, he worked for the army as a civilian physicist at the Aberdeen Proving Ground in Maryland until 1950, when he joined the Textile Research Laboratory in Princeton, New Jersey, as a physicist. In 1953 he moved to Michigan State University, where he was research professor of physics and research professor and chairman of the department of metallurgy, mechanics and materials science from 1966 until 1988.

While at Michigan State University, Don spent several years at other universities as a visiting professor or research physicist, as well as one year at NASA headquarters in Washington, DC.

Don's professional interests covered a very broad spectrum, including quantum electrodynamics, cosmic rays, static electrification, isotopic mass as a probe for solid-state physics, biomagnetism and analysis and assessment of the social consequences of technology.

To build up a lifetime scientific career during the years following World War II required great professional flexibility remarkably like that being recommended to today's new PhDs and especially a readiness to embrace "real world" problems. Don had a true gift for that type of thinking. For example, his interest in the physics of static electrification stemmed from his involvement in xerography.

Don was an exemplary mentor. His greatest strength was his ability to deal

Roberto Mendel

Roberto Mendel, a well-known theorist and phenomenologist in the elementary particle physics community, died tragically at the age of 40 in an automobile accident on 18 August 1995. He had just returned from a year's sabbatical at the Technion—Israel Institute of Technology.

Roberto was born and raised in Santiago, Chile, and showed exceptional academic ability at an early age. He received his bachelor's degree in physics from the Technion in 1977 and his PhD degree in physics from MIT in 1982 under the supervision of Kerson Huang. He held postdoctoral positions at McGill University during the next five years, where he worked closely with Bernard Margolis, who passed away early last summer. He accepted a faculty position at the University of Western Ontario in 1987, where he became a professor of applied mathematics.

Roberto soon established a reputation as a caring and effective teacher. and as a scholar with a broad knowledge of physics. His excellent physical intuition and maturity of judgment commanded the respect and admiration of his research collaborators. The origin of particle masses and the violation of time-reversal symmetry were among the fundamental issues that he tackled, and the phenomenological issues he addressed included rare decay processes and the precision modeling of subatomic particle decays. His PhD thesis was perhaps the earliest demonstration of how the then-unknown top quark could be responsible for electroweak symmetry breaking.

Those of us who knew him remember Roberto as an extraordinarily decent and good human being, as well as a most talented researcher on the threshold of an outstanding career.

VICTOR ELIAS
University of Western Ontario
London, Ontario, Canada ■