
FRoM NEWTON'S MooN 
TO EINSTEIN'S MOON 

Continuing the lunar orbit's 300-year role as gravity's testing ground, 
laser ranging to the Moon precisely confirms the foundations and 

structure of general relativity. 

Kenneth N ordtvedt 

Three centuries ago Isaac Newton and his contempo­
raries sought to understand the details oflunar motion 

in terms of Newton's theory of gravity. Today, our most 
precise confirmations of key aspects of Albert Einstein's 
relativistic theory of gravity are achieved by measuring 
features of the Moon's orbit to !-centimeter precision using 
a technique known as lunar laser ranging (LLR). These 
present-day measurements address some of the same 
questions posed by Newton. Do Earth and the Moon 
(figure 1) fall toward the Sun at the same rate? What, 
in detail, produces the precession of the lunar orbit's major 
axis?l,2 

The lunar orbit's large size, noncircularity and incli­
nation from the plane of Earth's orbit allow the solar tidal 
acceleration of the Moon (relative to Earth) to produce a 
rich assortment of what may be termed lunar irregulari­
ties that modify simple Keplerian motion. Three centuries 
ago, the possibility of finding a quantitative explanation 
for these irregularities by using Newton's universal law 
of gravity provided a challenge to and eventual triumph 
for the then-new dynamical theory, and in the process 
promoted development of powerful new perturbation tech­
niques for the calculus. 

Between 1969 and 1971, astronauts of the Apollo 11, 
14 and 15 missions placed passive laser reflectors on the 
Moon, and the Soviet Lunakhod II spacecraft positioned 
a fourth in 1973. Since then, round-trip travel times have 
been measured for laser-produced photons sent from 
American and French observatories. The photons are 
received about 2.6 seconds after they are sent to a selected 
lunar corner-cube reflector array, one of which is shown 
in figure 2. Accuracies of 2-3 centimeters are now 
achieved for an observing session's range measurement 
(called a normal point), which is obtained by averaging 
tens of minutes of photon returns. 

The LLR facility at the McDonald Observatory in 
Texas sends ten 200-picosecond laser pulses per second, 
each 6-centimeter-long pulse containing about 1018 pho­
tons. Several pulses must be sent per reflected photon 
detected, because of the distance to the Moon, the angular 
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spreads of the original and reflected pulses, 
the area of the reflector (about 1000 cm2) 
and the size of the receiving telescope (76-
cm diameter). Filters with narrow accep­
tance windows for photon frequency, direc­
tion and time of reception reduce 
background noise levels. The laser station 
at the Centre d'Etudes et de Recherche en 
Geodynamique et Astronomie, in Grasse, 
France, uses a larger telescope (160-cm di­
ameter) and a more powerful laser. Figure 
3 shows the progress made in LLR accuracy 
through the years, and further improve­
ment is expected. More than ten thousand 
such normal point range measurements 
have been accumulated and archived over the 
past quarter of a century, and, what is very 
important, the experiment remains active.1 

The archived range data, available to 
analysis groups throughout the world, must 
be fit by a physical model. The basic model 
used by several American and European 
groups has at its core the gravitational 
N-body equations of motion for Solar System bodies, clock 
rate adjustments and the gravitationally altered global 
speed oflight, all derived from Einstein's general relativity 
theory. A complete model must also include many other 
parameterized features. These features represent: 
masses; selected multipole moments; moment of inertia 
tensors; initial conditions for positions, velocities and ro­
tation variables for bodies; and laser observatory and 
reflector coordinates, including periodic tidal displace­
ments. To test the validity of the underlying theory-gen­
eral relativity-additional theory parameters that charac­
terize the ways in which alternative theories may differ 
from general relativity can be added to the model. More 
than a hundred model parameters are optimally adjusted 
by performing a least-squares-type fit of the observed 
photon flight times to the model-calculated times. 

The main features oflunar motion, including both the 
historic perturbations and the relativistic corrections of 
modern interest, derive from the truncated equation of 
motion shown in box 1. In addition to the mutual New­
tonian acceleration between the Moon and Earth the 
equation includes the Sun's tidal acceleration of the Moon 
relative to Earth, a difference between the acceleration of 
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EARTHRISE OVER THE MOON'S HORIZON. Theories of gravitation are being tested by careful monitoring of the Moon's motion. 
This photograph was taken in 1969 by Apollo 12 astronauts during the second lunar landing mission. (NASA photograph.) 
FIGURE 1 

Earth and of the Moon by the Sun in the case of unequal 
ratios of gravitational mass to inertial mass, and a Cori­
olis-like acceleration term that reflects the rotation of the 
"local" inertial space that accompanies the Earth-Moon 
system's motion through the Sun's gravitational field. 

The Moon's largest oscillatory deviations from circular 
motion are illustrated in box 2, which gives their charac­
teristics and historic names. LLR measures each of these 
radial amplitudes to a precision of about 1 em! The lunar 
variation shown in the box is produced by the Sun's tidal 
acceleration and consists of an elongation of the orbit 
perpendicular to the direction of the Sun and an equal 
contraction of the orbit parallel to the solar direction. 
Although the tidal acceleration pulls the Moon away from 
Earth at the new and full moon positions (marked N and 
F, respectively) and toward Earth at the quarter phases 
(Q), the Moon's motional response is out of phase with 
this periodic disturbance of twice the orbit's natural fre­
quency, as is the general rule for forced oscillations. New-

ton explained and estimated this orbital irregularity in 
his Principia. The variation does not affect the time of 
occurrence of lunar or solar eclipses and was therefore not 
discovered by the astronomers of antiquity. It remained 
to be found by Tycho Brahe with his more accurate 
observations in the late 16th century. 

A century after Newton's time, Pierre Simon, marquis 
de Laplace, more exactly analyzed the consequences of the 
Sun's tidal acceleration. He found a next-order correction 
to the variation that slightly displaces the orbit toward 
the Sun, moving the Earth center from E to E' in the 
figure in box 2, so that the distance E'N is greater than 
the distance E'F. This displacement is proportional to the 
ratio of lunar distance to solar distance (r/R-1/400), and 
it acquired the name "parallactic inequality" because its 
measurement was viewed as a possible method for deter­
mining that ratio. Like the variation, this perturbation 
does not affect eclipse predictions. It produces a longitu­
dinal displacement of the Moon's position of only about 2 
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RETROREFLECTOR on the 
Moon. This array of a 

hundred 3.8-cm corner-cube 
reflectors was deployed during 

the 1971 Apollo 14 mission. 
Three other functioning 

reflector arrays have also been 
placed at different locations on 

the Moon. FIGURE 2 
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arc minutes at the quarters. Precision measurement of 
the radial amplitude associated with the parallactic in­
equality is today at center stage in testing general rela­
tivity, since this amplitude is altered if there is a difference 
between the Earth's ratio of gravitational mass to inertial 
mass and the Moon's (as further discussed below). 

One of the great steps forward in analytic treatment 
of the lunar motion problem was made a century ago by 
American mathematician and celestial mechanician 
George W. HilJ.3 He realized that a special-case distorted 
orbit resulting from the Sun's tidal acceleration could be 
computed as a separate and preliminary dynamical prob­
lem-and that this tidally affected orbit was a superior 
starting point from which to carry out more efficient 
perturbative calculations for the complete lunar motion. 
The high point of precomputer, analytically based repre­
sentations of the Moon's orbit, produced by mathematician 
Ernest W. Brown in the first part of this century, was 
made possible largely by Hill's calculational innovations. 

Free-fall and equivalence 
In developing his lunar theory, Newton assumed that 
Earth and the Moon accelerate at the same rate toward 
the Sun if identically located, and therefore that the Sun's 
tidal acceleration is the dominant perturbing force oflunar 
motion. Like Galileo decades earlier, Newton had studied 
laboratory pendulums constructed of various materials, 
and had concluded from a comparison of their oscillation 
frequencies that the gravitational acceleration rates were 
equal to one part in a thousand. Newton was also con­
ceptually inclined, and to a significant extent obliged by 
observation, to assume that this property of gravity was 
universal. 

Newton, however, did explore the consequences of 
planets and their satellites being accelerated toward the 
Sun differently. But curiously, his conclusions on this 
point are in substantial quantitative error and rest on 
unpublished, undiscovered calculations. In book III, 
proposition VI of the Principia, he stated that 
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If, at equal distances from the sun, any satellite, 
in proportion to the quantity of its matter [iner­
tial mass], did gravitate toward the sun with a 
force greater than Jupiter in proportion to his 
[inertial mass], according to any given propor­
tion . . . then the distance between the centers 
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of the sun and of the satellite's orbit would be 
always greater than the distance between the 
centers of the sun and of Jupiter, nearly as the 
square root of that proportion: as by some com­
putations I have found. . . . And by the same 
argument ... the weights [gravitational masses] 
of the moon and of the earth towards the sun 
are ... accurately proportional to the [inertial] 
masses of matter which they contain.4 

Newton recognized that a satellite's orbit would be 
displaced along the direction of the Sun if it accelerated 
differently than its parent planet, but both the sign and 
magnitude of his estimate of this effect disagree with 
modern calculation, as outlined in box 3. 

When Laplace later calculated the polarization of the 
lunar orbit called parallactic inequality, he noticed the 
strong similarity between the responsible part of the solar 
tidal acceleration and the perturbing acceleration given 
by the third line of the first equation in box 1. Since 
there was no significant discrepancy in the size of the 
observed parallactic inequality, Laplace could conclude 
that Earth and the Moon fell toward the Sun at equal 
rates to an accuracy of better than one part in a million. 5 

By Einstein's time, laboratory experiments had con­
firmed the universality of gravitational free-fall rates to 
yet higher precision. In his early efforts to incorporate 
gravity into the theory of relativity, Einstein elevated this 
observed property of gravity into a grand hypothesis-the 
equivalence principle-that gravity is locally equivalent 
to an accelerated, noninertial frame of reference, this 
equivalence extending to all aspects of local physical law. 
From this principle, Einstein was able to predict gravita­
tional deflection of light and the universal slowing of clock 
rates by nearby matter. The equivalence principle served 
Einstein well, providing him with important clues in his 
subsequent development of a complete theory of gravity, 
which further revolutionized our concepts of space, time 
and cosmology and their relationships to mass-energy. 
Einstein's original formulation of this principle has since 
been repackaged and altered by others in several ways, 
and a wide variety of experiments have been performed 
to test the various versions. 

In 1968, I suggested that the forthcoming LLR capa­
bility could test, at an interesting scientific level, whether 
Earth and the Moon accelerate equally toward the Sun.6 



Box 1. Moon's Equation of Motion 
he Moon's equation of motion relative to Earth, derived 
from the Sun-Earth-Moon general relativistic three-body 

problem, is shown here approximated, but in sufficient detail 
to produce the main fearures of the motion. 

d2r r [Earth-Moon] 
dt2 =- G M( G), + m ';:J acceleration 

( 
R R ) [ solar tidal ] 

+ G M( G), 1 R ~;I J - RJ acceleration 

+[(:~~ l-(:~~nJ GM(G), ~ [~~~;~:~~~] 
dr [de Sitter's geodetic] 

+ 2 fids X dt + · · · preceSSIOn 

where e, m and s indicate Earth, the Moon at r and the Sun 
~t R,. respectively. M(G) and M(I) indicate gravitational and 
mert1al mass, respectively, as they appear, for example, in a 
statement of Newton's grav itational law of motion: 

d2R; ~ - R, 
M(/), dt2 = G M(G); M(G)I I~- R, I J 

The third line of the first equation above is absent in both 
Newton's and Einstein 's theories, where all bodies have iden­
tical ratios of gravitational mass to inertial mass. This mass 
ratio is c hanged in most alternative theories of gravity, in 
proportion to a body's fractional gravitational binding en­
ergy:6 

M(G) ~ 
1

_ s_f p(r)p(r' ) 

M(l) 1) 2Mcl I r - r' I 
where ~(r) is the body's mass density. The theory-dependent 
d1menswnless parameter 1) in this equation quantifies differ­
ences between general relativity (in which TJ = 0) and alterna­
tive metric theories of gravity such as "sca lar-tensor" 
theories.8 The final Coriolis-like acceleration term in the first 
equation was found by Willem de Sitter in 1916 within 
months of the publication of Einstein's theory. 16 De Sitter's 
rotation rate vector is given by 

3 GM(G), . . nds = 2 ~ R X v ~ 19.2 milharcseconds per year 

This term indicates rotation of local inertial space with respect 
to d1stant merual space because of (and with the same sense 
as) the orbital motion of the Earth-Moon system through the 
gravitational fie ld of the Sun. 
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Today, after more than a quarter century of LLR data of 
ever-improving quality, the key parallactic inequality am­
plitude is measured1 to a precision of 1.3 em. (The error 
from random measurement noise is only two or three 
millimeters!) This amplitude is unusually sensitive to any 
Earth-Moon acceleration difference, so these observations 
are now the most accurate confirmation1•2 of the univer­
sality of free-fall for two different bodies, any difference being 
fractionally less than 5 X w - la Laboratory experiments are 
slightly less precise and have a narrower scope for theoretical 
interpretation, but they do have the versatility of comparing 
acceleration rates among a variety of objects.7 

There are two ways to interpret these LLR results. 
Each challenges general relativity in a fundamental way. 
The Earth's average composition is substantially affected 
by its iron- nickel core, while the less-dense Moon is 
believed to consist primarily of silicates. The LLR obser­
vations therefore confirm very precise equality in the 
acceleration rates of two different materials. This equality 
provides strong foundational evidence that gravity is pre­
dominantly a metric field phenomenon in which the carrier 
of the gravitational interaction is a dynamical second-rank 
tensor field g~'-v (r,t) (perhaps supplemented by a scalar 
field) with a universal form of coupling to all the other 
particles and fields that compose matter. General rela­
tivity is certainly the premier metric theory, but there are 
alternatives. 8 

But unlike laboratory bodies, Earth contains an ap­
preciable fraction (about 5 X 10-10) of gravitational binding 
energy, which also contributes to both Earth's inertial and 
gravitational masses. If such contributions are not equal, 
the crucial mass ratio is altered6 in the manner indicated 
by the third equation in box 1. The theory-dependent 
parameter 1J appearing in this equation is therefore meas­
ured by LLR to be less than 10-3. This measurement is 
now the most precise test of relativistic gravity's first level 
of structure beyond the Newtonian, and it supports gen­
eral relativity theory, in which 1) = 0. This result con­
strains any alternative metric theory of gravity, if so 
chosen by nature, such that it has to be very "close" in 
this designated sense to general relativity. Gravity (in 
this case the Sun's) pulls on gravitational energy (Earth's 
binding energy) just as it does on all other forms of 
mass-energy, confirming the specific nonlinear structure 
of general relativity. 

Perigee precession 
Although Newton's use of the Sun's tidal disturbance to 
explain the irregularities in the Moon's motion was gen­
erally successful, he experienced, in his own phrase, a 
persistent "headache" in attempting to understand the 

IMPROVING ACCURACY of lunar laser ranging. The graph 
shows the weighted root-mean-square differences between 
ranging observations and a standard model fit to the data, over 
the 25-year history of measurements. Note the significant 
improvement in accuracy since the mid-1980s. (From ref. 1.) 
FIGURE 3 
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most obvious lunar motion irregular­
ity-the advancement of the major 
axis of its eccentric orbit by over 40 
degrees of arc per year.9 In first 
approximation, Newton found that 
the solar tidal acceleration produced 
both a rotation of the orbit's major 
axis (perigee precession) and a pre­
cession of the inclined plane of the 
lunar orbit (nodal precession). He 
obtained identical magnitudes but 
opposite signs for these rates. Al­
though his estimate agreed well 
enough with the observed retrograde 
rotational period of 18.61 years for 
the node (intersection of the lunar 
orbital plane with the Earth-Sun or­
bital plane), it accounted for only 
about half of the observed precession 
of perigee, which takes only about 
8.85 years to make a complete revo­
lution. (See box 2.) 

For many decades neither New­
ton nor his contemporaries under­
stood how this large discrepancy 
could be eliminated by treating the 
very small solar tidal disturbance to 
the next order of approximation. 
(Comments made by Newton in later 
life suggest he may have solved this 
problem, but the details have not 
been found .) Indeed, as late as 
1747, French mathematical physi­
cist Alexis -Claude Clairaut con­
cluded that this unexplained rate of 
precession of the Moon's major axis 
would require modification of the ba-

Box 2. Moon's Orbital Behavior 
he lunar orbit's variation and parallactic inequality result from the Sun's tidal 
acceleration of the Moon relative to Earth. The variation orbit is compressed 

at new (N) and full (F) moon, and 
equally elongated at the quarter (Q) 
phases, as first estimated by Newton. 
Laplace later found Newton's distorted 
orbit to be slightly polarized toward 
the Sun (parallactic inequality), with 
Earth's center shifted (E toE') toward 
the full moon (F) position. Additional 
polarization of the orbit results if 
Earth and the Moon accelerate at dif-
ferent rates toward the Sun (see boxes 
1 and 3), forming the basis for the 
present-day lunar laser ranging test of 
relativistic gravity. The unforced os­
cillations in the Earth-Moon distance 
are symbolized by the red orbit and 

to Sun N---+ 

consist primarily of the eccentricity plus its surprisingly large modification-the 
evection-produced by the solar tide. The eccentricity defines the orbit's major 
axis, which turns 40 degrees of arc per year. For illustrative purposes, these orbit 
distortions are shown here greatly exaggerated, the actual amplitudes given in the 
table being small compared to the Moon's mean distance of about 385 000 km. 

Amplitude (km) Historic Name Period (days) 

-20 905 (Eccentricity) 

-3699 (Evection) 

-2956 (Variation) 

+ 110 (Parallactic inequality) 

w - Moon's o rbital frequency . 
J1 - Earth- Moon system's orbital frequency around the Sun . 
w0 - Moon 's (anomalistic) frequency of perigee occurrence. 
w- w0 - precession rate of lunar orbit 's major axis. 

27T 
-= 27.554 
Wo 

27T 
-----=31.812 
2(w- fl)- w0 

27T 

2(w-fl) 
14.765 

27T 
--=29.531 
w - fl 

sic inverse square force law of gravitation. Fortunately, 
Clairaut tackled the problem once more, this time taking 
into account all the motions-eccentric, evective and varia­
tional-and their mutual interactions. His more complete 
analysis revealed a surprisingly enhanced next-order cor­
rection to the perigeee precession rate, which reached good 
agreement with observation. 

expected" order fl4) and de Sitter's general relativistic 
term. 

Among the lunar motion frequencies, LLR best meas­
ures w0 , to a fractional accuracy of about 10-12. The 
(synodic) frequency of full moon occurences w - fl is meas­
ured about an order of magnitude less accurately, being 
a consequence of the smaller amplitudes of motions in­
volving the synodic frequency. Solar System radar ranging 
data are used to measure fl , which then allows conversion 
of the measured lunar synodic frequency into the lunar 
orbital frequency needed above. These several inputs then 
permit one to determine the Moon's perigee precession 
rate to an accuracy of 0.14 milliarcseconds per year, 
corresponding to a 0.7-percent confirmation of de Sitter's 
relativistic addendum to the motion. 1•2•10•11 

Willem de Sitter's relativistic Coriolis-like term in the 
first equation in box 1 adds an additional contribution to 
the Moon's perigee precession. So the modern series 
expression for the total precession rate in general relativ­
ity theory takes the following form: 

3 d 225 !13 3 GM(G), 
w-wo "' 4-;-+32 w2 + ... +2~fl+ .. . 

where fl is Earth's orbital frequency around the Sun, w 
is the lunar orbital frequency and w0 is the (anomalistic) 
frequency of perigee occurrence. The equation shows 
Newton's leading-order term, Clairaut's surprising next­
order contribution (not only containing the large factor 
225/32 but also being of order fl3 rather than a "more 
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The structure of de Sitter's acceleration term in the 
first equation in box 1 is, to the order shown, precisely 
what one would get if expressing physical law in a non­
inertial, rotating coordinate system. The "geometrical" 
interpretation of de Sitter's effect is based on just that: 
By reason of being in orbital motion around the Sun, the 



inertial frame near Earth, which eliminates the Sun's 
"local gravity," must not only be free-falling toward the 
Sun, but must also be rotated at the rate flds relative to 
the inertial space established asymptotically far from the 
Solar System. And this "geodetic" rotation of local inertial 
space carries the lunar perigee along with it. 

There are a few more general relativistic corrections 
to the lunar orbit that can be discerned in the data. These 
effects are relatively minor, being few-centimeter correc­
tions to the variation, evection and parallactic inequality 
amplitudes. Because they have minimal usefulness for 
putting general relativity to additional empirical tests, I 
have not discussed them, but they cannot be ignored. For 
example, because the Earth-directed coordinates of the 
reflector positions on the Moon are poorly known, the 
mean Earth-Moon distance is best inferred (albeit to 
precision of only about 80 em) from the variation ampli­
tude. From this determination of the mean lunar distance 
and the measured lunar orbital frequency, one determines 
the gravitational mass of the Earth-Moon system. The 
Moon's mass , determined from the tracking of lunar­
orbiting satellites, can be subtracted from that total. If 
the general relativistic corrections to the amplitude of 
variation were not included, a final gravitational mass of 
Earth determined by LLR would not agree with a value 
determined independently from the laser tracking of near­
Earth satellites. 

Time variation of coupling parameter 
During much of this century, there has been speculation 
that the strength of the gravitational interaction might 
change in time with cosmological evolution.8.12 General 
relativity is rather unique among contemporary theories 
of gravity in not producing a coupling strength dependent 
on location in space and time. Alternative theories gen­
erally predict time variation of G in some proportion to 
the universe's Hubble expansion rate, which is about 10-10 

per year. Both a time evolution of G and the torque 
resulting from ocean tides on Earth will produce rates of 
change of the Moon's orbital period and radius, though in 
ratios that differ between the mechanisms.13 The tidal 
torque fortunately is also independently measured from 
its effects on near-Earth satellites. 

The present fit of the LLR data is consistent with no 
time variation in the strength of gravity, the experimental 
bound being1•14 

I ~~t I <Io-n 

per year. This constraint is modestly smaller than the 
observed expansion rate of the universe and is comparable 
to the constraint that has been obtained by use of inter­
planetary radar ranging observations.15 But the prospects 
are good for improving this measurement from the con­
tinuing LLR experiment. The accumulation of an ever­
increasing time span of highest-accuracy ranging data will 
make possible better separation of the tidal effects and 
consequently a substantially more accurate measurement 

Box 3. If Free-Fall Were Not Universal 
f Earth and the Moon fell at different rates toward the 
Sun, then there would be an additional polarization of 

the lunar orbit, as follows . 
I> According to Newton: 

I> According to contemporary calculation: 

where R5 and Rr are the distances of the satellite's orbit and 
the planet, respectively, from the Sun; as and ap are the 
accelerations of the satellite and the planet, respectively, by 
the Sun; w5 and Wp are the orbital frequencies of the satellite 
and the planet, respectively; and 9i'(wp/ w5) is the dynamical 
amplification factor from the solar tide. 9i'(O) = 1 and 
9fr( WEarth/ WMoon ) ~ 1.7 4 · 

of the time evolution of G. 
In the coming years, LLR can remain a frontier 

experiment, testing relativistic gravity in several ways to 
ever-increasing accuracy. The passive reflectors on the 
Moon should continue to function indefinitely. As the time 
span of the data grows longer, measurement accuracy will 
improve, especially that of the key lunar frequencies and 
their secular rates of change. Precision of amplitude 
measurements will also improve, but more modestly, as 
high-accuracy range measurements accumulate. The ex­
periment has already become limited by systematic error 
rather than by N - l / Z random noise. Hence, more detailed 
modeling of the geophysics effects at Earth and the Moon 
has become essential to exploit fully the LLR data, which 
continue to grow in both quality and quantity. 
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