FrROM NEWTON’S MOON
TO EINSTEIN’S MOON

Continuing the lunar orbit’s 300-year role as gravity’s testing ground,
laser ranging to the Moon precisely confirms the foundations and
structure of general relativity.

Kenneth Nordtvedt

hree centuries ago Isaac Newton and his contempo-

raries sought to understand the details of lunar motion
in terms of Newton’s theory of gravity. Today, our most
precise confirmations of key aspects of Albert Einstein’s
relativistic theory of gravity are achieved by measuring
features of the Moon’s orbit to 1-centimeter precision using
a technique known as lunar laser ranging (LLR). These
present-day measurements address some of the same
questions posed by Newton. Do Earth and the Moon
(figure 1) fall toward the Sun at the same rate? What,
in detail, produces the precession of the lunar orbit’s major
axis?1?

The lunar orbit’s large size, noncircularity and incli-
nation from the plane of Earth’s orbit allow the solar tidal
acceleration of the Moon (relative to Earth) to produce a
rich assortment of what may be termed lunar irregulari-
ties that modify simple Keplerian motion. Three centuries
ago, the possibility of finding a quantitative explanation
for these irregularities by using Newton’s universal law
of gravity provided a challenge to and eventual triumph
for the then-new dynamical theory, and in the process
promoted development of powerful new perturbation tech-
niques for the calculus.

Between 1969 and 1971, astronauts of the Apollo 11,
14 and 15 missions placed passive laser reflectors on the
Moon, and the Soviet Lunakhod II spacecraft positioned
a fourth in 1973. Since then, round-trip travel times have
been measured for laser-produced photons sent from
American and French observatories. The photons are
received about 2.6 seconds after they are sent to a selected
lunar corner-cube reflector array, one of which is shown
in figure 2. Accuracies of 2-3 centimeters are now
achieved for an observing session’s range measurement
(called a normal point), which is obtained by averaging
tens of minutes of photon returns.

The LLR facility at the McDonald Observatory in
Texas sends ten 200-picosecond laser pulses per second,
each 6-centimeter-long pulse containing about 10'® pho-
tons. Several pulses must be sent per reflected photon
detected, because of the distance to the Moon, the angular
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spreads of the original and reflected pulses,
the area of the reflector (about 1000 cm?)
and the size of the receiving telescope (76-
cm diameter). Filters with narrow accep-
tance windows for photon frequency, direc-
tion and time of reception reduce
background noise levels. The laser station
at the Centre d’Etudes et de Recherche en
Geodynamique et Astronomie, in Grasse,
France, uses a larger telescope (160-cm di-
ameter) and a more powerful laser. Figure
3 shows the progress made in LLR accuracy
through the years, and further improve-
ment is expected. More than ten thousand
such normal point range measurements
have been accumulated and archived over the
past quarter of a century, and, what is very
important, the experiment remains active.!

The archived range data, available to
analysis groups throughout the world, must
be fit by a physical model. The basic model
used by several American and European
groups has at its core the gravitational
N-body equations of motion for Solar System bodies, clock
rate adjustments and the gravitationally altered global
speed of light, all derived from Einstein’s general relativity
theory. A complete model must also include many other
parameterized features. These features represent:
masses; selected multipole moments; moment of inertia
tensors; initial conditions for positions, velocities and ro-
tation variables for bodies; and laser observatory and
reflector coordinates, including periodic tidal displace-
ments. To test the validity of the underlying theory—gen-
eral relativity—additional theory parameters that charac-
terize the ways in which alternative theories may differ
from general relativity can be added to the model. More
than a hundred model parameters are optimally adjusted
by performing a least-squares-type fit of the observed
photon flight times to the model-calculated times.

The main features of lunar motion, including both the
historic perturbations and the relativistic corrections of
modern interest, derive from the truncated equation of
motion shown in box 1. In addition to the mutual New-
tonian acceleration between the Moon and Earth, the
equation includes the Sun’s tidal acceleration of the Moon
relative to Earth, a difference between the acceleration of
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EARTHRISE OVER THE MOON’S HORIZON. Theories of gravitation are being tested by careful monitoring of the Moon’s motion.
This photograph was taken in 1969 by Apollo 12 astronauts during the second lunar landing mission. (NASA photograph.)
FIGURE 1

Earth and of the Moon by the Sun in the case of unequal
ratios of gravitational mass to inertial mass, and a Cori-
olis-like acceleration term that reflects the rotation of the
“local” inertial space that accompanies the Earth-Moon
system’s motion through the Sun’s gravitational field.
The Moon’s largest oscillatory deviations from circular
motion are illustrated in box 2, which gives their charac-
teristics and historic names. LLR measures each of these
radial amplitudes to a precision of about 1 cm! The lunar
variation shown in the box is produced by the Sun’s tidal
acceleration and consists of an elongation of the orbit
perpendicular to the direction of the Sun and an equal
contraction of the orbit parallel to the solar direction.
Although the tidal acceleration pulls the Moon away from
Earth at the new and full moon positions (marked N and
F, respectively) and toward Earth at the quarter phases
(Q), the Moon’s motional response is out of phase with
this periodic disturbance of twice the orbit’s natural fre-
quency, as is the general rule for forced oscillations. New-

ton explained and estimated this orbital irregularity in
his Principia. The variation does not affect the time of
occurrence of lunar or solar eclipses and was therefore not
discovered by the astronomers of antiquity. It remained
to be found by Tycho Brahe with his more accurate
observations in the late 16th century.

A century after Newton’s time, Pierre Simon, marquis
de Laplace, more exactly analyzed the consequences of the
Sun’s tidal acceleration. He found a next-order correction
to the variation that slightly displaces the orbit toward
the Sun, moving the Earth center from E to E’ in the
figure in box 2, so that the distance E’N is greater than
the distance E'F. This displacement is proportional to the
ratio of lunar distance to solar distance (r/R~1/400), and
it acquired the name “parallactic inequality” because its
measurement was viewed as a possible method for deter-
mining that ratio. Like the variation, this perturbation
does not affect eclipse predictions. It produces a longitu-
dinal displacement of the Moon’s position of only about 2
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RETROREFLECTOR on the
Moon. This array of a
hundred 3.8-cm corner-cube
reflectors was deployed during
the 1971 Apollo 14 mission.
Three other functioning
reflector arrays have also been
placed at different locations on
the Moon. FIGURE 2

arc minutes at the quarters. Precision measurement of
the radial amplitude associated with the parallactic in-
equality is today at center stage in testing general rela-
tivity, since this amplitude is altered if there is a difference
between the Earth’s ratio of gravitational mass to inertial
mass and the Moon’s (as further discussed below).

One of the great steps forward in analytic treatment
of the lunar motion problem was made a century ago by
American mathematician and celestial mechanician
George W. Hill.3 He realized that a special-case distorted
orbit resulting from the Sun’s tidal acceleration could be
computed as a separate and preliminary dynamical prob-
lem—and that this tidally affected orbit was a superior
starting point from which to carry out more efficient
perturbative calculations for the complete lunar motion.
The high point of precomputer, analytically based repre-
sentations of the Moon’s orbit, produced by mathematician
Ernest W. Brown in the first part of this century, was
made possible largely by Hill’s calculational innovations.

Free-fall and equivalence

In developing his lunar theory, Newton assumed that
Earth and the Moon accelerate at the same rate toward
the Sun if identically located, and therefore that the Sun’s
tidal acceleration is the dominant perturbing force of lunar
motion. Like Galileo decades earlier, Newton had studied
laboratory pendulums constructed of various materials,
and had concluded from a comparison of their oscillation
frequencies that the gravitational acceleration rates were
equal to one part in a thousand. Newton was also con-
ceptually inclined, and to a significant extent obliged by
observation, to assume that this property of gravity was
universal.

Newton, however, did explors the consequences of
planets and their satellites being accelerated toward the
Sun differently. But curiously, his conclusions on this
point are in substantial quantitative error and rest on
unpublished, undiscovered calculations. In book III,
proposition VI of the Principia, he stated that

If, at equal distances from the sun, any satellite,

in proportion to the quantity of its matter [iner-

tial mass], did gravitate toward the sun with a

force greater than Jupiter in proportion to his

[inertial mass], according to any given propor-

tion . . . then the distance between the centers
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of the sun and of the satellite’s orbit would be
always greater than the distance between the
centers of the sun and of Jupiter, nearly as the
square root of that proportion: as by some com-

putations I have found.... And by the same

argument . . . the weights [gravitational masses]

of the moon and of the earth towards the sun

are . .. accurately proportional to the [inertial]

masses of matter which they contain.*

Newton recognized that a satellite’s orbit would be
displaced along the direction of the Sun if it accelerated
differently than its parent planet, but both the sign and
magnitude of his estimate of this effect disagree with
modern calculation, as outlined in box 3.

When Laplace later calculated the polarization of the
lunar orbit called parallactic inequality, he noticed the
strong similarity between the responsible part of the solar
tidal acceleration and the perturbing acceleration given
by the third line of the first equation in box 1. Since
there was no significant discrepancy in the size of the
observed parallactic inequality, Laplace could conclude
that Earth and the Moon fell toward the Sun at equal
rates to an accuracy of better than one part in a million.5

By Einstein’s time, laboratory experiments had con-
firmed the universality of gravitational free-fall rates to
yet higher precision. In his early efforts to incorporate
gravity into the theory of relativity, Einstein elevated this
observed property of gravity into a grand hypothesis—the
equivalence principle—that gravity is locally equivalent
to an accelerated, noninertial frame of reference, this
equivalence extending to all aspects of local physical law.
From this principle, Einstein was able to predict gravita-
tional deflection of light and the universal slowing of clock
rates by nearby matter. The equivalence principle served
Einstein well, providing him with important clues in his
subsequent development of a complete theory of gravity,
which further revolutionized our concepts of space, time
and cosmology and their relationships to mass—energy.
Einstein’s original formulation of this principle has since
been repackaged and altered by others in several ways,
and a wide variety of experiments have been performed
to test the various versions.

In 1968, I suggested that the forthcoming LLR capa-
bility could test, at an interesting scientific level, whether
Earth and the Moon accelerate equally toward the Sun.®



Box 1. Moon’s Equation of Motion

he Moon’s equation of motion relative to Earth, derived

from the Sun-Earth-Moon general relativistic three-body
problem, is shown here approximated, but in sufficient detail
to produce the main features of the motion.
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where e, m and s indicate Earth, the Moon at r and the Sun
at R, respectively. M(G) and M(/) indicate gravitational and
inertial mass, respectively, as they appear, for example, in a
statement of Newton’s gravitational law of motion:
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The third line of the first equation above is absent in both
Newton’s and Einstein’s theories, where all bodies have iden-
tical ratios of gravitational mass to inertial mass. This mass
ratio is changed in most alternative theories of gravity, in
propomon to a body’s fractional gravitational binding en-

ergy
MG 0 G J‘ p(r) p(t)
Mo - |r—r|

where p(r) is the body’s mass density. The theory-dependent
dimensionless parameter 7 in this equation quantifies differ-
ences berween general relativity (in which 1 = 0) and alterna-
tive metric theories of gravity such as “scalar-tensor”

theories.® The final Coriolis-like acceleration term in the first
equation was found by Willem de Sitter in 1916 within
months of the publication of Einstein’s theory.!® De Sitter’s
rotation rate vector is given by

_ 3 GM(G),
T

This term indicates rotation of local inertial space with respect

to distant inertial space because of (and with the same sense

as) the orbital motion of the Earth-Moon system through the
gravitational field of the Sun.
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Today, after more than a quarter century of LLR data of
ever-improving quality, the key parallactic inequality am-
plitude is measured! to a precision of 1.3 cm. (The error
from random measurement noise is only two or three
millimeters!) This amplitude is unusually sensitive to any
Earth—Moon acceleration difference, so these observations
are now the most accurate confirmation™? of the univer-
sality of free-fall for two different bodies, any difference being
fractionally less than 5 x 1073, Laboratory experiments are
slightly less precise and have a narrower scope for theoretical
interpretation, but they do have the versatility of comparing
acceleration rates among a variety of objects.”

There are two ways to interpret these LLR results.
Each challenges general relativity in a fundamental way.
The Earth’s average composition is substantially affected
by its iron-nickel core, while the less-dense Moon is
believed to consist primarily of silicates. The LLR obser-
vations therefore confirm very precise equality in the
acceleration rates of two different materials. This equality
provides strong foundational evidence that gravity is pre-
dominantly a metric field phenomenon in which the carrier
of the gravitational interaction is a dynamical second-rank
tensor field g,, (r,t) (perhaps supplemented by a scalar
field) with a universal form of coupling to all the other
particles and fields that compose matter. General rela-
tivity is certainly the premier metric theory, but there are
alternatives.®

But unlike laboratory bodies, Earth contains an ap-
preciable fraction (about 5 X 10719) of gravitational binding
energy, which also contributes to both Earth’s inertial and
gravitational masses. If such contributions are not equal,
the crucial mass ratio is altered® in the manner indicated
by the third equation in box 1. The theory-dependent
parameter 7 appearing in this equation is therefore meas-
ured by LLR to be less than 103. This measurement is
now the most precise test of relativistic gravity’s first level
of structure beyond the Newtonian, and it supports gen-
eral relativity theory, in which n=0. This result con-
strains any alternative metric theory of gravity, if so
chosen by nature, such that it has to be very “close” in
this designated sense to general relativity. Gravity (in
this case the Sun’s) pulls on gravitational energy (Earth’s
binding energy) just as it does on all other forms of
mass—energy, confirming the specific nonlinear structure
of general relativity.

Perigee precession

Although Newton’s use of the Sun’s tidal disturbance to
explain the irregularities in the Moon’s motion was gen-
erally successful, he experienced, in his own phrase, a
persistent “headache” in attempting to understand the

IMPROVING ACCURACY of lunar laser ranging. The graph
shows the weighted root-mean-square differences between
ranging observations and a standard model fit to the data, over
the 25-year history of measurements. Note the significant
improvement in accuracy since the mid-1980s. (From ref. 1.)
FIGURE 3
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most obvious lunar motion irregular-
ity—the advancement of the major
axis of its eccentric orbit by over 40
degrees of arc per year® In first
approximation, Newton found that
the solar tidal acceleration produced
both a rotation of the orbit’s major
axis (perigee precession) and a pre-
cession of the inclined plane of the
lunar orbit (nodal precession). He

Box 2. Moon’s Orbital Behavior

he lunar orbit’s variation and parallactic inequality result from the Sun’s tidal
acceleration of the Moon relative to Earth. The variation orbit is compressed

at new (N) and full (F) moon, and
equally elongated at the quarter (Q)
phases, as first estimated by Newton.
Laplace later found Newton’s distorted
orbit to be slightly polarized toward
the Sun (parallactic inequality), with
Earth’s center shifted (E to E’) toward
the full moon (F) position. Additional
polarization of the orbit results if
Earth and the Moon accelerate at dif-
ferent rates toward the Sun (see boxes
1 and 3), forming the basis for the
present-day lunar laser ranging test of
relativistic gravity. The unforced os-
cillations in the Earth-Moon distance
are symbolized by the red orbit and

Q

>

to Sun

Q

consist primarily of the eccentricity plus its surprisingly large modification—the

obtained identical magnitudes but
opposite signs for these rates. Al-
though his estimate agreed well
enough with the observed retrograde
rotational period of 18.61 years for
the node (intersection of the lunar
orbital plane with the Earth—Sun or-
bital plane), it accounted for only
about half of the observed precession
of perigee, which takes only about
8.85 years to make a complete revo-
lution. (See box 2.)

For many decades neither New-
ton nor his contemporaries under-
stood how this large discrepancy
could be eliminated by treating the
very small solar tidal disturbance to
the next order of approximation.
(Comments made by Newton in later
life suggest he may have solved this

-20 905

-3699

-2956
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evection—produced by the solar tide. The eccentricity defines the orbit’s major
axis, which turns 40 degrees of arc per year. For illustrative purposes, these orbit
distortions are shown here greatly exaggerated, the actual amplitudes given in the
table being small compared to the Moon’s mean distance of about 385 000 km.

Historic Name Period (days)

2
(Eccentricity) s

o

2

(Evection) No— ) —wy 31.812
(Variation) m =14.765
(Parallactic inequality) =29.531

problem, but the details have not
been found.) Indeed, as late as
1747, French mathematical physi-
cist Alexis-Claude Clairaut con-

= Moon’s orbital frequency.

) = Earth-Moon system’s orbital frequency around the Sun.
w, = Moon’s (anomalistic) frequency of perigee occurrence.
w— w, = precession rate of lunar orbit’s major axis.

cluded that this unexplained rate of

precession of the Moon’s major axis

would require modification of the ba-

sic inverse square force law of gravitation. Fortunately,
Clairaut tackled the problem once more, this time taking
into account all the motions—eccentric, evective and varia-
tional—and their mutual interactions. His more complete
analysis revealed a surprisingly enhanced next-order cor-
rection to the perigeee precession rate, which reached good
agreement with observation.

Willem de Sitter’s relativistic Coriolis-like term in the
first equation in box 1 adds an additional contribution to
the Moon’s perigee precession. So the modern series
expression for the total precession rate in general relativ-
ity theory takes the following form:

ool 280 3CGMG),

"40 320 T2 R
where () is Earth’s orbital frequency around the Sun, o
is the lunar orbital frequency and wj is the (anomalistic)
frequency of perigee occurrence. The equation shows
Newton’s leading-order term, Clairaut’s surprising next-
order contribution (not only containing the large factor
225/32 but also being of order ® rather than a “more
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expected” order Q%) and de Sitter’s general relativistic
term.

Among the lunar motion frequencies, LLR best meas-
ures g, to a fractional accuracy of about 1072 The
(synodic) frequency of full moon occurences w — () is meas-
ured about an order of magnitude less accurately, being
a consequence of the smaller amplitudes of motions in-
volving the synodic frequency. Solar System radar ranging
data are used to measure (2, which then allows conversion
of the measured lunar synodic frequency into the lunar
orbital frequency needed above. These several inputs then
permit one to determine the Moon’s perigee precession
rate to an accuracy of 0.14 milliarcseconds per year,
corresponding to a 0.7-percent confirmation of de Sitter’s
relativistic addendum to the motion.»2101

The structure of de Sitter’s acceleration term in the
first equation in box 1 is, to the order shown, precisely
what one would get if expressing physical law in a non-
inertial, rotating coordinate system. The “geometrical”
interpretation of de Sitter’s effect is based on just that:
By reason of being in orbital motion around the Sun, the



inertial frame near Earth, which eliminates the Sun’s
“local gravity,” must not only be free-falling toward the
Sun, but must also be rotated at the rate Qg4 relative to
the inertial space established asymptotically far from the
Solar System. And this “geodetic” rotation of local inertial
space carries the lunar perigee along with it.

There are a few more general relativistic corrections
to the lunar orbit that can be discerned in the data. These
effects are relatively minor, being few-centimeter correc-
tions to the variation, evection and parallactic inequality
amplitudes. Because they have minimal usefulness for
putting general relativity to additional empirical tests, I
have not discussed them, but they cannot be ignored. For
example, because the Earth-directed coordinates of the
reflector positions on the Moon are poorly known, the
mean Earth—-Moon distance is best inferred (albeit to
precision of only about 80 cm) from the variation ampli-
tude. From this determination of the mean lunar distance
and the measured lunar orbital frequency, one determines
the gravitational mass of the Earth-Moon system. The
Moon’s mass, determined from the tracking of lunar-
orbiting satellites, can be subtracted from that total. If
the general relativistic corrections to the amplitude of
variation were not included, a final gravitational mass of
Earth determined by LLR would not agree with a value
determined independently from the laser tracking of near-
Earth satellites.

Time variation of coupling parameter

During much of this century, there has been speculation
that the strength of the gravitational interaction might
change in time with cosmological evolution.®'? General
relativity is rather unique among contemporary theories
of gravity in not producing a coupling strength dependent
on location in space and time. Alternative theories gen-
erally predict time variation of G in some proportion to
the universe’s Hubble expansion rate, which is about 1071
per year. Both a time evolution of G and the torque
resulting from ocean tides on Earth will produce rates of
change of the Moon’s orbital period and radius, though in
ratios that differ between the mechanisms.’® The tidal
torque fortunately is also independently measured from
its effects on near-Earth satellites.

The present fit of the LLR data is consistent with no
time variation in the strength of gravity, the experimental
bound beingh4
dG

-11
G dz <10

per year. This constraint is modestly smaller than the
observed expansion rate of the universe and is comparable
to the constraint that has been obtained by use of inter-
planetary radar ranging observations.!> But the prospects
are good for improving this measurement from the con-
tinuing LLR experiment. The accumulation of an ever-
increasing time span of highest-accuracy ranging data will
make possible better separation of the tidal effects and
consequently a substantially more accurate measurement

Box 3. If Free-Fall Were Not Universal

f Earth and the Moon fell at different rates toward the
Sun, then there would be an additional polarization of
the lunar orbit, as follows.
> According to Newton:

RS_RP ~l dag — dap
RP ~2 ap

> According to contemporary calculation:

Rs —Rp 3ifias =dp |Opy
[ Re ]~—2[ O

where R and R, are the distances of the satellite’s orbit and
the planet, respectively, from the Sun; a5 and 4p are the
accelerations of the satellite and the planet, respectively, by
the Sun; wg and wp are the orbital frequencies of the satellite
and the planet, respectively; and F(wp/ws) is the dynamical
amplification factor from the solar tide. %(0)=1 and
g(wEarth/wMoon = 174

of the time evolution of G.

In the coming years, LLR can remain a frontier
experiment, testing relativistic gravity in several ways to
ever-increasing accuracy. The passive reflectors on the
Moon should continue to function indefinitely. As the time
span of the data grows longer, measurement accuracy will
improve, especially that of the key lunar frequencies and
their secular rates of change. Precision of amplitude
measurements will also improve, but more modestly, as
high-accuracy range measurements accumulate. The ex-
periment has already become limited by systematic error
rather than by N-1/2 random noise. Hence, more detailed
modeling of the geophysics effects at Earth and the Moon
has become essential to exploit fully the LLR data, which
continue to grow in both quality and quantity.
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