For **Your Optics** Library

Free 130-page catalog from Rolyn. world's leading supplier of "Off-The-Shelf' optics, offers 24-hour delivery of simple or compound lenses, filters, prisms, mirrors, beamsplitters, reticles plus thousands of other stock items.

Off-the-Shelf-Optics 24-hour delivery

706 Arrowgrand Circle, Covina, CA 91722-2199 Phone (818) 915-5707 • (818) 915-5717 Fax (818) 915-1379

Circle number 49 on Reader Service Card

"As entertaining as a good detective story."-Time

Continents in Motion

SECOND EDITION

Walter Sullivan, former science editor for The New York Times

An absorbing and highly readable history of the idea of continental drift—a concept that revolutionized our understanding of geology. Sullivan traces its tentative beginnings in the 19th century and its promulgation by Wegener in the 1920s to the accumulation of overwhelming evidence in the '60s. This second edition is extensively updated to reflect our current understanding of continental drift.

1991, 456 pages, illustrated 0-88318-703-5, cloth, \$50 Members \$40 0-88318-704-3, paper, \$25 Members \$20 Members of AIP Member Societies may

take a 20% discount. To order, call 800-488-BOOK Fax: 802-864-7626

Or mail check, MO, or PO (plus \$2.75 for shipping) to:

American Institute of Physics ' c/o AIDC ■ P.O. Box 20 Williston, VT 05495 PRESS

of conventional chemical reactions; and there are experiments on photoinduced chemical dynamics. In some experiments, such as laser light diffraction from colloidal crystals, the behavior of light is the central theme of the measurement, while in other cases, such as column chromatography, the refraction of laser light is used as a tool to reveal other physical phenomena. Though many topics in laser physics are absent, the chosen experiments will be sufficient to excite the students and expose them to the laser.

There are five major chapters: scattering from disordered systems, diffraction from ordered systems, refraction, electronic structure of matter and photochemistry. Each chapter begins with a short, introductory section that uses simple models to elucidate the theory needed to understand the experiments of that chapter. These introductory expositions are a strong point of the book. The discussions are very clear. Each experimental writeup also has a supplementary discussion that further clarifies the ideas of that particular measurement.

The experiments are concept oriented and generally quite simple, with straightforward, step-by-step instructions. The authors also provide a useful grading of the experiments in terms of their conceptual and technical difficulty. With instructor assistance, high school students can probably do the easier experiments, but generally I think the book is better suited for college freshmen and sophomores. Experiments utilize low-power heliumneon lasers, store-bought chemicals and inexpensive optical components such as polarizers, mirrors and sample cells. The first chapter of the book is devoted to important details, such as safety equipment and equipment costs and manufacturers.

Among the most interesting experiments to physicists are those connected with colloids, emulsions and gels. These experiments exploit simple optical effects to measure the instabilities of complex fluids. Thus experimenters gain exposure to some fascinating materials as well as the means to study these systems. Later sections, on fluorescence spectroscopy and photochemistry, provide stimulating introductions to chemical physics. These experiments teach students about energy levels, and it is at this point that a more extensive discussion of lasers is finally provided.

Overall, I heartily recommend this book as a source of experiments and ideas for those of us teaching optical physics and chemistry to undergraduates. The combined experimental and theoretical approach that the book offers is not common, and I think it is

likely to have a very positive effect on students through the sense of scientific adventure it engenders.

ARJUN G. YODH

University of Pennsylvania Philadelphia, Pennsylvania

Algebraic Theory of Molecules

Francesco Iachello and Raphael D. Levine Oxford U. P., New York, 1995. 243 pp. \$59.95 hc ISBN 0-19-508091-2

Here, in a thorough and straightforward style, is the full current story of the algebraic method of describing and analyzing molecular rotation-vibration spectra. This approach is based on expressing the Hamiltonian of the system in powers of the creation and annihilation operators of the degrees of freedom in which the Hamiltonian is cast. Francesco Iachello, Raphael D. Levine and their colleagues have been developing these ideas for over 12 years, as they point out in their preface. When the first papers appeared, some spectroscopists asked why they should pay attention to this new method, since the traditional phenomenological methods had been so successful. Algebraic Theory of Molecules should settle the question.

The first chapter reviews the quantum mechanical description of diatomic molecules, familiar to molecular spectroscopists but not, in this depth, to most other readers. The second chapter and the appendices lay the basis of the algebraic theory and of Lie algebras, which are familiar to a different part of the audience but not to molecular spectroscopists. For the spectroscopist, this chapter shows familiar material in a form very different from the traditional and should be the basis for crossing into the new approach. Then the book goes into polyatomic molecules, with a brief general excursion into the mechanics of polyatomics, followed by a full development, so far as it has gone, of triatomic, (linear) tetratomic and many-body systems in The seventh successive chapters. chapter explores the connection between quantum algebraic theory and the classical limit, including mean-field approaches. A short, concluding chapter tantalizes the reader with subjects less developed, such as scattering problems and coupling of electronic and vibrational degrees of freedom.

Algebraic Theory of Molecules provides a number of comparisons of results of traditional phenomenological descriptions and their algebraic theory counterparts for the assignments and interpretations of the rotation—vibration spectra of specific molecules. The case is well made that algebraic theory reproduces observed spectra at least as well as or better than does the more conventional Dunham expansion and with somewhat fewer parameters. (I hope we shall see more experimental papers in which the interpreters of molecular spectra use the algebraic method to analyze their results.)

Some sections of the book would have been clearer and probably more persuasive to experimenters if the authors had expanded their discussion and given fuller physical interpretations to the formal material. To cite a few examples: In their discussion on page 34 of the double well, about reducing the symmetry from U(2) to O(2), the authors could have discussed the role of tunneling and how algebraic theory incorporates it. For spectroscopists, some discussion would have been valuable in chapter 4 of Coriolis interaction and centrifugal distortion and how they appear in algebraic theory. More discussion of the physics of the position-dependent mass in chapter 7 would have been both interesting and enlightening to me. Overall, this chapter is less didactic than the earlier chapters: I found the discussion of new directions of research particularly stimulating.

One other minor carping criticism that I have is the occasional "hard-sell" rhetoric, which I found unnecessary and a bit embarrassing. The work is quite strong enough to stand on its own merit, and many of us will simply have to learn and use it.

R. STEPHEN BERRY
University of Chicago
Chicago, Illinois

Spectra of Atoms and Molecules

Peter F. Bernath Oxford U. P., New York, 1995. 400 pp. \$49.95 hc ISBN 0-19-507598-6

Atomic and molecular spectroscopy is a vast subject with applications ranging from the detection of fluctuations in the cosmic background radiation to the identification of molecular species in biochemical analyses. Spectroscopic techniques have been used recently in the creation and detection of Bose–Einstein condensation in weakly interacting atoms (PHYSICSTODAY, August 1995, page 17). Spectroscopy permits the determination of the potential energy curves of diatomic molecules and the structures of complex polyatomic molecules. The extraordinary resolution

that can be achieved is exploited in tests of the fundamental laws of physics and provides the experimental support for quantum electrodynamics.

Because spectroscopic data offer a specific identification of the emitting or absorbing species, they are used to learn the compositions of gases and plasmas and are of unique value in the study of remote objects. Spectroscopic data can be acquired at wavelengths across the electromagnetic spectra from x rays to radio waves, and they reflect the properties of materials at temperatures from near zero to a hundred million degrees Kelvin. Spectroscopic line intensities yield information on energy-level populations of atoms and molecules, from which inferences can be drawn about the temperature. the density and the radiation environment; if magnetic fields are present, their strengths can also be derived.

The diversity of the applications, the variety of experimental techniques, the complexity of the theoretical framework and the sheer vastness of the data base would require many volumes to give a comprehensive accounting of the material. For any one book on the subject, therefore, stringent choices must be made. In *Spectra of Atoms and Molecules*, Peter Bernath emphasizes the development of the theoretical basis of spectroscopy, and the spectroscopic data presented are largely to illustrate the theoretical concepts.

The title refers to atoms and molecules, but the attention given to atoms is limited. In discussing line theory absorption and emission spectroscopy, Bernath gives a conventional account of semiclassical radiation theory, but he incorporates instructive discussions of the responses of a two-level system driven by laser radiation and of line shapes and line-broadening mechanisms. A brief description of the energy-level structure of the hydrogen atom, derived from the Schrödinger equation and the empirical addition of electron spin, serves as an introduction to the independent-particle model of many-electron atoms. The coupling of angular momenta and the construction of the terms of a configuration are illustrated, and formulas are written down for the effects of spin-orbit interactions in fine structure and hyperfine structure and for the Zeeman effect. The formal apparatus of angular momentum theory is avoided. Selection rules are explored but only for electric dipole transitions, and no mention is made of forbidden transitions.

The substance of the book is molecules, diatomic and polyatomic. For polyatomic molecules, group theory is mandatory, and it is provided here at an accessible level with a clear descrip-

tion of molecular symmetries. The heart of the book is an extensive discussion of the classical and quantum mechanics of rotational and vibrational motion in diatomic and polyatomic molecules in ground and excited electronic states. The presentation is coherent and well-organized, and the difficulties and subtleties are elucidated. The examples are of interest mostly to chemists. The utility of spectroscopic data in deriving the structure of polyatomic molecules is made apparent.

Spectra of Atoms and Molecules continues with a brief chapter on rotationvibration Raman spectroscopy and concludes with an important and extensive presentation of the spectroscopy and the rotational and vibrational structure of excited electronic states of diatomic and polyatomic molecules. The different angular momentum coupling schemes for diatomic molecules represented by the different Hund's coupling cases are described. For polyatomic systems, an account is given of the Herzberg-Teller, Jahn-Teller and Renner-Teller effects. The chapters contain a very clear exposition of parity in molecular eigenfunctions.

Spectra of Atoms and Molecules is a textbook. Its value as such is enhanced by a careful selection of problems in which stimulating questions are asked. The book is written in a lucid, explanatory style at a level that should be accessible to readers having some minimal knowledge of quantum mechanics, and it will serve as an excellent introduction to the spectra of diatomic and polyatomic molecules.

ALEXANDER DALGARNO
Harvard-Smithsonian Center
for Astrophysics
Cambridge, Massachusetts

Advances in Photochemistry

Edited by D. C. Neckers, D. H. Volman and G. von Bünau Wiley, New York, 1995. Vol. 19: 325 pp, \$129.95 hc ISBN 0-471-04912-3; Vol. 20: 297 pp. \$95.00 hc ISBN 0-471-11469-3

Volumes 19 and 20 of Advances in Photochemistry are the lastest contributions to the longest continuing series of reviews of recent developments in photochemistry. The editorial policy articulated in the initial volume (edited by J. N. Pitts, G. S. Hammond and W. A. Noyes in 1963) was "to explore the frontiers of photochemistry through the medium of chapters written by pioneers who are experts." By and large the series—roughly one volume a year—has maintained a quality