TWO STAGE DIFFERENTIALLY-PUMPED ROTARY PLATFORM

- Extra-large bore for maximum clearance
- 360° continuous rotation at 1 X 10⁻¹¹ Torr
- Exclusive bearing seal reduces costly maintenance and prolongs bearing life
- Includes fine adjust drive with >0.05° backlash and 0.1° vernier scale
- Standard full-depth threads need no special fasteners
- Optional integral half-nipple mount saves time, space and money
- Excellent value affordable price

Call 1-800-445-3688 for more information.

McAllister Technical Services

West 280 Prairie Avenue
Coeur d'Alene, Idaho 83814

FAX: (208) 772-3384 E-mail: mcallist@aip.org

APS Show—Booth #201 Circle number 160 on Reader Service Card

JOURNAL OF

MATHEMATICAL PHYSICS

Creative Application of Mathematical Techniques to Physics and Engineering Problems

This international journal cuts across all fields of study to bring original research to theoretical and mathematical physicists. Providing a unique link among specialists, the Journal of Mathematical Physics applies mathematical solutions to problems in physics, then develops mathematical methods suitable for the formulation of physical theories.

Research is presented in context, always addressing a general physical or mathematical problem before proceeding to a specific approach.

There are no page charges for publication.
Keep current with the latest developments in this exciting field...Subscribe today!

To For rates and ordering information call toll-free: 1-800-344-6902.

American Institute of Physics Circulation & Fulfillment 500 Sunnyside Boulevard Woodbury, NY 11797-2999

OBITUARIES

Nathan Rosen

Nathan Rosen died in his sleep on 18 December 1995 in Haifa, Israel. In an eminent career lasting more than six decades, he remained active in research, and two of his articles have yet to appear in print. He taught his general relativity course into his eighties at Technion—Israel Institute of Technology.

Born in Brooklyn, New York, on 22 March 1909, Rosen was educated at MIT, earning an ScB in electrochemical engineering in 1929 and an ScD in physics in 1932. His doctoral adviser was Philip M. Morse, and most of his early papers were in quantum chemistry. In making the first reliable quantum mechanical calculation of the structure of the hydrogen molecule, he used "entangled" wavefunctions, which could not be written as products of separate wavefunctions for the two electrons in the molecule.

During the Depression, Rosen held several postdoctoral positions—as a National Research Council fellow at the University of Michigan and Princeton Foundation, and then as an assistant to Albert Einstein at the Institute for Advanced Study in Princeton, New Jersey, from 1934 to 1936. Rosen and Einstein coauthored several articles, one of which was an outgrowth of Rosen's thesis work on entangled wavefunctions for molecules. Rosen pointed out to Einstein some of the bizarre properties of these wavefunctions, and after being joined by another of Einstein's assistants, Boris Podolsky, the three of them-referred to simply as EPR—published their provocative paper, "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?" in the Physical Review in May 1935.

The question raised in the EPR paper was illustrated by an entangled two-particle wavefunction, chosen in such a way that the total momentum of the two particles is zero and their mutual distance has a large fixed value. According to EPR, quantum mechanics implies that, in spite of the uncertainty principle, both the position and momentum of each of the two particles are "elements of reality," because the value of either of these two quantities can be predicted for one of the particles when the position or momentum of the other, widely separated particle is measured. EPR concluded that "the description of reality as given by a wavefunction is not complete." In its wake, the EPR paper has produced a vast body of literature in physics and

NATHAN ROSEN

philosophy, and it has led to some ingenious experimental tests of the statistical correlations predicted for entangled quantum states.

Although he occasionally sought new ways of reconciling the quantum formalism with concepts of classical physics, Rosen personally never doubted the fundamental correctness of the statistical interpretation of quantum mechanics. However, his main interest shifted to the theory of gravitation, starting with seminal work on a precursor of the general relativistic wormhole, later dubbed the "Einstein-Rosen bridge." With Einstein, he also wrote a paper on gravitational waves, a subject to which he returned later. All of his papers reflect his commitment to simple arguments and clear exposition.

In 1936–38, like some other young physicists from the West, Rosen briefly worked in the Soviet Union, as a professor of theoretical physics at Kiev State University. Subsequently, he returned to MIT, taught one year at Black Mountain College in North Carolina, and from 1941 to 1952 was on the faculty of the University of North Carolina at Chapel Hill. During World War II he worked at UNC, through the Naval Research Laboratory, on a method for uranium isotope separation.

From the early 1950s on, the advancement of science in Israel was linked inseparably to Rosen's name. In 1953, attracted by the opportunity of building something new (and at the height of the McCarthy era in the US), he joined Technion—Israel Institute of Technology in Haifa as a professor of physics, to set up the physics department and the graduate school. He retired in 1979 as Distinguished Pro-

fessor, having held the Gerard Swope chair in physics.

Rosen's other contributions included helping to establish the Israel Physical Society in 1954 and serving as its president from 1955 to 1957, and being a cofounder of the Israel Academy of Sciences and Humanities in 1959. In addition, he was closely associated with the international conferences on general relativity and gravitation from their inception in 1955, and he served as president of the International Society for General Relativity and Gravitation from 1974 until 1977. Further, from 1969 until 1971, during the startup of Ben Gurion University of the Negev in Beersheba, he served as dean of the engineering school there.

All who knew Nate Rosen personally remember his kindness, modesty, integrity, gentle sense of humor and abiding concern for social justice, which he shared with his late wife, Anna. Until his last days, he was a familiar sight on the Technion campus, walking with his backpack to the office.

PETER G. BERGMANN

Syracuse University Syracuse, New York New York University New York, New York

EUGEN MERZBACHER

University of North Carolina at Chapel Hill Chapel Hill, North Carolina

ASHER PERES

Technion—Israel Institute of Technology Haifa, Israel

Carson Dunning **Ieffries**

arson Dunning Jeffries, a distinguished and beloved member of the physics department at the University of California, Berkeley, died of a brain tumor on 18 October 1995 at the solar home that he had built in the Oakland hills.

He was born on 20 March 1922 in Lake Charles, Louisiana, and earned his BS degree in physics at Louisiana State University in 1943. Soon thereafter he began wartime development work on radar countermeasures at Harvard University, where his talents caught the attention of Felix Bloch, who later persuaded him to become a graduate student of his at Stanford University. Carson's PhD from Stanford, awarded in 1951, involved a precision measurement of the magnetic moment of the proton, obtained by comparing the proton nuclear resonance and orbital rotation frequencies. In January 1952, after a year at the University of Zurich, he joined the Berkeley physics department, where he enjoyed

New Methods of Celestial **Mechanics**

Henri Poincaré (1854–1912)

COMPLETE YOUR PHYSICS AND MATHEMATICS LIBRARY WITH THIS CLASSIC WORK

"The grand event of the year" announced the Royal Astronomical Society of London in 1899 upon publication of the last volume of Poincaré's classic work. Pushing beyond celestial mechanics, Les Méthodes nouvelles de la Mécanique céleste established basic concepts of modern chaos and dynamical systems theory and placed Poincaré among the most insightful pioneers of science.

EXPERIENCE POINCARÉ'S CREATIVITY WITH THE FIRST ACCURATE ENGLISH TRANSLATION

AIP makes Poincaré's text more accessible by extensively revising, updating, and resetting the translation commissioned by NASA in the 1960s. With careful attention to both the formulas and the wording, this new edition captures the true spirit of the work, which has been lost in previous distillations and excerpts.

To provide modern readers with a full appreciation of this revolutionary work, AIP's new edition features more than 100 pages of introduction by Daniel L. Goroff of Harvard University. This indepth prologue guides you through Poincaré's early life and work, provides engaging expositions on major topics in Les Méthodes nouvelles, and reflects on Poincaré's enduring legacy.

REDISCOVER THE FOUNDATIONS OF CHAOS AND MODERN DYNAMICAL SYSTEMS THEORY

Poincaré developed new tools—including canonical transformations, asymptotic series expansions, periodic solutions, and integral invariants—that are central to a wide range of mathematical disciplines today. Through Les Méthodes nouvelles Poincaré emerges not only as the founder of chaos and dynamical systems theory, but also as an initiator of ergodic theory, topological dynamics, symplectic geometry, and the many applications these fields have throughout the sciences.

NEW METHODS OF CELESTIAL MECHANICS

With a new introduction by Daniel L. Goroff, Harvard University Volume 13, History of Modern Physics and Astronomy 1993, 1600 pages (3 volumes), illustrated ISBN 1-56396-117-2, cloth, \$195.00

To order call 1-800-488-BOOK

In Vermont: 1-802-862-0095. Fax: 1-802-864-7626

Or mail check, MO, or PO (include \$2.75 for shippping) to:

American Institute of Physics c/o AIDC Williston, VT 05495