MY ENCOUNTERS
—AS A PHYSICIST
—WITH MATHEMATICS

‘z\/'{athematical phys-
ALV lics is not a disci-
pline with its own iden-
tity. Rather there is
mathematics and there
is physics, and their cy-
clical relationship en-
joys periods of coopera-
tion interspersed with
periods of mutual indif-
ference. New initiatives leading to rapid development in
physics frequently are accompanied by mathematical in-
novation. Examples from the past are the construction
of particle mechanics and differential calculus by Isaac
Newton and Gottfried Leibniz, developments in general
relativity and differential geometry at the time of Albert
Einstein and Hermann Minkowski, and advances in group
theory and analysis following the invention of quantum
mechanics and quantum field theory.

But the links remain sporadic and, as in any two
societies that are separated, the languages develop differ-
ently, thereby hindering communication. Also, attitudes
about achievement acquire distinct emphases: Physicists
prize empirical problem solving and model building, in
contrast to the mathematicians’ appreciation of rigorously
proven theorems. Part of the fun of being a mathematical
physicist is discovering how the different terminologies
describe the same things and how the distinct goals benefit
each other. (See figure 1.)

Early in my career, my attitude about the relation
between mathematics and physics and about the utility
of the former for the pursuit of the latter was informed
by a talk I heard given by Paul Dirac, in the Harvard
University Loeb lecture series on physics history. Al-
though I did not take notes, later I found a printed version
in which he reiterated his forceful position in favor of
mathematics in physics:

The most powerful method of advance [in phys-

ics] ... is to employ all the resources of pure

mathematics in attempts to perfect and gener-

alize the mathematical formalism that forms the
existing basis of theoretical physics, and ... to

try to interpret the new mathematical features

i terms of physical entities.

Today there is intense cross-fertilization between
mathematics and physics, specifically between geometry
and field theory. The contact, initially established through
Einstein’s theory of general relativity (in which the gravi-
tational field is described in terms of the geometry
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Descriptions of the physical universe and proofs
of abstract mathematical theorems are
sometimes intimately related.
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of space-time), surged
again about two dec-
ades ago. Some of my
own research took place
during that new begin-
ning, so I present here
a reminiscence in the
form of a case history of
a physics—-mathematics
encounter, with com-
ments on how actual experience has modified my precon-
ceived opinion.

Kinks and zero modes

By the early 1970s, quantum field theory was very much
in favor with theoretical physicists, but the quantized
equations continued to resist solution. It then occurred
to many people that it would be worthwhile to ignore the
quantal nature of the fields and solve the equations as if
they described nonlinear, classical dynamical systems.
Interesting, localized and nondissipative solutions were
found very quickly. They were the kinks in one dimension,
relevant to physics on a line; vortices in two dimensions,
in planar physics; skyrmions and magnetic monopoles in
three dimensions—our physical world. Collectively, such
solutions were called “solitons,” the name being taken from
applied mathematics. Another class of solutions com-
prised the “instantons” in four-dimensional space-time.

With colleagues at MIT, I addressed the question
of how to extract information on the quantum theory
from these classical results—that is, we wanted to
determine the quantum meaning of classical fields. We
made progress on this problem, and at a certain stage
Claudio Rebbi and I decided it was important to study
the linear small fluctuations about the nonlinear field
profiles of solitons and instantons, and also the coupling
of other linear systems, such as fermions, to solitons and
instantons.

Thus we were led to linear eigenvalue equations, and
we realized that the zero modes, which correspond to
vanishing eigenvalues, contain especially important infor-
mation about the quantum physics. The zero modes of
the small-fluctuation equations measure the allowed de-
formations of the soliton or instanton, and the number of
these modes gives the dimension of the moduli space for
the solution of the nonlinear equation. (The moduli space
consists of the set of all possible distinct solutions. For
example, if a soliton solution is described by two parame-
ters—say, its location a and its size c—then the moduli
space will be some region in the space of {a, ¢} values.)
In the fermionic Dirac equation, the eigenvalues measure
energy: Positive-energy modes describe quantum parti-
cles, negative-energy modes correspond to antiparticles
and zero modes—when they exist—signal a degeneracy
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FRONTISPIECES OF TWO PAPERS that prove the same result, once in mathematical style by use of the Atiyah-Singer index
theorem, and once in physical style by explicit solution of differential equations. FIGURE 1

that gives rise to unexpected quantum numbers, such as
fractional fermion charge.

Rebbi and I were delighted to find precisely such zero
modes in the equations we studied, and also to establish
their physical consequences. But we were surprised that
the existence of these special solutions did not depend on
the details of the localized profiles of the background
solitons and instantons; instead, only their large-distance
behavior mattered. The long-range features characterize
the topological properties of solitons and instantons. Such
properties are not tied to the detailed shape of a field
configuration but characterize the configuration as a
whole—for example, by specifying its critical points or its
nontrivial behavior at infinity.

With this idea in mind, we began to suspect that the
occurrence of zero modes was not an accident of our
analysis, but a consequence of having nontrivial topologi-
cal backgrounds. Such backgrounds have nontrivial, non-
vanishing large-distance properties, in contrast to the
usual case where behavior at infinity is assumed to be
trivial and irrelevant.

The corridors of MIT

Rebbi and I wanted to find out what mathematicians knew
about these ideas. All buildings at MIT are connected,
and the math department is in the same structure as my
work space. However, locked doors as well as the chem-
istry department intervene, so communication is ob-

structed. Nevertheless, we walked the corridors of the
math department, looking for anyone willing to spend time
understanding our questions and answering them in a
way comprehensible to nonspecialists, to us physicists.
Initially we had no luck, but then we met Barry Simon,
who did not have specific information on our problem but
suggested that the work of Michael Atiyah and Isadore
Singer might be relevant.

Singer had temporarily moved from MIT to University
of California, Berkeley, but it so happened that my col-
league and collaborator Jeffrey Goldstone knew Atiyah
from their student days in Cambridge, England, and had
information that Atiyah was coming to visit his mathe-
matics friends in Cambridge, Massachusetts.

So Rebbi and I arranged a meeting in my office. We
invited physicists who were working on soliton—instanton
questions, and we listened to Atiyah explain how his index
theorem with Singer counts instanton zero modes, and
how their spectral-flow theorem with V. Patodi is relevant
to fractional charge. Here the “index” is the number of
zero eigenvalues of a relevant differential operator, and
“spectral-flow” describes the passage of eigenvalues across
zero, as parameters in the differential operator are varied.

It was especially thrilling for us to learn that the
four-dimensional index is given by an.integral over the
gauge curvature-form F, specifically by | F A F. That was
because the integrand, F A F, had also arisen in physics
papers by John Bell and me, as well as by Stephen Adler,
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THE OBSERVED DECAY of the neutral
pion into two photons is physically
allowed only because of a chiral anomaly
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that arises in renormalization.
Mathematically, the anomaly is given by
the wedge product of the electromagnetic

Y1 Y2

as the anomalous divergence of the chiral fermion current,
thereby controlling neutral pion decay. (See figure 2.)
(“Gauge curvature-form F” is mathematical terminology
and notation for what physicists call F,,, the electromag-
netic field-strength tensor or its generalizations. Simi-
larly, the wedge “A” denotes a generalized cross product.)

Evidently the chiral anomaly and the index theorem
are related; they had been elaborated in the late 1960s
at different ends of the same MIT building, by people
working in ignorance of each other!

We appreciated very much Atiyah’s efforts to make
his presentation understandable to us; still, exchanging
information was not easy. One young member of the
audience impressed Atiyah, who encouraged the fellow to
speak because he seemed to understand, better than
anyone else, what Atiyah was saying. That person was
Edward Witten; as is now well known, he has continued
to impress Atiyah and other mathematicians.

Soon thereafter, I was asked to review these exciting
new results about quantum field theory at a meeting of
the American Physical Society. Since Singer was present,
I yielded some of my time to him, with the suggestion
that he describe the mathematical connection. But a
detailed presentation could not be fit in, so he merely
eulogized collaboration between mathematics and physics
with an ode:

In this day and age
The physicist sage
Writes page after page
On the current rage
The gauge

Mathematicians so blind
Follow slowly behind
With their clever minds
A theorem they’ll find
Duly written and signed

But gauges have flaws
God hems and haws

As the curtain He draws
O’er His physical laws
It may be a lost cause

Index theory also received a contribution from physics.
The Atiyah—Singer theorem applies to even-dimensional
spaces on which a connection is defined. (“Connection” is
a mathematical name for the physicist’s gauge potential.)
However, physicists are also interested in odd-dimensional
spaces—where one-dimensional kinks or three-dimen-
sional skyrmions and monopoles reside. These configura-
tions can lead to zero modes, even in the absence of a
gauge connection. So we asked the mathematicians about
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field strength, F, with itself. The same
quantity is deeply related to index
theorems in mathematics. FIGURE 2

odd-dimensional index theorems, but apparently they
knew nothing about them. At that time I had a mathe-
matically minded student, Costas Callias, and I asked him
to prove such a theorem. He achieved success, which then
prompted Raul Bott and Robert Seeley to publish a mathe-
matical exegesis of the result, immediately following Cal-
lias’s paper in Communications in Mathematical Physics.
Since then I have been happy to see the “Callias index
theorem” used and cited.

Shakespeare and Churchill

The two approaches to solving problems—the explicit,
goal-oriented methods of the physicists and the general
theorems of the mathematicians—are well illustrated by
the determination of the dimensionality for instanton
moduli space: the n-instanton SU(2) solution depends on
8n — 3 parameters. This result appeared twice in the
same issue of Physics Letters, once in a paper by Albert
Schwarz, who used the Atiyah—Singer theorem, and a few
pages later in a paper by Rebbi and me—we solved
differential equations to find explicitly 8n — 3 zero modes.
(See figure 1.)

Gauge theories in general and instantons in particular
continued to interest mathematicians. They established
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THE POTENTIAL IN A¢* THEORY. The theory consists of a
single scalar field ¢ with a ¢* interaction term and a negative
mass-squared term multiplying ¢*. The resulting potential has
two minima or vacuum states, at ¢ = 4. This model has long
been studied by mathematical physicists and has a physical
realization in linear polyacetylene chains, which exhibit
fractional charge phenomena. More complicated models
involving gauge fields relate to knot theory and the
classification of manifolds in mathematics. FIGURE 3




CLASSICAL SOLUTIONS of the A¢* theory in 1 space and 1 time
dimension: Each of the two vacua (blue, offset slightly for
clarity) has trivial topology, being a constant value throughout
space. Soliton solutions such as the kink (red) and antikink
(green) also exist. These are topologically nontrivial, as they
approach different values of ¢ at spatial +eo and —eo; a kink
cannot be smoothly transformed into an antikink or either of
the vacua by a finite process. FIGURE 4

the topological properties of the instanton moduli space
and produced a construction—but not an explicit for-
mula—for the general solution. The most general explicit
expression was given by Craig Nohl, Rebbi and me, but
it does not exhaust all the parameters.

Further developments on four-dimensional gauge
fields led mathematicians to Donaldson theory. In three
dimensions, the Chern—Simons term—a gauge structure
that Steven Templeton and I, as well as Jonathan Schon-
feld, introduced to physics—has been related by mathe-
maticians to knot theory on manifolds with various to-
pologies, while physicists have applied this term to
experimental phenomena on the plane, such as the Hall
effect. (See PHYSICS TODAY, March 1995, page 17, for
developments involving Donaldson theory and physics.)

These parallel investigations by physicists and mathe-
maticians also highlight our differences: We physicists
use mathematics as a language for recording observations
about physical systems, and this limits our interest in
what fascinates mathematicians—the full range of mathe-
matical possibility. For example, the general instanton
solution does not appear to be physically relevant; only
the original one-instanton and the explicit, but limited,
multi-instanton solutions have illuminated physical the-
ory. Even the physicists’ language need not always be
mathematical. The fractional charge phenomenon, which
Rebbi and I inferred from zero modes or from spectral
flow, was also independently established by Wu-Pei Su, J.
Robert Schrieffer and Alan Heeger, who found a physical
realization in linear polyacetylene chains. One of their
derivations uses the pictorial language of chemical bonds,
in which the only mathematics consists of counting! (See
PHYSICS TODAY, July 1981, page 19, for a discussion of
fractional charge.)

An analogy comes here to mind. The English lan-
guage contains over 200 000 words, and all of them inter-
est the lexicographer. For William Shakespeare 20 000
different words sufficed to express his ideas in plays and
sonnets, whereas Winston Churchill used fewer than 2000
different words in his historically decisive speeches.
Physicists, like Churchill, can achieve their goals by mak-
ing effective use of a limited vocabulary.

Nature’s chosen subset

The process of gaining knowledge goes through the same
steps in both physics and mathematics. First there is the
intuition/guess, then follows the proposal/conjecture and
finally comes the verification. For the mathematician,
verification consists of constructing a proof, establishing
a theorem according to rules whose legitimacy evolves
slowly under the direction of the entire mathematics
community. But the physicist verifies his ideas by finding
a physical correlative: Neutral pion decay validates chiral
anomalies (see figure 2), properties of solitons in polyace-
tylene establish fractional charge (see figure 3). Within
physics the rules for giving a proof are constantly and
rapidly changing—presuppositions can become modified,
experimental facts can evolve.

Because the terms “proof” and “theorem” carry intel-
lectual prestige and pleasure, occasionally there are at-
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tempts to employ them in physics. To my mind such
efforts are mostly futile and sterile. For example, physi-
cists wanted very much to combine internal and space-
time symmetries in a nontrivial fashion and were not
daunted by a proven “impossibility theorem.” Rather the
“theorem” was circumvented by the simple device of re-
placing commutators with anticommutators and by grad-
ing the algebra. Thus was born supersymmetry, which
now is also influencing mathematics. Similarly, when
field-theory constructivists “proved” the existence of quan-
tum A¢? theory in 1+1 dimensions, they were correct but
missed the entire quantum soliton phenomenon, which is
the only physically interesting feature of that model. (See
figures 3 and 4.)

These days I believe that a statement by C. N. Yang
accurately describes physicists’ historical use of mathe-
matics:

Physics is not mathematics, just as mathematics

is not physics. Somehow nature chooses only a

subset of the very beautiful and complex and

intricate mathematics that mathematicians de-
velop, and that precise subset is what the theo-
retical physicist is trying to look for.
This conservative view of mathematics differs from Dirac’s
radical advice (cited on page 28) that physicists should
“try to interpret ... mathematical features in terms of
physical entities.”

Nowadays, however, when we are facing the absence
of new experimental data about fundamental phenomena,
particle physics ‘theory—as realized in the string pro-
gram—is driven by mathematics in the manner advocated
by Dirac. That was not the way things worked in the
past, not even for Dirac. When first confronting his
negative-ener-gy solutions, he identified them with the
proton—theri the only known positively charged particle.
As a physicist he did not at first trust his mathematics
enough to postulate the existence of the positron!

Thus a question about the future development of
physics remains: Shall we succeed in obtaining further
and deeper understanding of nature by theoretical, mathg-
matical reasoning alone, or must we wait for new experi-
mental, physical discoveries? New ideas of physics that
occup; many people today are built entirely on mathe-
mati cs, indeed they help create new mathematics. I am
imme nsely curious to learn the ultimate fate of this
activity and to see whether it succeeds.

This- article is adapted from my Heineman Frize acceptance §peegh
at tie April 1995 meeting of the American Physical Society in
Wa shington, DC. Now as then, I acknowledge the colleagues who
co ntributed to the research recognized by the prize: John Bell on
g uantum anomalies, Steven Weinberg on thermal field theory,
Claudio Rebbi on quantal topological effects, and Stanley Deser,
Gerard 't Hooft and So-Young Pi on planar field theories. H
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