
MY ENCOUNTERS 
-AS A PHYSICIST 

-WITH MATHEMATICS 
Mathematical phys­

ics is not a disci­
pline with its own iden­
tity. Rather there is 
mathematics and there 
is physics, and their cy­
clical relationship en­
joys periods of coopera­
tion interspersed with 

Descriptions of the physical universe and proofs 
of abstract mathematical theorems are 

sometimes intimately related. 

of space-time), surged 
again about two dec­
ades ago. Some of my 
own research took place 
during that new begin­
ning, so I present here 
a reminiscence in the 
form of a case history of 
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periods of mutual indif-
ference. New initiatives leading to rapid development in 
physics frequently are accompanied by mathematical in­
novation. Examples from the past are the construction 
of particle mechanics and differential calculus by Isaac 
Newton and Gottfried Leibniz, developments in general 
relativity and differential geometry at the time of Albert 
Einstein and Hermann Minkowski, and advances in group 
theory and analysis following the invention of quantum 
mechanics and quantum field theory. 

But the links remain sporadic and, as in any two 
societies that are separated, the languages develop differ­
ently, thereby hindering communication. Also, attitudes 
about achievement acquire distinct emphases: Physicists 
prize empirical problem solving and model building, in 
contrast to the mathematicians' appreciation of rigorously 
proven theorems. Part of the fun of being a mathematical 
physicist is discovering how the different terminologies 
describe the same things and how the distinct goals benefit 
each other. (See figure 1.) 

Early in my career, my attitude about the relation 
between mathematics and physics and about the utility 
of the former for the pursuit of the latter was informed 
by a talk I heard given by Paul Dirac, in the Harvard 
University Loeb lecture series on physics history. Al­
though I did not take notes, later I found a printed version 
in which he reiterated his forceful position in favor of 
mathematics in physics: 

The most powerful method of advance [in phys­
ics] ... is to employ all the resources of pure 
mathematics in attempts to perfect and gener­
alize the mathematical formalism that forms the 
existing basis of theoretical physics, and ... to 
try to interpret the new mathematical features 
ir. terms of physical entities. 
Today there is intense cross-fertilization between 

mathematics and physics, specifically between geometry 
and field theory. The contact, initially established through 
Einstein's theory of general relativity (in which the gravi­
tational field is described in terms of the geometry 
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a physics-mathematics 
encounter, with com­

ments on how actual experience has modified my precon­
ceived opinion. 

Kinks and zero modes 
By the early 1970s, quantum field theory was very much 
in favor with theoretical physicists, but the quantized 
equations continued to resist solution. It then occurred 
to many people that it would be worthwhile to ignore the 
quantal nature of the fields and solve the equations as if 
they described nonlinear, classical dynamical systems. 
Interesting, localized and nondissipative solutions were 
found very quickly. They were the kinks in one dimension, 
relevant to physics on a line; vortices in two dimensions, 
in planar physics; skyrmions and magnetic monopoles in 
three dimensions-our physical world. Collectively, such 
solutions were called "solitons," the name being taken from 
applied mathematics. Another class of solutions com­
prised the "instantons" in four-dimensional space-time. 

With colleagues at MIT, I addressed the question 
of how to extract information on the quantum theory 
from these classical results- that is, we wanted to 
determine the quantum meaning of classical fields. We 
made progress on this problem, and at a certain stage 
Claudio Rebbi and I decided it was important to study 
the linear small fluctuations about the nonlinear field 
profiles of solitons and instantons, and also the coupling 
of other linear systems, such as fermions , to solitons and 
ins tan tons. 

Thus we were led to linear eigenvalue equations, and 
we realized that the zero modes, which correspond to 
vanishing eigenvalues, contain especially important infor­
mation about the quantum physics. The zero modes of 
the small-fluctuation equations measure the allowed de­
formations of the soliton or instanton, and the number of 
these modes gives the dimension of the moduli space for 
the solution of the nonlinear equation. (The moduli space 
consists of the set of all possible distinct solutions. For 
example, if a soliton solution is described by two parame­
ters- say, its location a and its size c-then the moduli 
space will be some region in the space of (a, cl values.) 
In the fermionic Dirac equation, the eigenvalues measure 
energy: Positive-energy modes describe quantum parti­
cles, negative-energy modes correspond to antiparticles 
and zero modes-when they exist- signal a degeneracy 
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that gives rise to unexpected quantum numbers, such as 
fractional fermion charge. 

Rebbi and I were delighted to find precisely such zero 
modes in the equations we studied, and also to establish 
their physical consequences. But we were surprised that 
the existence of these special solutions did not depend on 
the details of the localized profiles of the background 
solitons and instantons; instead, only their large-distance 
behavior mattered. The long-range features characterize 
the topological properties of solitons and instantons. Such 
properties are not tied to the detailed shape of a field 
configuration but characterize the configuration as a 
whole-for example, by specifying its critical points or its 
nontrivial behavior at infinity. 

With this idea in mind, we began to suspect that the 
occurrence of zero modes was not an accident of our 
analysis, but a consequence of having nontrivial topologi­
cal backgrounds. Such backgrounds have nontrivial, non­
vanishing large-distance properties, in contrast to the 
usual case where behavior at infinity is assumed to be 
trivial and irrelevant. 

The corridors of MIT 
Rebbi and I wanted to find out what mathematicians knew 
about these ideas. All buildings at MIT are connected, 
and the math department is in the same structure as my 
work space. However, locked doors as well as the chem­
istry department intervene, so communication is ob-

structed. Nevertheless, we walked the corridors of the 
math department, looking for anyone willing to spend time 
understanding our questions and answering them in a 
way comprehensible to nonspecialists, to us physicists. 
Initially we had no luck, but then we met Barry Simon, 
who did not have specific information on our problem but 
suggested that the work of Michael Atiyah and Isadore 
Singer might be relevant. 

Singer had temporarily moved from MIT to University 
of California, Berkeley, but it so happened that my col­
league and collaborator Jeffrey Goldstone knew Atiyah 
from their student days in Cambridge, England, and had 
information that Atiyah was coming to visit his mathe­
matics friends in Cambridge, Massachusetts. 

So Rebbi and I arranged a meeting in my office. We 
invited physicists who were working on soliton-instanton 
questions, and we listened to Atiyah explain how his index 
theorem with Singer counts instanton zero modes, and 
how their spectral-flow theorem with V Patodi is relevant 
to fractional charge. Here the "index" is the number of 
zero eigenvalues of a relevant differential operator, and 
"spectral-flow" describes the passage of eigenvalues across 
zero, as parameters in the differential operator are varied. 

It was especially thrilling for us to learn that the 
four-dimensional index is given by an integral over the 
gauge curvature-form F, specifically by f F /\ F. That was 
because the integrand, F /\ F, had also arisen in physics 
papers by John Bell and me, as well as by Stephen Adler, 
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as the anomalous divergence of the chiral fermion current, 
thereby controlling neutral pion decay. (See figure 2.) 
("Gauge curvature-form F" is mathematical terminology 
and notation for what physicists call F,,_v, the electromag­
netic field-strength tensor or its generalizations. Simi­
larly, the wedge "1/' denotes a generalized cross product.) 

Evidently the chiral anomaly and the index theorem 
are related; they had been elaborated in the late 1960s 
at different ends of the same MIT building, by people 
working in ignorance of each other! 

We appreciated very much Atiyah's efforts to make 
his presentation understandable to us; still , exchanging 
information was not easy. One young member of the 
audience impressed Atiyah, who encouraged the fellow to 
speak because he seemed to understand, better than 
anyone else, what Atiyah was saying. That person was 
Edward Witten; as is now well known, he has continued 
to impress Atiyah and other mathematicians. 

Soon thereafter, I was asked to review these exciting 
new results about quantum field theory at a meeting of 
the American Physical Society. Since Singer was present, 
I yielded some of my time to him, with the suggestion 
that he describe the mathematical connection. But a 
detailed presentation could not be fit in, so he merely 
eulogized collaboration between mathematics and physics 
with an ode: 

In this day and age 
The physicist sage 
Writes page after page 
On the current rage 
The gauge 

Mathematicians so blind 
Follow slowly behind 
With their clever minds 
A theorem they'll find 
Duly written and signed 

But gauges have flaws 
God hems and haws 
As the curtain He draws 
O'er His physical laws 
It may be a lost cause 

Index theory also received a contribution from physics. 
The Atiyah-Singer theorem applies to even-dimensional 
spaces on which a connection is defined. ("Connection" is 
a mathematical name for the physicist's gauge potential.) 
However, physicists are also interested in odd-dimensional 
spaces- where one-dimensional kinks or three-dimen­
sional skyrmions and monopoles reside. These configura­
tions can lead to zero modes, even in the absence of a 
gauge connection. So we asked the mathematicians about 
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Atiyah-Singer 
index theorem 

THE OBSERVED DECAY of the neutral 
pion into two photons is physically 
allowed only because of a chiral anomaly 
that arises in renormalization. 
Mathematically, the anomaly is given by 
the wedge product of the electromagnetic 
field strength , F, with itself. The same 
quantity is deeply related to index 
theorems in mathematics. FIGURE 2 

odd-dimensional index theorems, but apparently they 
knew nothing about them. At that time I had a mathe­
matically minded student, Costas Callias, and I asked him 
to prove such a theorem. He achieved success, which then 
prompted Raul Bott and Robert Seeley to publish a mathe­
matical exegesis of the result, immediately following Cal­
lias's paper in Communications in Mathematical Physics. 
Since then I have been happy to see the "Callias index 
theorem" used and cited. 

Shakespeare and Churchill 
The two approaches to solving problems-the explicit, 
goal-oriented methods of the physicists and the general 
theorems of the mathematicians- are well illustrated by 
the determination of the dimensionality for instanton 
moduli space: the n-instanton SU(2) solution depends on 
8n - 3 parameters. This result appeared twice in the 
same issue of Physics Letters, once in a paper by Albert 
Schwarz, who used the Atiyah-Singer theorem, and a few 
pages later in a paper by Rebbi and me-we solved 
differential equations to find explicitly 8n - 3 zero modes. 
(See figure 1.) 

Gauge theories in general and instantons in particular 
continued to interest mathematicians. They established 
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THE POTENTIAL IN Arp4 THEORY. The theory consists of a 
single scalar field rp with a rp4 interaction term and a negative 
mass-squared term multiplying rp2• The resulting potential has 
two minima or vacuum states, at cp = ±a. This model has long 
been studied by mathematical physicists and has a physical 
realization in linear polyacetylene chains, which exhibit 
fractional charge phenomena. More complicated models 
involving gauge fie lds relate to knot theory and the 
classification of manifolds in mathematics. FIGURE 3 



CLASSICAL SOLUTIONS of the Arp4 theory in 1 space and 1 time 
dimension: Each of the two vacua (blue, offset slightly for 

clarity) has trivial topology, being a constant value throughout 
space. Soliton solutions such as the kink (red) and antikink 

(green) also exist. These are topologically nontrivial, as they 
approach different values of rp at spatial +00 and - oo; a kink 

cannot be smoothly transformed into an antikink or either of 
the vacua by a finite process. FIGURE 4 

the topological properties of the instanton moduli space 
and produced a construction-but not an explicit for­
mula-for the general solution. The most general explicit 
expression was given by Craig Nohl, Rebbi and me, but 
it does not exhaust all the parameters. 

Further developments on four-dimensional gauge 
fields led mathematicians to Donaldson theory. In three 
dimensions, the Chern-Simons term-a gauge structure 
that Steven Templeton and I, as well as Jonathan Schon­
feld, introduced to physics-has been related by mathe­
maticians to knot theory on manifolds with various to­
pologies, while physicists have applied this term to 
experimental phenomena on the plane, such as the Hall 
effect. (See PHYSICS TODAY, March 1995, page 17, for 
developments involving Donaldson theory and physics.) 

These parallel investigations by physicists and mathe­
maticians also highlight our differences: We physicists 
use mathematics as a language for recording observations 
about physical systems, and this limits our interest in 
what fascinates mathematicians-the full range of mathe­
matical possibility. For example, the general instanton 
solution does not appear to be physically relevant; only 
the original one-instanton and the explicit, but limited, 
multi-instanton solutions have illuminated physical the­
ory. Even the physicists' language need not always be 
mathematical. The fractional charge phenomenon, which 
Rebbi and I inferred from zero modes or from spectral 
flow, was also independently established by Wu-Pei Su, J. 
Robert Schrieffer and Alan Reeger, who found a physical 
realization in linear polyacetylene chains. One of their 
derivations uses the pictorial language of chemical bonds, 
in which the only mathematics consists of counting! (See 
PHYSICS TODAY, July 1981, page 19, for a discussion of 
fractional charge.) 

An analogy comes here to mind. The English lan­
guage contains over 200 000 words, and all of them inter­
est the lexicographer. For William Shakespeare 20 000 
different words sufficed to express his ideas in plays and 
sonnets, whereas Winston Churchill used fewer than 2000 
different words in his historically decisive speeches. 
Physicists, like Churchill, can achieve their goals by mak­
ing effective use of a limited vocabulary. 

Nature's chosen subset 
The process of gaining knowledge goes through the same 
steps in both physics and mathematics. First there is the 
intuition/guess, then follows the proposal/conjecture and 
finally comes the verification. For the mathematician, 
verification consists of constructing a proof, establishing 
a theorem according to rules whose legitimacy evolves 
slowly under the direction of the entire mathematics 
community. But the physicist verifies his ideas by finding 
a physical correlative: Neutral pion decay validat'es chiral 
anomalies (see figure 2), properties of solitons in polyace­
tylene establish fractional charge (see figure 3). Within 
physics the rules for giving a proof are constantly and 
rapidly changing-presuppositions can become modified, 
experimental facts can evolve. 

Because the terms "proof' and "theorem" carry intel­
lectual prestige and pleasure, occasionally there are at-

cp 

tempts to employ them in physics. To my mind such 
efforts are mostly futile and sterile. For example, physi­
cists wanted very much to combine internal and space­
time symmetries in a nontrivial fashion and were not 
daunted by a proven "impossibility theorem." Rather the 
"theorem" was circumvented by the simple device of re­
placing commutators with anticommutators and by grad­
ing the algebra. Thus was born supersymmetry, which 
now is also influencing mathematics. Similarly, when 
field-theory constructivists "proved" the existence of quan­
tum Arp4 theory in 1+1 dimensions, they were correct but 
missed the entire quantum soliton phenomenon, which is 
the only physically interesting feature of that model. (See 
figures 3 and 4.) 

These days I believe that a statement by C. N. Yang 
accurately describes physicists' historical use of mathe­
m<1tics: 

Physics is not mathematics, just as mathematics 
is not physics. Somehow nature chooses only a 
subset of the very beautiful and complex and 
intricate mathematics that mathematicians de­
velop, and that precise subset is what the theo­
retical physicist is trying to look for. 

This conservative view of mathematics differs from Dirac's 
radical advice (cited on page 28) that physicists should 
"try to interpret . . . mathematical features in terms of 
physical entities." 

Nowadays, however, when we are facing the absence 
of new experiment al data about fundamental phenomena, 
particle physics theory- as realized in the string pro­
gram-is driven by mathematics in the manner advocated 
by Dirac. That was not the way things worked in the 
past, not eve?;", for Dirac. When first confronting his 
negative-ener:gy solutions, he identified them with the 
proton-ther;1 the only known positively charged particle. 
As a phyi:,i cist he did not at first trust his mathematics 
enough to postulate the existence of the positron! 

Thns a question about the future development of 
physics remains: Shall we succeed in obtaining further 
and deeper understanding of nature by theoretical, mathe­
matic&tl reasoning alone, or must we wait for new experi­
mentaJ, physical discoveries? New ideas of physics that 
occupj many people today are built entirely on mathe­
mati cs, indeed they help create new mathematics. I am 
imm, nsely curious to learn the ultimate fate of this 
activi1,y and to see whether it succeeds. 

This-article is adapted from my Heineman Prize acceptance speech 
at t, ie April 1995 meeting of the American Physical Society in 
Wa .shington, DC. Now as then, I acknowledge the colleagues who 
co ntributed to the research recognized by the prize: John Bell on 
q uantum anomalies, Steven Weinberg on thermal field theory, 
Claudio Rebbi on quanta/ topological effects, and Stanley Deser, 
Gerard 't Hooft and So-Young Pi on planar field theories. • 
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