tics is well conceived, well written and nicely organized. It represents a valuable addition to the collection of undergraduate texts available today in laser physics.

JOHN R. BRANDENBERGER

Lawrence University

Appleton, Wisconsin

Newton's *Principia*: The Central Argument

Dana Densmore Green Lion P., Santa Fe, N.M., 1995. 465 pp. \$45.00 hc (\$26.95 pb) ISBN 1-888009-01-02 hc (1-888009-00-4 pb)

Dana Densmore of St. John's College in Santa Fe, New Mexico, clearly identifies in her Newton's Principia: The Central Argument what she considers to be the Principia's core concern: "Buried within this heap of brilliant propositions," she writes, "is a central jewel, the establishment of universal gravitation and its use to demonstrate the elliptical orbits of the planets, which constitutes the main argument of the Principia." There is much more to the *Principia* as a work of rational mechanics than this selection, however central, but it certainly is a sufficient introduction to the Principia for any student.

The strength of this text as a guidebook to these selected portions of Newton's *Principia* lies in the teaching tradition from which it stems: St. John's College, founded in 1696, just nine years after the publication of the first edition of Newton's *Principia*, and its distinctive curriculum centered on "great books." The college's flyer on the World Wide Web (http://www.sjca.edu) sets out the institution's pedagogical goal: "Through the reading of original texts, students reflect on the great questions of the Western tradition from ancient Greece to modern times."

The intent of Densmore's guidebook is to involve the student actively in Newton's analysis; Newton's tendency to omit intermediate steps in the analysis offers ample opportunity for such involvement. To that end, the guidebook is designed on three levels: The first consists of the translation, by W. H. Donahue, from Newton's Latin text itself, and it is distinct from the author's notes and expanded proofs. The student can thus attempt to follow Newton without intervention. second level offers minimal help in the form of notes that alert the student to possible omissions and potential pitfalls in Newton's presentation and then

challenge the student to fill in any steps that are missing. The third level provides an expansion of Newton's sketch of the demonstration and offers a step-by-step demonstration of what Densmore thinks "Newton would have given as a complete proof."

Throughout the guidebook, the student is urged to attempt the demonstration before reading these extended notes, but the notes are always there as a safety net when needed. The challenge to understand Newton's analysis excites the author, and she has written the guidebook to communicate that excitement to the student.

On what level and in what time frame is such a communication possible? Densmore appears to gear the guidebook toward an upper-division undergraduate course, when she notes that "the Muses of this guidebook have been the students in my junior mathematics tutorials [at St John's]." Moreover, it is evident that some knowledge of Euclid's Elements is assumed, in both technique and substance. Specific references to the Elements are given, however, for those less familiar with Euclid. The time span for the course is a semester, although the author notes that "those who have more than a semester to spend on Newton can profitably work . . . out some of the intriguing side paths [not covered in the guidebook]." I can only look with envy at an institution such as St. John's that is willing to offer a semester to the Principia, and with absolute admiration at those that offer more.

There is much more that could be said about the many strengths (and some weaknesses) of this work. It is a scholarly work, but the mind of Newton offers a challenge even to the most dedicated of scholars. In an attempt to avoid a modern reading, Densmore may well have imposed a Euclidean view that is more stringent than is consistent with Newton's thought. But that is a side of Newton often neglected and thus one that deserves attention.

Although the strength of the guidebook is the author's demand for attention to detail, this demand provokes another problem, which is exacerbated by her choice of the much expanded third edition of the *Principia* in place of the first edition. The reader must excavate a vast amount of material to uncover "the jewel buried within this heap of brilliant propositions" that she argues is located in Book Three. It is not a journey for the weak in heart. It will be an education, however, for the brave instructor as well as the courageous student. I strongly encourage interested faculty to generate a seminar that will devote a semester to this

Use Densmore's challenging guidebook, but also get a copy of the entire Principia (a new translation by I. Bernard Cohen is soon to be published by the University of California Press). Hold Densmore's analysis of Newton's opening lemmas up to your knowledge of the calculus that has evolved. Follow her insights into and criticisms of Newton's demonstrations. Look with care at the curvature lemma (lemma 11) and at the "alternate" demonstrations, which she has deleted. Form for yourself a view of the wonderful world of Newton's thoughts on dynamics—a world far removed from that which most physicists now present in their lectures on Newtonian mechanics. Densmore has provided a guide to that world, but you must make the journey yourself.

J. BRUCE BRACKENRIDGE

Lawrence University

Appleton, Wisconsin

Understanding Relativity: A Simplified Approach to Einstein's Theories

Leo Sartori
U. of Calif. P., Berkeley, Calif.,
1996. 367 pp. \$50.00 hc (\$19.95
pb) ISBN 0-520-07986-8 hc
(0-520-20029-2 pb)

Leo Sartori's *Understanding Relativity* is a treatment of relativity at an undergraduate level. It uses some math—mainly algebra with a slight amount of calculus—and is aimed at a freshman or sophomore course. Sartori's text is competent, it has merit, but it is simply one that I personally do not like overly much.

A text should inspire, teach, be a reference, supply problems. It should be attractive to both student and professor. It is to be used, possibly with other references, in a course, and the course should have well-defined prerequisites, methods and goals or objectives, all of which should be reflected in the text. (I contrast Sartori's book with the second edition of Spacetime Physics: Introduction to Special Relativity by Edwin F. Taylor and John Archibald Wheeler [Freeman, 1992], which I prefer.)

Sartori covers a fairly standard list of special-relativity topics, although not in what I would call a simplified manner. There are some oddities: He uses Loedel diagrams, in which orthogonal axes represent ct in one inertial frame and x' in another. I feel these diagrams confuse more than teach; I feel, for example, that they

obscure the discussion of the problem of a moving rod being carried through a barn. In all fairness, however, their use is not pervasive. Sartori also intersperses a bit of history—a welcome addition. The citations to literature are in the form of footnotes, a slight inconvenience, but are adequate, as is the index. The problems are unexciting but okay. The illustrations are all right; in general, the format is clear and helpful.

I have two main dislikes: I feel the style is overly wordy, perhaps in an attempt at the "simplified approach." I don't think it succeeds in that respect, but it is in many places refreshingly personal and interesting. I also don't like the overemphasis on Galilean and Newtonian views of nature. In my view, students at whom this book is aimed don't have a thorough enough intuition for nonrelativistic physics to make this approach more comfortable than a relativistic treatment from the start.

Taylor and Wheeler's book is wonderful. Its content is just at the right level for a freshman or sophomore course on relativity, where the students have some knowledge of but are not comfortable with calculus (although Sartori's math level is fine). Taylor and Wheeler take a four-dimensional, geometric approach from the beginning, and as I said, I much prefer this technique. The personalities of Taylor and Wheeler shine through the text, making it exciting reading. The format of their book-large margins, clear type, eminently readable equations—is superb: its problems are interesting and provocative; its illustrations are well-captioned and striking; its index is formidable: citations to the literature are adequate (although I would prefer an end-of-book listing of suggested readings).

Oh yes, one thing more: For some time now the definition of the meter has been the distance light travels in 1/299 792 458 second. This definition makes the speed of light unmeasurable: its definition is in fact a perfect integer, the same in any reference frame. Sartori and many other writers on relativity give lip service to this definition but do not incorporate it into their discussions. Taylor and Wheeler's treatment adequately reflects the thinking behind the adoption of this definition of the meter.

I hope I have been clear: I am not inspired by Sartori's book; I don't think students will be, either, but it is a

pretty good, fairly standard treatment with a few quirks. I prefer Taylor and Wheeler by a long shot.

L. C. SHEPLEY University of Texas at Austin

Advanced University Physics

S. B. Palmer and M. S. Rogalski Gordon and Breach, New York, 1996. 876 pp. \$124.00 hc (\$39.00 pb) ISBN 2-88449-065-5 hc (2-88449-066-3 pb)

Stuart Palmer of the University of Warwick in England and Mircea Rogalski of the Institute of Atomic Physics in Bucharest have set themselves the ambitious goal of producing a single volume that contains a unified approach to all of undergraduate physics. In particular, they seek to emphasize the connection between microscopic and macroscopic physics and to bridge the gap between what they regard as an overly descriptive approach to undergraduate physics and the more formal and mathematical approach that characterizes graduate courses.

The result is a work that can be described as unique and idiosyncratic: unique in the sense that I know of no other work as ambitious or as comprehensive; idiosyncratic in that it must by its nature represent the authors' opinions on what is important or fundamental in the undergraduate curriculum. Overall, the work is very formal and mathematical. While the examples are well chosen, they are few in number, and there are no exercises for the student. It is also a formulaic work in that the lengths of the 53 chapters are very uniform (14-18 pages each), and each chapter includes precisely three references to textbooks offering presentations in greater depth (most of which are published in Europe and may not be readily available to students in the US). The distribution of topics by chapter gives some idea of what the authors consider significant: mechanics (four chapters), relativity (two), electromagnetism (four), thermodynamics (four), statistical mechanics (four), waves (four), optics (nine), quantum mechanics (eleven), solids (eight) and nuclei (two).

This is not a book that one can read cover to cover. Although I think the authors have succeeded admirably at their goals, they have produced a work that will be more useful to students and faculty as a reference book than as a textbook. It is neither an encyclopedia nor a mere tabulation of formulas. Each chapter is a more or less self-contained exposition on a single

Department-Head Standards in Undergraduate Texts

his list was compiled from the "Graduate Programs in Physics, Astronomy and Related Fields", an annual publication of AIP. In the 1994-95 edition, over 100 heads of PhD-granting physics departments cited specific texts as the undergraduate preparation they assumed of students applying to their programs. The following are those texts cited most often. The list was compiled by Christine Cassagnau of the AIP Education and Employment Statistics Division.

Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles. 2nd edition. R. Eisberg, R. Resnick. Wiley, New York, 1985. ISBN 0-471-87373-X

Analytical Mechanics. 4th edition. G. R. Fowles. Saunders College Publishers (Harcourt Brace), Philadelphia, 1986. ISBN 0-03-004124-4

Quantum Physics. 2nd edition. S. Gasiorowicz. Wiley, New York, 1995. ISBN 0-471-85737-8

Introduction to Electrodynamics. 2nd edition. D. F. Griffiths. Prentice Hall (Simon & Schuster), Englewood Cliffs, N.J., 1989. ISBN 0-13-481367-7

Introductory Quantum Mechanics. 2nd edition. R. L. Liboff. Addison-Wesley, Reading, Mass., 1992. ISBN 0-201-54715-5

Electromagnetic Fields & Waves. 3rd edition. P. Lorrain. W. H. Freeman, New York, 1995. ISBN 0-7167-1823-5

Classical Dynamics of Particles and Systems. 4th edition. J. B. Marion, S. T. Thornton. Saunders College Publishers (Harcourt Brace), Philadelphia, 1995. ISBN 0-03-097-3023

Introduction to the Quantum Theory. 3rd edition. D. A. Park. A. W. McGraw, Whitehall, Ohio, 1992. ISBN 0-07-048554-2

Fundamentals of Statistical & Thermal Physics. Fundamentals of Physics Series. F. Reif. A. W. McGraw, Whitehall, Ohio, 1965. ISBN 0-201-55737-1

Foundations of Electromagnetic Theory. 4th edition. J. R. Reitz. Addison-Wesley, Reading Mass., 1993. ISBN 0-201-52624-7 (0-201-55737 an-

Elementary Quantum Mechanics. D. P. Saxon. A. W. McGraw, Whitehall, Ohio, 1968. ISBN 0-07-054980-X

Mechanics. Physics & Physical Science Series. 3rd edition. K. R. Symon. Addison-Wesley, Reading, Mass., 1971. ISBN 0-201-07392-7

Electromagnetic Fields. 2nd edition. R. K. Wangsness. Wiley, New York, 1986. ISBN 0-471-81186-6

Heat & Thermodynamics. 6th edi-R. Dittman, M. W. Zemansky. A. W. Mc Graw, Whitehall, Ohio, 1981. ISBN 0-07-072808-9