
TOPOLOGICAL IDEAS AND 
FLUID MECHANICS 

The use of topological 
ideas in physics and 

fluid mechanics dates back 
to the very origin of topology 
as an independent science. 
In a brief note in 1833 Karl 
Gauss, while lamenting the 
lack of progress in the "ge­
ometry of position" (or 
Geometria Situs , as topology 

New mathematical techniques and greater 
computational power have made it 

possible to apply knot theory and braid 
theory to fluid flows. 

of his most distinguished 
colleagues and friends. 3 

Whereas Tait never suc­
ceeded in experimentally 
reproducing knotted vortex 
rings, Kelvin's ideas of vor-
tex atoms motivated Tait to 

Renzo L. Ricca and Mitchell A. Berger produce the first knot table, 
similar to the modern atom's 
periodic table. His mathe­

was then known), gives a remarkable example of the 
relationship between topology and measurable physical 
quantities such as electric currents.1 He considers two 
inseparably linked circuits, each of them a copper wire 
with ends joined, and flowing electric current. Without 
comment he puts forward a formula that gives the rela­
tionship between the magnetic action induced by the 
currents and a pure number that depends only on the 
type of link, and not on the geometry. This number is a 
topological invariant now known as the linking number. 
The formula, as well as the very first studies in topology 
done by Johann Benedict Listing in 1847, became known 
to Kelvin (then William Thomson), James Clerk Maxwell 
and Peter Guthrie Tait in Britain. 

Hermann Helmholtz's 1858 paper on vortex motion 
made it possible to apply the new topological ideas to fluid 
mechanics. His laws of vortex motion state that in an 
ideal fluid (where there is no viscosity) vortex structures 
live forever: Two closed vortex rings, once linked, will 
always be linked. Kelvin, like many others, was in search 
of an ultimate theory of matter. Tait's translation of 
Helmholtz's paper on vortex motion provided a wonderful 
inspiration. Kelvin was so impressed by Helmholtz's laws 
that he became a fervent believer in the eternal existence 
of vortex atoms as fundamental constituents of nature. 
In his theory, atoms were thought to be tiny vortex 
filaments embedded in an elastic-like fluid medium, called 
ether. The infinite variety of possible chemical compounds 
was given by the endless family of topological combina­
tions of linked and knotted vortices. Even the fluid ether 
surrounding these vortices could have a complex topology 
in which empty holes and inaccessible closed channels 
were present. He wrote about this with incredibly imagi­
native enthusiasm, describing in great detail the physical 
implication that a topologically complex ether would have.2 

Kelvin's revolutionary idea to describe fundamental 
physics through topological properties not only motivated 
the first studies on the existence and stability of knotted 
vortices (1875), but also stimulated the interest of many 
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matical classification of knots and links became a funda­
mental piece of work (see figure 1).4 Influenced by Maxwell's 
appreciation of Gauss's and Listing's ideas, Tait tried in 1876 
to measure by electromagnetic means topological properties 
such as knot type, which he called "beknottedness." 

But it was Maxwell, more than any other, who truly 
saw the physical implications of topology.5 The whole 
preface of his Treatise on electricity and magnetism is 
permeated by topological ideas. He develops Listing's 
original ideas of multiply connected regions to study the 
relationship of electricity and magnetism to forces and 
potentials. Maxwell notices that if we express a locally 
conservative force as the gradient of a potential function, 
then that function will be well defined-that is, single­
valued-<mly inside a simply connected region. (An ex­
ample of a simply connected region in the plane is a 
circular patch, while a doubly connected region is a patch 
with a hole in it.) Moreover, he gives a remarkable 
example of a particular case of Gauss's linking formula 
for linked magnetic tubes in the section devoted to mag­
netism. 

While Kelvin's dream of explaining atoms as knotted 
vortex rings in a fluid ether never came to fruition (despite 
remarkable analogies with modern string theory), his work 
was seminal in the development of a topological approach 
to fluid dynamics. When Leon Lichtenstein published his 
1929 book on hydrodynamics, two of the eleven chapters 
were dedicated to topological ideas.3 But the difficulty of 
an immediate application and testing of these ideas lim­
ited for many years the use of topological concepts. In 
recent years, the application of modern results from to­
pology and knot theory and greater access to direct nu­
merical simulation of fluid flows have led to new devel­
opments in the qualitative study of fluid mec'hanics. 6 In 
this article we give a few examples that show how knot 
theory and braid theory provide valuable information on 
fluid mechanical problems. 

Links and knots 
Knotted and linked structures are ubiquitous in nature 
and in fluid flow in particular. Their scale lengths range 
from 10-10-10-6 m for superfluid vortices; to 10-2-102 m 
for fluid eddies, vortex filaments and tornadoes; and may 
reach 106- 1010 m as in the case of magnetic flux tubes, 
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KNOTS AND LINKS, 
diagrammed by Peter Tait4 and 
first published in 1877. Tait 
calculated the linking number 
Lk, which he called 
"belinkedness," of the 
two-component links 10-14 
(third row). The magnitude of 
the linking number is that of 
one-half the sum of the signs of 
the crossings in the link 
diagram. One assigns a 
direction to each curve and 
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uses a right-hand rule to assign 
+ 1 or -1 to crossings. For 
example, if a line going from 
south to north crosses over a 
line going from east to west, 
one assigns + 1 to the crossing. 
Every link can be projected to 
the plane with a minimum 
number of crossings, so that Lk 
is a topological invariant of the 
link type. Links 10, 12 and 13 
each have Lk = ±2, whereas 
links 11 (equivalent to two 
unlinked rings) and 14 have 
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plasma loops and magnetic arches in stellar atmospheres. 
Observational and experimental evidence of complex 
braided and entangled fluid structures is now well docu­
mented in the literature, in the context of both classical 
fluid mechanics and magnetohydrodynamics.7 

The presence of tube-like structures at different 
length scales seems to be a generic feature of organized 
fluid patterns. Although in real fluids these structures 
may be rather evanescent (because of dissipative effects), 
their lifetime can be long enough for them to transport 
physical properties efficiently throughout the fluid, mak­
ing them important mediators between different stages of 
fluid evolution. If there is strong coherency, and if motion 
is little influenced by dissipative forces, then their dynam­
ics can be crudely modeled by ideal fluid mechanics-that 
is, by Euler's equations. Tube-like structures such as 
vortex filaments and magnetic flux-tubes are indeed 

Lk = 0 (disregarding the 
self-crossings of each link 
component). The fact that 
non-trivial links may have 
Lk = 0 was actually first 
discovered by Maxwell in his 
study of magnetic links such as 
link 14 (see reference 5, volume 
2, article 421). Tait gave a 
physical explanation for this 
and studied magnetic effects 
induced by currents flowing 
in linked wires in his 
(unsuccessful) attempt to 
measure topological properties 
experimentally. FIGURE 1 

mathematical idealizations. They may be thought of as 
a bundle of cooked spaghetti (representing vortex lines or 
magnetic lines) that pressure gradients keep bound to­
gether in a tubular shape. 

In an ideal fluid there are no dissipative effects; this 
means that fluid structures cannot diffuse or die out freely. 
A change in the fluid pattern due to physical recombina­
tion or reconnection of fluid structures cannot take place 
without viscous or resistive effects. Therefore, vortex or 
magnetic line topology is frozen in the ideal fluid while 
the structures of these objects, in continuous motion, can 
be highly distorted by the background flow. This means 
that if these tubes are initially knotted or linked, they 
will evolve and deform in the ideal fluid by preserving 
the type of knot or link that ties them together, even 
though their geometry may become utterly complicated 
(think of the difficulty of disentangling unknotted tele-
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TORUS KNOTS representing thin vortex 
filaments. Torus knots (generally 
denoted by 7p,q, with p and q relatively 
prime integers) are non-self-intersecting 
closed curves wrapped around a 
mathematical torus (such as a ring) p 
times in the longitudinal direction (along 
the large circumference of the ring) and 
q times in the meridional direction 
(along the small circumference). The 
knots shown here are 72,5 (a) and 73,7 
(b). Such thin vortices are steady 
solutions of ideal fluid mechanics: Like 
vortex rings, they translate and rotate in 
the fluid without change of shape.11 

FIGURE 2 
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phone cords). This is a fundamental , intrinsic property 
of the governing equations (the Cauchy equations), whose 
topological implications were studied in great detail by 
Lichtenstein3 back in the 1920s. Topological properties of 
ideal fluids are therefore flow-invariant,8 and physical 
information expressed in pure topological terms is there­
fore bound to be conserved as well. 

That Euler's equations conserve certain physical 
quantities such as kinetic energy, linear and angular 
momentum and vortex strength is well known. In the 
late 1960s, a seminal work of Henry Keith Moffatt,9 

followed by a series of other contributions, 10 established 
new fundamental connections between ideal fluid mechan­
ics and topology. This work is based on the topological 
interpretation of a new fluid invariant, known as helicity. 
Under Euler's equations the helicity of a vortex tube of 
vorticity w and velocity u is defined by 

H= f u w dV (1) 

The integral is taken over the tube volume V occupied by 
w. Now, for n knotted and linked vortex tubes, each of 
(constant) strength (total vorticity) <Pi (l :', i :', N ), the 
helicity of the whole system can be expressed in terms of 
linking numbers LkiJ as 

H = L Lkij <Pi<Pj 
ij 

(2) 

Lkii (the case of self-linking, when i = j) is none other 
than the linking number of the ith vortex tube, which 
may be knotted and twisted in the fluid. LkiJ, which is 
equal to Lk1i, is a topological invariant whose value does 
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not change under continuous deforma­
tion of the fluid structure , Since helic­
ity and flux-tube strength are meas­
urable conserved quantities, equation 
2 provides useful information about 
the topology of the flow field . This 
equation is indeed applied to analyze 
flow structures.9 By direct measure­
ments of helicity and application of 
conservation of topology, one can esti­
mate average geometric quantities, 
such as the mean twist of field lines, 
and their contribution to the total en-
ergy. Moreover, the magnetic analog 

of kinetic helicity is particularly important for the study 
of twisted magnetic fields in plasma physics and tokamak 
fusion . 

Since J. J. Thomson's work on linked vortices,3 some 
progress has been made regarding the existence of vortex 
knots, as part of more general research on dynamical 
systems exhibiting topologically complex patterns . These 
include vortex filaments in the shape of torus knots.11 

One of the easiest ways to construct these knots is to 
wrap a string around a doughnut, or torus. Let the string 
go around the doughnut q times the short way around, 
and p times the long way around, then join the two ends 
of the string. Now eat the doughnut, leaving the string 
behind-the string will then form the torus knot Tp,q. (See 
figure 2.) Vortex filaments in the shape of torus knots 
move through the fluid in a remarkably simple manner: 
They translate in the fluid at a constant velocity while 
rotating like a rigid body. Although these vortices repre­
sent solutions of ideal fluid mechanics, their study pro­
vides useful information on the stability and evolution of 
fluid structures. 

Braids 
A geometric braid is a set of N intertwined curves stretch­
ing between two parallel planes. The curves can be 
specified by two coordinate functions of height z: [x;(z ), 
y;(z)]; i = 1, . .. , N; 0 :', z :', L. A knotted curve, on the 
other hand, requires three coordinate functions of arc­
length. From this viewpoint, braids are simpler objects 
than knots and links and hence provide a promising 
starting point for studies of topological aspects of fluids . 



Two geometric braids are topologically equivalent if one 
can be deformed into the other by motions that keep the 
two boundary planes fixed . Topological equivalence classes 
of braids can be readily classified using group theory, whereas 
the classification of knots is still a difficult problem. 

Suppose we replace the letter z by t. The braid 
becomes [x;(t ), y ;(t )] ; i = l , ... , N; 0 ::;; t ::;; T, a time history 
of the motions of N particles moving in two dimensions. 
Braids as time histories are useful in the study of dynami­
cal systems. For example, a braid can represent the paths 
of the particles in a two-dimensional N-body simulation. 
Alternatively, a braid can describe the intertwining of a 
set of phase curves [x;(t) , x;(t)] in a one-dimensional dy­
namical system. 

There are astrophysical applications as well. Mag­
netic features on the surface of the Sun (small but intense 
concentrations of magnetic flux) can random walk about 
each other due to the turbulent convection below the 
surface. A braid representing the time history of these 
motions provides topological information about the mag­
netic field above the surface-in the solar corona. In 
active regions, where most flares take place, the magnetic 
field lines emerging from one surface element loop through 
the corona, only to plunge down into another surface 
element. (See figure 3.) As these elements move about 
each other, the loops above become entangled with the 
same topological structure as the time history braid.12 

The coronal field, of course, cannot keep on tangling 

forever. Violent reconnection events break down the topo­
logical structure. These events may be observed on Earth 
as tiny flares (microflares) and probably play an important 
role in larger flares and in the gigantic coronal mass 
ejections. 7·12 They may also be the source of heat keeping 
the corona at 2 x 106 K. 

The supply of heat to solar and stellar coronae pre­
sents a difficult problem for astrophysicists. The heating 
rate due to the reorganization of magnetic fields depends 
on the rate of topological entanglement at the photosphere, 
and on the saturation level of the coronal magnetic field­
that is, the level at which magnetic reconnections on 
average remove structure at the same rate as the input. 

Both the commutativity of twist and the relaxation 
of braids into minimal patterns have relevance here. (See 
the box below.) An important part of the topological 
structure comes from twisting caused by vortical motions 
at the star's photosphere. Because twist commutes with 
other structures, opposite senses of twist on a tube can 
cancel. Random vorticity (sometimes positive, sometimes 
negative) yields only a root-mean-square twist, corre­
sponding to a magnetic energy growing linearly in time. 
The power input is then independent of time, and thus 
essentially independent of the time needed to reach satu­
ration. This would be nice for the theorist, but unfortu­
nately the amount of photospheric vorticity needs to be 
quite high to match observed heating rates. 

More complex braid structures generally do not com-

Pigtails and magnetic fields 
n many situations a set of vortices or magnetic field lines will intertwine about each other, while staying more or less parallel. 
A topological description of the intertwining involves braid theory. Braids, like knots, have a long history in human 

technology. Straw hats, for example, are made from long strips of in tertwined pieces of straw. Some areas of 19th century 
rural England had their own distinctive braid patterns, learned assiduously by the young girls employed in the straw industry. 
Perhaps the most common use of braids today is in plaiting hair into pigtails. 

Even simple pigtails have interesting mathematical features. As an illustration, suppose that it becomes fas hi onable among 
students to braid their hair using ever more elaborate 
patterns. As the competition to find novel patterns 
heats up, two mathematical properties would become 
apparent. 

First, unifo rm twists commute with all other braid 
structures. The ends of a pigtail are bound together by 
a band or ribbon that is free to rotate; adding a uniform 
twist is useless because it can just travel to the end and 
disappear. For this reason, pigtails contain at least three 
bunches of hair (two braided curves can only be 
twisted). 

Second, there are special braid patterns of minimal 
complexity. A student plaiting her hair according to 
the first pattern in the figure may be disappointed to 
discover, after a few hours, that her hair has rearranged 
itself into the passe standard pigtail (second pattern). 

Both the commutativity of twist and the relaxation 
into minimal patterns are important in the study of 
magnetic braids. 

TOPOLOGICALLY EQUIVALENT braids. Each braid is 
made of three strings and has an apparently 
diffe rent number of string crossings. By simply 
rearranging the strings, wi thout moving the end 
points of the braid, the braid on the left can be 
transformed to the one on the right, which gives 
the standard pattern for pigtails and possesses the 
minimum number of crossings (six). 
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mute, and hence do not totally cancel. However, struc­
tures do have some freedom to relax to minimal patterns, 
corresponding to minimum energy states, or equilibria, of 
the magnetic field. Researchers have recently determined 
lower bounds on equilibrium energy for given measures 
of topological complexity based on numbers of crossings 
of braided structures.6·1

3 These bounds are expressed by 
relationships of the kind 

(3) 

where E min is the equilibrium energy and f gives the 
relationship between physical quantities- such as total 
flux <I>, number of tubes N, magnetic volume V-and 
topology, given here by the minimum possible number of 
crossings Cmin· These relations offer numerous advan­
tages due to the explicit dependence on qualitative prop­
erties of the flow field. A simple example is provided by 
the analysis of three braids, which confirms a prediction 
by Eugene N. Parker of the University of Chicago that 
magnetic energy grows quadratically in time due to ran­
dom braiding. This means that heat input associated with 
the magnetic field depends linearly on the saturation level. 
The heating rates predicted for reasonable guesses as to 

the saturation level seem to be consistent with astrophysi­
cal observations. For more complex topologies (highly 
tangled fields), though, finding a magnetic equilibrium 
presents considerable computational difficulties. 

A hybrid twisting and tangling model may yet be the 
most efficient. For solar coronal loops (figure 3), for 
example, rotation of individual photospheric magnetic ele­
ments proceeds more quickly than the braiding of several 
elements; but as mentioned earlier, twist tends to cancel. 
However, magnetic elements at the photosphere do not 
last forever. Sometimes the flux within an element can 
break loose and wander across the photosphere, later to 
combine with other free flux to be concentrated into new 
magnetic elements. If the elements break up and reform 
before the sense of vorticity changes sign, then the twist 
will be trapped within a more complicated braid structure, 
preventing cancellation. 

Relaxation of fat knots and charged links 
Topologically interesting magnetic equilibria can be found 
by studying the relaxation of magnetic knots. Start with 
a knotted magnetic flux tube not in equilibrium. The 
nonequilibrium Lorentz forces in first approximation in­

duce shortening of magnetic 
lines. These effects manifest 
themselves through a ten­
sion present in the tube field 
that makes it behave like a 
contracting rubber band. 
Equilibria for magnetic en­
ergy can be found by follow­
ing the physical process of 
magnetic relaxation using a 
simple model fluid. A per­
fectly conducting, incom­
pressible and viscous fluid is 
a good candidate. Knotted 
magnetic flux tubes left free 
to evolve in such a fluid will 
do so by conserving their 
magnetic flux <I> and volume 
V, but converting their mag­
netic energy into kinetic en­
ergy, which in turn dissipates 
by internal friction. Mag­
netic links and knots evolve 
from high to low magnetic 
energy levels, conserving to­
pology; and because of the 
induced shortening of field 
lines under conservation of 
volume, they become fatter 
and fatter, with an increase 
of the average tube cross-sec­
tion. Evidently, this process 
of energy reduction must 
come to a halt when different 
parts of the tube come in 
contact with each other: 

SOFT X-RAY IMAGE OF THE SUN taken by the Yohkoh solar research spacecraft on 12 February 
1992. Magnetic fields in the solar atmosphere align the hot x-ray-emitting plasma into 
filaments. The complexity of the filamentary structure suggests that the magnetic field stores 
excess energy. When released, this energy can drive flares and eject plasma into space. 
Topological techniques based on crossing numbers and helicity provide estimates of the 
amount of energy stored in the magnetic field. The x-ray telescope on Y ohkoh was prepared 
by the Lockheed Palo Alto Research Laboratory, the National Astronomical Observatory of 
Japan and the University of Tokyo with the support of NASA and the Japanese Institute for 
Space and Astronautical Science. FIGURE 3 

Further relaxation is ob­
structed by the knottedness 
and entanglement of the 
field lines, and a minimum 
magnetic energy is reached. 

Various estimates of 
magneto-mechanical energy 
in terms of topological quan­
tities have been put forward 
in recent years.6•13•14 These 
relations give lower bounds 
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INTERACTION AND LINKING of two 
elliptical vortex rings. The initial 

configuration in this numerical 
simulation is two unlinked rings in 

parallel planes, placed one in front of 
the other (top row). As time passes, 

they interact and reconnect at two 
sites, with an exchange of strands 

(second and third rows). The final 
result (bottom row) is a linked pair of 

vortex rings with some dissipation and 
diffusion of vorticity (not visualized). 

(From H. Aref, I. Zawadzki, reference 
18.) FIGURE 4 

for the energy levels attainable by 
knot or link types by taking into 
account the effects that linking num­
bers and number of crossings have 
on the energy of the relaxed state 
(see equation 3). This means that 
the least possible amount of magnetic 
energy that can be attained by the 
physical knot or link is determined 
purely by its topology. If topological 
information sets the levels of mini­
mum energy accessible to the knot or 
link, geometric properties may also 
influence the relaxation process . 
Considerations ofhelicity and linking 
numbers, for example, demonstrate 
that internal rearrangement of mag­
netic field geometry leads to a spec­
trum of different asymptotic end­
states with the same topology. 10 

Moreover, magnetic knots have a 
natural tendency to get rid of exces­
sive torsion of field lines and S­
shaped tube geometries, and this 
may influence the relaxation process. 
Perhaps new relations that involve 
an interplay between geometric and 
topological quantities will be neces­
sary if we want to understand which 
equilibria are realizable. 

Another case of topological re­
laxation with different energy func­
tions is given by considering linked 
electric wires. Two flexible closed 
wires, such as two rings, linked 
through one another and carrying 
static electric charges provide a sim­
ple example. Now suppose that the 
whole system is embedded in a very 
viscous fluid, like honey, but electri­
cally neutral. The electric charges 
are confined to the circuits and in-
duce repulsive Coulomb forces that 
act on the strands of the wires. Because of mutual 
repulsion, the system progressively relaxes to a least possible 
energy state by reducing potential and kinetic energy. 

The exact process depends on the actual physical wire: 
a thin or thick rod, made of a perfect conductor or not. 
By using various techniques, the accessible energy can 

again be related to topology via, for example, the minimal 
number of crossings. 14 The potential energy function is 
refined further when the elastic properties of the rods are 
important. Then, elastic tension and internal stress con­
tribute to the relaxation process and modify the system's 
topological ground-state energy. 
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Reconnections and change of topology 
So far our discussion has explicitly excluded changes of 
topology. But topological changes do occur when dissipa­
tive effects become predominant over the coherency of 
structures. When this happens there is a dramatic change 
of fluid patterns, often on small time-scales compared to 
evolution. The change occurs through the formation and 
disappearence of physical reconnections in the fluid pat­
tern. In real fluids, for example, vortex and magnetic 
tubes do interact and reconnect freely. From a dynamical 
system viewpoint, reconnections take place when the vec­
tor field lines (streamlines, vortex lines or magnetic lines) 
cross each other. If two field lines meet, the point of 
crossing is a true nodal point, like a bifurcation in a path, 
where there is more than one choice of direction. Dissi­
pative effects allow the reconnection to proceed through 
such points.15 

Analytical and numerical studies of flow patterns 
show that bifurcations of the field lines occur when con­
figurations are degenerate, as with interfacial flows in the 
vicinity of a solid boundary. (Think of the flow separation 
at the nose of an airfoil.) When these events dominate 
the physics, we can still use a combination of topological, 
probabilistic and combinatorial techniques to predict av­
erage properties and long-term evolution. 16 

As local processes, reconnections are difficult to de­
scribe and are still a puzzle for theorists. One simple 
mathematical approach, which must be mediated by de­
tailed knowledge of the particular physical process, in­
volves techniques of "oriented surgery," performed on the 
bundle of constitutive vector field lines. Vector field lines 
are oriented curves, whose arrows give the direction of 
the field they represent. A physical knot can be seen as 
a knotted tubular bundle made of oriented curves. When 
two strands of the bundle come into contact, vector 
lines of one strand may recombine with vector lines of the 
other by a "cut and connect" process, which preserves 
orientation. (See figure 4.) This process of surgery can 
be represented by the sketch 

which shows how a local event may have a global effect. 
When this happens, we have a complete change of 

the topology of the system. Various studies have been 
done analytically, experimentally and now computation­
ally, to understand the key features of reconnection.6 An 
early example of this is given by Kelvin's unsuccessful 
experiments to produce linked vortex rings, when he 
noticed how efficiently smoke rings reconnect and reor­
ganize themselves after collision.2 Recent numerical 
work, based on direct numerical simulation of the Navier­
Stokes equations and of magnetohydrodynamics, attempts 
to create topologically interesting structures. These stud­
ies show that the efficiency of reconnection seems to be 
strongly influenced by local geometric properties given, 
for example, by the relative inclination of the tube 
strands. 17 Orientation-preserving surgery and efficiency 
of the process are therefore two important features for 
topological diagnosis of fluid flows. 

In dissipative fluids, mathematical and physical prop­
erties are no longer conserved, and during the process we 
lose part of the original information. Some of the invari­
ants, though, are rather robust and may only degrade 
slowly. One of them is magnetic helicity, the magnetic 
analogue of the kinetic helicity (equation 1). Its dissipa-
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tion during reconnection can be modest; in particular, if 
the reconnection timescale is small compared to classical 
dissipation times, then helicity loss will be negligible. 
(See, for example, the paper by Freedman and Berger in 
reference 16.) The robustness of magnetic helicity plays 
a central role in fusion plasma physics and in many 
astrophysical contexts-for example, in the theory con­
cerned with the spontaneous growth of magnetic fields in 
electrically-conducting fluids . On the other hand, large 
changes in kinetic helicity are intimately related to quali­
tative changes in the topology of vortex flows. Helicity 
and topological estimates, together with detailed knowl­
edge of reconnections, can prove to be very useful for the 
characterization and classification of the most fundamen­
tal fluid mechanisms. 18 

Ricca's work is supported by the Leverhulme Trust. 
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