ics at Vienna University. In 1960, he became head of the Physics Institute at the Austrian Nuclear Research Center in Seibersdorf. Of particular importance at that time were two major experiments conducted at his initiative and under his supervision: the measurement of the decay properties of the free neutron and the search for parity violation effects in nuclear transitions.

After Peter became a full professor at Vienna Technical University in 1965, I became an assistant professor under him, and he invited me to coauthor the Lehrbuch der Nuklearelektronik ("Textbook on Nuclear Electronics," Springer-Verlag, 1970).

In 1967, Peter returned to Vienna University, where he was appointed head of the Institute for Experimental Physics. Term after term, Peter served as head of this institute until, after 25 years, he resigned just before retirement.

From his initial interests in nuclear electronics and nuclear physics. Peter moved on to liquids, studying them with nuclear probes and laser techniques and eventually using computational physics to elucidate the microscopic structure and dynamics. As a result, the institute has a very active group of computational physicists. He also investigated metal-hydrogen systems as early as 1970, using the inelastic neutron scattering technique. The technology of energy storage by such systems intrigued him very much. As a logical consequence, he got involved in the materials science associated with future fusion reactors.

In his later years and into his retirement, Peter concentrated on solidstate physics performed on the Austrian neutron scattering apparatus at the French research center in Saclay (Paris). The installation of this instrument was made possible by Peter's scientific competence and skills in negotiating a favorable contract between the Austrian Academy of Science and the French Commissariat of Atomic Energy.

Both as a teacher and as a supervisor, Peter was an example of singular decency; he impressed us all with his unmovable impartiality and friendly *noblesse*.

Although Peter's ability to get to the root of a scientific problem with apparent ease made him successful as a scientist, I and many other colleagues valued his human qualities even more. He cared not only for each individual, but for mankind as a whole. So he supported the efforts of the Bulletin of the Atomic Scientists and played a full part in the Pugwash movement.

Manfred Drosg Vienna University Vienna, Austria

# Peter Csavinszky

Peter Csavinszky, long associated with the University of Maine and known for his work in atomic and solid-state physics, died peacefully at his home in Old Town, Maine, on 31 December 1995.

Born in Budapest, Hungary, in 1931, Csavinszky received an undergraduate degree in chemical engineering from the Technical University of Budapest in 1954 and then began his graduate studies in physics at the university's institute of physics. After leaving Hungary in 1956, he moved to Canada, where he earned his PhD in physics in 1959 at the University of Ottawa. Subsequently, he held a two-year postdoctoral fellowship at the National Research Council of Canada.

Csavinszky then came to the US, where, over the next 11 years, he worked as a physicist successively at Hughes Aircraft, General Dynamics, Texas Instruments and TRW Systems.

In 1970, Csavinszky joined the department of physics and astronomy at the University of Maine as an associate professor, and was promoted to full professor in 1975. He remained there until he died. At Maine, he developed an international reputation for his research in atomic physics (especially on the Thomas–Fermi equation) and solid-state physics (especially on impurity ion scattering). He was particularly known for applying variational principles to these physical problems.

He was active in the New England section of the American Physical Society, and served as its vice chairman (1987–88), then chairman (1988–89) and continued as section advisor (1989–90).

One of us (Oyoko) recalls how Csavinszky would diligently go over the details of every calculation made by his graduate students. He was demanding of his students but extremely fair and helpful. He required them to write papers and give presentations at meetings. At those meetings, he always made a point of introducing his students to his famous acquaintances.

In addition to his interests in physics, Csavinszky was a glider pilot, enjoyed travel (especially to physics meetings) and was an avid reader of military history. He will be missed by his colleagues, friends and students.

KENNETH R. BROWNSTEIN

University of Maine

Orono, Maine

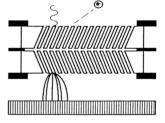
HANNINGTON O. OYOKO

University of Nainth

University of Nairobi Nairobi, Kenya ■ TWO STAGE
DIFFERENTIALLY-PUMPED
ROTARY PLATFORM

- Extra-large bore for maximum clearance
- 360° continuous rotation at 1 X 10<sup>-11</sup> Torr
- Exclusive bearing seal reduces costly maintenance and prolongs bearing life
- Includes fine adjust drive with >0.05° backlash and 0.1° vernier scale
- Standard full-depth threads need no special fasteners
- Optional integral half-nipple mount saves time, space and money
- Excellent value affordable price

Call 1-800-445-3688 for more information.


### **McAllister Technical Services**

West 280 Prairie Avenue

Coeur d'Alene, Idaho 83814 FAX: (208) 772-3384 E-mail: solutions@mcallister.com

Circle number 66 on Reader Service Card

## Low Cost Microchannel Plate Detectors



- broad sensitivity, high quantum efficiency
- detect x-rays, charged particles
- 14 line pairs per mm spatial resolution
   ultrafast gated option available

# Custom & Stock X-ray tubes

- manufactured at our facilities in Ann Arbor
- sealed or demountable tubes
- various anode materials and windows
- inquire about high energy and high power x-ray sources



P.O. Box 3707, Ann Arbor, MI 48106

Tel: (313)761-7400 Fax: (313)761-7458

Circle number 67 on Reader Service Card