RESONANT ULTRASOUND
SPECTROSCOPY

When a new crystalline ma-
terial is discovered, one of
the first fundamental proper-
ties to be determined is the
atomic structure, defined by
the minimum in the free en-
ergy with respect to the po-
sitions of the atoms. Another
fundamental characteristic of
interest is the curvature of
the free energy in the vicinity
of the minimum, and this
would be manifest in the
elastic constants for the material. As derivatives of the
free energy, elastic constants are closely connected to
thermodynamic properties of the material. They can be
related to the specific heat, the Debye temperature and
the Gruneisen parameter (which relates the thermal ex-
pansion coefficient to the specific heat at constant volume),
and they can be used to check theoretical models. Exten-
sive quantitative connections among thermodynamic prop-
erties can be made if the elastic constants are known as
functions of temperature and pressure. The damping of
elastic waves provides information on anharmonicity and
on coupling with electrons and other relaxation mecha-
nisms. The elastic properties are perhaps most valuable
as probes of phase transitions, such as superconductivity
transitions. Clearly precise and accurate measurements
of elastic constants furnish significant information about
materials.

Elastic constants, like spring constants, can be deter-
mined by means of a static technique that measures a
displacement as a linear response to a small applied force.
However, it was learned long ago that a better method is
to measure an elastic vibration, as found, for example, in
a propagating sound wave. Most existing complete sets
of elastic constants for materials have been determined
by measuring the time of flight of sound pulses.

More recent determinations of elastic constants have
used a technique called resonant ultrasound spectroscopy
(RUS), in which one measures the natural frequencies of
elastic vibration for a number of a sample’s normal modes,
and processes these, along with the shape and mass of
the sample, in a computer. With a proper configuration,
a single measurement yields enough frequencies to deter-
mine all of the elastic constants for the material (as many
as 21 for a crystal with low symmetry). Samples may be
prepared in rectangular, spherical and a wide variety of
other shapes, and crystalline samples need not be oriented
with respect to their crystallographic axes. Samples may
be as small as a few hundred microns, with masses less
than 100 micrograms, or they may have dimensions of
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With a means of measuring a sample’s
natural resonance frequencies and a
desktop computer, one can use resonant
ultrasound spectroscopy to determine the
elastic constants of a broad range of
crystalline and noncrystalline materials.

Julian Maynard

several centimeters and
masses of several kilograms.
(See figure 1.) The largest
sample yet tested with an
acoustic resonance method
was a bridge spanning the
Rio Grande River. RUS
shifts the emphasis from ex-
perimental technique to digi-
tal data analysis. In the
data analysis, one must first
solve the problem of calcu-
lating the natural frequen-
cies in terms of elastic constants and sample shape and
mass (this is known as the forward problem), and then
apply a nonlinear inversion algorithm to find the elastic
constants from the measured natural frequencies (the
inverse problem). While the methods used in RUS are
not new, it is only with the recent increasing availability
of powerful microcomputers that RUS has experienced a
rapid growth in popularity.

History of RUS

Interest in elastic properties dates back to studies of the
static equilibrium of bending beams by Galileo and other
17th-century philosophers. With the basic physics intro-
duced by Hooke in 1660, the development of the theory
of elasticity followed the development of the necessary
mathematics, with contributions from Leonhard Euler,
Joseph Lagrange, Siméon-Denis Poisson, George Green
and others. The resulting theory was summarized in the
treatise by Augustus Love in 1927.!

The theory of elasticity indicated that the elastic
constants of a material could be obtained by measuring
sound velocities in that material. This led to the conven-
tional time-of-flight measurements with ultrasonic pulses.
Natural frequency measurements were used at least by
1935,2 but the early methods could find only approximate
solutions to the forward and inverse problems.

Around 1880 Gabriel Lamé and Horace Lamb found
analytic solutions to the forward problem for some special
shapes (cubes and spheres) for isotropic, noncrystalline,
materials. In 1964 D. B. Frasier and R. C. LeCraw used
the solution for a sphere of isotropic material, inverted
graphically, in what may be the first RUS measurement.3
The problem of crystalline materials was considerably
more difficult. Although some perturbative methods were
developed for crystalline materials, it was not until after
1956 that the power of digital computers made the more
general forward problem soluble.%®

Much of the impetus for solving the inverse problem
came from the geophysics community, where solutions
were needed to use seismic data (particularly Earth’s
free-oscillation modes) to determine Earth’s interior struc-
ture, and to measure accurately the elastic moduli of
materials believed to be Earth’s constituents. The studies
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of elastic moduli led to further use and development of
RUS, in particular by geophysicists Orson Anderson, Nao-
hiro Soga, and Edward Schreiber, who collaborated at
Columbia University to improve the method of Frasier
and LeCraw and introduced the term resonant sphere
technique (RST). Anderson and Schreiber generated ex-
citement when they used RST to measure spherical lunar
samples in 1970. In their paper they quoted Erasmus—
“With this pleasant merry toy, he ... made his friends
believe the moon to be made of green cheese”—and they
compared the low sound speed in lunar rock to sound
speeds in various cheeses. Although the velocities were
comparable, the cheeses were of much lower mass density.
However, Anderson noted that the difference “may readily
be accounted for when one considers how much better
aged the lunar materials are.”®

Encouraged by the excitement the lunar measure-
ments had generated, Anderson gave his Columbia Uni-
versity student Harold Demarest the problem of extending
the method for use with a cubic sample. Demarest found
that the problem could be solved numerically for a rec-
tangular parallelepiped of an anisotropic, crystalline ma-
terial as well as for spheres of isotropic materials. De-
marest’s method, verified with experiments, was published
in 19715 and was later referred to as the rectangular
parallelepiped resonance (RPR) method.

A postdoc at Columbia University, Mineo Kumazawa,
learned Demarest’s method, and upon joining the faculty
at Nagoya University, pursued the technique with gradu-
ate student Ichiro Ohno. In 1976 Ohno published a paper’
with some significant extensions to Demarest’s work. To-
gether, the papers of Ohno and Demarest cover nearly all
of the important aspects of RUS. Researchers in geophys-
ics have used RST and RPR extensively since 1976.

In 1988 Albert Migliori and I were collaborating on
an attempt to measure sound velocities in very small
crystals of high-T', superconductor material then available,
using small piezoelectric film transducers.® When the
problem of what to do with measured resonance frequen-

RUS MEASUREMENTS can be
taken for a variety of
samples and with a variety
of apparatus. a: A device
using thin piezoelectric films
has been used to measure
samples with masses down
to 70 micrograms. In this
photo, the space between
divisions on the scale is 1
millimeter. (From ref. 17.)
b: RUS has also been used
to detect defects in ball
bearings several centimeters
in diameter. (Courtesy of
Quatro Corporation,
Albuquerque, New Mexico.)
FIGURE 1

cies had to be faced, Migliori tracked down the references
describing RPR in the geophysics literature (confirming
his wry observation that, “six months in the lab can save
you a day in the library”), and the RPR technique was
introduced into the general physics community. Migliori
immediately extended the limits of the technique with
regard to loading (the shifts in a sample’s natural fre-
quency resulting from attaching transducers) and low-
level electronic measurement, and with William Visscher
brought the computer algorithms to their current state. I
applied the technique to even smaller samples (70 micro-
grams is the current record) using piezoelectric films.
Promoting the technique in the physics community,
Migliori introduced the term resonant ultrasound spectros-
copy to encompass all techniques in which ultrasonic
resonance frequencies are used to determine elastic
moduli. For the current state of RUS theory and appa-
ratus, see references 9-11.

Finding elastic constants

If a spring under an initial tension is subjected to an
additional stress o, two points at positions x and x + dx
will be displaced by ¥(x) and (x + dx), respectively. The
strain ¢ is then equal to dy/dx, and Hooke’s law is

. o =ce, where c is a one-dimensional elastic constant. For

a three-dimensional elastic solid, the displacement be-
comes a three-dimensional vector . The strain is defined
as g; = dih;/ ox; + d;/ ox;. Hooke’s law becomes

3 3
oy = Z Z Cijki€rl (1)
E=11=1
and Newton’s second law for a small volume element with

- mass density p is

3
do;; %P,

Z =0 2L 2

- axj at

Jj=1

The symmetry of the definitions and the assumption
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that the elastic energy must be quadratic in the strains
reduce the number of independent elements of c;3, from
81 to 21. Additional symmetries of a particular crystal
group further reduce the number of independent constants.
For example, cubic crystals have three independent elastic
constants, while orthorhombic crystals have nine.

To determine the modes of vibration, one solves equa-
tions 1 and 2 assuming stress-free boundary conditions at
the surface of the sample:

3
Y oyn;=0 (3)
j=1

where the n; are the components of the unit vector normal
to the surface. Because of the tensor nature of the equations,
the relation between particle displacement and the direc-
tion of wave propagation is quite complicated. One uses
a computer first to solve numerically the forward problem
for the natural frequencies in terms of the elastic constants
for a solid with a given shape and stress-free boundary
conditions and then to invert the resulting complicated
matrix equations. Assuming a time dependence propor-
tional to cos(2wft), solutions to equations 1-3 exist only
for those values of f that are natural frequencies. Exam-
ples of computer-generated normal modes of vibration
found by solving the forward problem for a typical aniso-
tropic sample are illustrated in figure 2.

The boundary value problem described by equations
1-3 can be replaced by a single variational problem. It
is interesting to note that the variational problem yields
not only the differential equation for ¢, but also the
stress-free boundary conditions. To quote Visscher, getting
both equations from the basic Lagrangian is “a mathe-
matical fortuity that may have occurred during a lapse in
Murphy’s vigilance.”

One can find approximate solutions to the variational
problem using the Rayleigh-Ritz method, in which one
approximates 1; as a linear combination of N basis func-
tions @,

N
%= a,®, )
p=1

Minimizing the resulting Lagrangian with respect to the

coefficients a,;, one obtains a 3N x 3N matrix eigenvalue
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COMPUTER-GENERATED ILLUSTRATIONS of some normal
modes of vibration for a rectangular parallelepiped of
anisotropic crystalline material. The mode displacements
depend non-trivially on all of the elastic constants, and a
powerful computer is required to sort out the relationships.
Animated illustrations are available at http://www.phys.
psu.edu/MAYNARD/maynard.html on the World Wide Web.
FIGURE 2

problem that can be solved with a computer algorithm,
yielding the resonance frequencies of the system and the
expansion coefficients from equation 4. The expansion
coefficients can be substituted into equation 4 to construct
normal modes like those shown in figure 2.

The basis functions should be selected to give well-
conditioned matrices and to permit analytic evaluation of
the integrals involved. Early work on uniform rectangular
parallelepipeds used Legendre polynomials. Because
these were orthogonal, the matrix problem was consider-
ably simplified and could be solved with a faster computer
algorithm. However, Visscher pointed out that using basis
functions of the simple form x’y™z" allowed analytic evalu-
ation of the integrals involved for a large number of
shapes, including prisms, spheroids, ellipsoids, shells,
bells, eggs, potatoes, sandwiches and others. The great
versatility of this basis set more than compensates for the
slight increase in time required to compute the solution.

To obtain a good approximation to the correct solutions
and natural frequencies, it may be necessary to use as many
as 400 basis functions. However, for most crystal types it
is not necessary to solve the eigenvalue problem for a full
1200 x 1200 matrix—because of the symmetry of the elastic
tensor, a proper arrangement of basis functions will put the
matrix into block diagonal form. The eigenvalue problem
for each block can be solved independently, with significant
savings in computation time. For example, for orthorhombic
or higher symmetry, the matrices may be reduced to eight
blocks, resulting in a nearly eightfold reduction in computa-
tion time. The details of the manipulation of the basis
functions are in the paper by Ohno.”

For RUS, one must invert this forward problem to
obtain the elastic constants c;;, in terms of the resonance
frequencies f,. In most cases, there will be more measured
frequencies than independent elastic constants, so one
seeks the set of independent elastic constants that best
fits the measured frequencies, usually in a least squares
sense. In both the forward and the inverse problems, it is
advisable to manipulate the matrices with singular value
decomposition!? because this technique allows one to moni-
tor the conditioning of the matrices. In the inverse prob-
lem, the appearance of small singular values in such a
decomposition indicates elastic constants that were not
well determined from the measured frequencies, perhaps
because the sample had a pathological shape. One can



also define linear combinations of elastic constants which
are best determined by the measured frequencies.

To solve the inverse problem, one may start with a
“guessed” set of elastic constants in the forward problem and
then use an iteration procedure to find the set of constants
that best fits the measured frequencies. Provided that the
“guessed” elastic constants used to start the iteration proce-
dure are close to the actual values and that the forward-
problem normal modes are correctly assigned to the meas-
ured resonance frequencies, the inversion should typically
converge to the elastic constants after a fraction of an hour
of desktop computer time. These points are discussed below
in the description of the measurement methods.

Because a typical RUS measurement will usually
provide many more frequencies than the number of inde-
pendent elastic constants, the measured frequencies can
also be used to give a best fit to other parameters, such
as the sample’s shape and dimensions (although one
known length is necessary) and the orientation of its
crystallographic axes relative to its faces. In any case,
one need not orient the crystallographic axes with respect
to the sample faces, although this does greatly simplify
computations. For RST, the orientation of crystallographic
axes is irrelevant for determining the elastic constants.

Measurement methods for RUS

A general RUS measurement!®!! determines the natural
frequencies of a sample with stress-free boundary condi-
tions by measuring the resonance frequencies of the sam-
ple when it is held lightly, with no bonding agents, at two
positions on the sample surface between two transducers.
One transducer drives vibrations in the sample at a
tunable frequency; the second measures the amplitude
(and possibly the phase) of the sample’s response. As the
frequency of the drive is swept, a sequence of resonance
peaks is recorded. The positions of the peaks occur at
the natural frequencies f, (from which the elastic constants
are determined), and the quality factor (@, given by f,
divided by the full width of a peak at its half-power points)
for each resonance provides information about the dissi-
pation of elastic energy.

In order for the resonance frequencies to equal the
natural frequencies with sufficient accuracy, one must mini-
mize the loading of the sample by the transducers. Samples
can be measured with loadings only slightly greater than
their weight, resulting in a measurement accuracy on the
order of a tenth of a percent. This is generally no worse

Electrical leads
to active area

Adjustable
insulator block

Beryllium-copper
spring mount

Sample

than the accuracy to which the sample’s size and shape
are known. Independent of the accuracy, the precision of
the measurement is usually on the order of a few parts
per million, and this helps when investigating small
changes as a function of temperature or pressure and
when probing phase transitions and related phenomena.

It is worth noting that in a conventional ultrasonic
pulse measurement, great pains are taken to maximize
the coupling between the transducer and the sample, so
that the resonating transducer can deliver the largest
possible amplitude to the non-resonating sample.’’ In a
method that resonates the sample, strong coupling is not
necessary, because at resonance, the sample acts as a
natural amplifier with a gain equal to the @ (typically
1000 to 10 000), and readily measured sample amplitudes
are generated. An additional advantage of resonating the
sample is that when measurements change as a function
of temperature, pressure and other variables, one can be
confident of measuring changes due to the sample, rather
than to the transducer or transducer bonding agent. Yet
another benefit of a resonance method is that it uses
continuous wave excitation, allowing one to employ phase-
sensitive detection methods to extract signals from noise.
This feature, along with the large gain at the sample
resonance, permits RUS measurements in the presence of
thermal noise at high temperatures.'®

A simple apparatus for making RUS measurements is
shown in figure 3.1° In the illustration, a rectangular
parallelepiped sample is supported by transducers at dia-
metrically opposite corners. Corners are used for contact
because they provide elastically weak coupling to the
transducers, greatly reducing loading, and because they
are always elastically active (that is, they are never nodes)
and thus couple to all of the normal modes of vibration.
The two transducers in this apparatus consist of 9-um
thick polyvinylidene fluoride (PVDF) piezoelectric film,*
cut into strips about 500 um wide. The strips are partially
metallized on each side, so that conducting portions over-
lap in the central part of the strip, forming a capacitor
sandwiching the piezoelectric film. Electrical contact is
made by means of the metal film on the strip to metal
spring mounts, which maintain a small tension in the
strips. One adjustable transducer block is brought toward
the other until the sample is just supported by its corners
at the centers of the strips; no bonding or ultrasonic
coupling agent is required. As in the general RUS meas-
urement, one transducer drives the sample and the other

SiMPLE RUS APPARATUS holds a
rectangular parallelepiped sample lightly
at its corners between two 9-um-thick
piezoelectric-film (PVDEF) transducers
One transducer excites the vibration of
the sample; the other monitors the
sample response and detects resonance
frequencies. Samples may be as small as
a few hundred microns. (Adapted from
ref. 10.) FIGURE 3

PVDF
active area
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SOPHISTICATED RUS APPARATUS supporting a sample at its
corners. The operation is similar to that of the apparatus in
figure 3, but the transducers are piezoelectric disks backed
by diamond cylinders. With this apparatus, the orientation
of the sample between the transducers can be varied, allow-
ing better determination of the mode to which a measured
frequency belongs. (Photograph courtesy of Albert Migliori,
Los Alamos National Laboratory.) FIGURE 4

monitors the sample resonances. Because the thin piezo-
electric film has a low value of @, its resonances do not
interfere with the sample resonances. This simple appa-
ratus can be used for samples as small as a few hundred
microns.

A more sophisticated RUS apparatus is illustrated in
figure 4. As in the apparatus just discussed, the
transducers contact a rectangular parallelepiped sample
at its corners. Constant loading is maintained (even if
the temperature is varied) with a balanced, pivoted lever
like the tone arm of a phonograph. The transducers are
conventional piezoelectric disks bonded to diamond cylin-
ders to increase the resonance frequencies of the
transducers so that they do not interfere with those of the
sample. In this apparatus, the lower transducer may be
moved laterally while measurements are being taken,
yielding additional information that can be used to identify
the normal modes.

As mentioned in the theory section, an important
consideration for the convergence of the RUS data analysis
procedure is that the normal modes excited in the meas-
urement be correctly identified, in order that the measured
frequencies may be matched with the corresponding fre-
quencies determined in the forward problem. A number
of clever techniques for identifying the modes are dis-
cussed in the RUS literature.>”1% These include (1)
using good values for the initial elastic constants (possibly
theoretically predicted or obtained from incomplete pulse
measurements) and assigning each experimental fre-
quency to the closest estimated frequency; (2) varying the
size of the sample and using the rates of change of the
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frequencies for identification; (3) switching assignments
for frequencies most likely to cross during the iterations
and searching for the best fit;'° and (4) varying the
orientation of the sample relative to the transducers and
monitoring changes in the signal amplitude,* as men-
tioned in the description of the second apparatus above.
For different normal modes, the sample corner vibrates
in different directions; hence, changing the sample’s ori-
entation relative to the transducer varies the transducer
signal amplitude in different patterns. These patterns
can be used to identify the normal mode.

An important application of RUS is the determination
of elastic constants for a material at temperatures signifi-
cantly higher than its Debye temperature. At such high
temperatures, however, the performance of ultrasonic
transducers is severely degraded and bonding agents for
conventional pulse measurements fare even worse. In
1988 Anderson!3 solved this problem with a variation of
the RUS method, illustrated in figure 5a. In this vari-
ation, the sample was supported between the ends of long,
thin alumina buffer rods which extended outside a high-
temperature oven, allowing the transducers to be mounted
at the outer ends of the rods at a safe temperature. One
might suspect that the long rods would have many reso-
nances which would obscure the resonances of the sample,
but it turns out that the resonances of the rods are so
dense and highly damped that they overlap into a smooth
background. The resonances of the sample, with high @s
even at high temperatures, are easily observed above the
background. An example of data from this RUS apparatus
is shown in figure 5b.

Ricardo Schwarz introduced another noteworthy vari-
ation of RUS.™* In this case, a sample of magnetostrictive
material or a nonmagnetic sample coated with a magneto-
strictive film is excited with an alternating magnetic field
from a drive coil. A second coil measures the effective
permeability of the sample, detecting elastic-resonance
shifts in the inductive coupling. The technique is inter-
esting in that no contact with the sample is required.

Further details of RUS apparatus and measurement
are available in the literature.!%!%134 RUS apparatus
may vary considerably in sophistication. One can avoid
fabrication and development altogether by purchasing a
commercial unit, like that shown in figure 1b. A complete
unit includes the components for holding the sample,
automated data acquisition and computer processing. By
simply placing a sample in the holder, one can determine
all of the elastic constants in a fraction of an hour.

RUS applications

RUS has been most extensively applied in geophysics,
where the measurement of the thermodynamic properties
and anharmonic effects of materials at temperatures ex-
ceeding twice the Debye temperature is a high priority.
Such elastic data can be used to check theoretical models
and their extension to high temperature and pressure,
where some asymptotic behavior may be convenient for
other geophysical calculations and extrapolations. Anhar-
monic effects are evident in the Gruneisen relation and
in the departure of heat capacity from the Law of Dulong
and Petit. Many geophysicists have used RUS, most
notably Anderson and the Japanese.

Measurements of elastic constants have proved to be
excellent probes of phase transitions. At a second-order
phase transition, while many thermodynamic quantities
show no obvious evidence of the transition, the elastic
constants may show discontinuities. One may use the
discontinuity to learn about the physics driving the phase
transition. A particularly noteworthy application has been
for high-temperature superconducting phase transitions,
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HIGH-TEMPERATURE RUS measurements can be made using a modified apparatus
which holds the sample between two alumina buffer rods in a furnace. a: The
piezoelectric disks are attached to the buffer rods outside the furnace and couple to
the sample through the rods. Measurements can be made at temperatures up to 1825
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form a continuous background against which the sample resonances stand out as
sharp peaks. This permits high-precision determinations of elastic constants even at
high temperatures. The peaks are labeled using the mode classification scheme from
ref. 7. (Adapted from ref. 13.) FIGURE 5

since elastic constants are sensitive probes of the environ-
ment in which the electrons pair. Superconducting tran-
sitions are often accompanied by structural phase transi-
tions, and elastic constants can yield information about
the thermodynamics of the phase transitions. Even if the
structural transition is arrested by the superconducting
transition, the elastic constants may still indicate struc-
tural instability. Migliori and collaborators have used
RUS to study phase transitions, including those for high-
temperature superconductors, with great success.!'® A
good deal of physics may be studied by means of high-
precision (a few parts per million) measurements of fre-
quencies or quality factors as functions of variables such
as temperature, pressure and isotopic content, without
having to absolutely determine the elastic constants. The
quality factors for different modes, governed for the most
part by different lattice motions, can shed light on various
aspects of the physics involved. Some complex systems
may involve diffusive motion of constituents on a time
scale close to that of the period of the ultrasound wave,
and such dynamics may be studied as relaxation effects.
Robert Leisure has demonstrated the utility of RUS in
this area.!®

The high accuracy and precision of RUS are evident
in studies of quasicrystals.!” Unlike conventional crystals,
quasicrystals are elastically isotropic. While many physi-
cal properties of highly symmetric conventional crystals
(for example, cubic crystals) are very nearly isotropic, the
property of linear elasticity is fundamentally anisotropic;
that is, the velocity of sound is different in different
directions. Thus, it is interesting that icosahedral quasi-
crystals, while having long-range order like conventional
crystals, must be isotropic in sound propagation. Ex-
perimentally measuring elastic anisotropy has proved
challenging because while conventional crystals are fun-
damentally anisotropic, their elastic constants may be
numerically very close to isotropic values, making it dif-

ficult to distinguish between intrinsically isotropic and
anisotropic behavior in a measurement. RUS has been
used to obtain high-precision measurements of the elastic
constants of both quasicrystalline and closely related pe-
riodic phases. These measurements have shown the qua-
sicrystal to be isotropic with an unprecedented confidence
level of ten standard deviations.

Because of the ease of use of RUS and the widespread
availability of powerful microcomputers, it is expected that
the measurement of elastic constants will become readily
accessible for many more research applications.
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