
RESONANT ULTRASOUND 
SPECTROSCOPY 

When a new crystalline ma­
terial is discovered, one of 
the first fundamental proper­
ties to be determined is the 
atomic structure, defined by 
the minimum in the free en­
ergy with respect to the po­
sitions of the atoms. Another 
fundamental characteristic of 
interest is the curvature of 

With a means of measuring a sample's 
natural resonance frequencies and a 

desktop computer, one can use resonant 
ultrasound spectroscopy to determine the 

elastic constants of a broad range of 
crystalline and noncrystalline materials. 

several centimeters and 
masses of several kilograms. 
(See figure 1.) The largest 
sample yet tested with an 
acoustic resonance method 
was a bridge spanning the 
Rio Grande River. RUS 
shifts the emphasis from ex­
perimental technique to digi­
tal data analysis. In the 
data analysis, one must first 
solve the problem of calcu-

the free energy in the vicinity 
of the minimum, and this 
would be manifest in the 
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elastic constants for the material. As derivatives of the 
free energy, elastic constants are closely connected to 
thermodynamic properties of the material. They can be 
related to the specific heat, the Debye temperature and 
the Gruneisen parameter (which relates the thermal ex­
pansion coefficient to the specific heat at constant volume), 
and they can be used to check theoretical models. Exten­
sive quantitative connections among thermodynamic prop­
erties can be made if the elastic constants are known as 
functions of temperature and pressure. The damping of 
elastic waves provides information on anharmonicity and 
on coupling with electrons and other relaxation mecha­
nisms. The elastic properties are perhaps most valuable 
as probes of phase transitions, such as superconductivity 
transitions. Clearly precise and accurate measurements 
of elastic constants furnish significant information about 
materials. 

Elastic constants, like spring constants, can be deter­
mined by means of a static technique that measures a 
displacement as a linear response to a small applied force. 
However, it was learned long ago that a better method is 
to measure an elastic vibration, as found, for example, in 
a propagating sound wave. Most existing complete sets 
of elastic constants for materials have been determined 
by measuring the time of flight of sound pulses. 

More recent determinations of elastic constants have 
used a technique called resonant ultrasound spectroscopy 
(RUS), in which one measures the natural frequencies of 
elastic vibration for a number of a sample's normal modes, 
and processes these, along with the shape and mass of 
the sample, in a computer. With a proper configuration, 
a single measurement yields enough frequencies to deter­
mine all of the elastic constants for the material (as many 
as 21 for a crystal with low symmetry). Samples may be 
prepared in rectangular, spherical and a wide variety of 
other shapes, and crystalline samples need not be oriented 
with respect to their crystallographic axes. Samples may 
be as small as a few hundred microns, with masses less 
than 100 micrograms, or they may have dimensions of 
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lating the natural frequen­
cies in terms of elastic constants and sample shape and 
mass (this is known as the forward problem), and then 
apply a nonlinear inversion algorithm to find the elastic 
constants from the measured natural frequencies (the 
inverse problem). While the methods used in RUS are 
not new, it is only with the recent increasing availability 
of powerful microcomputers that RUS has experienced a 
rapid growth in popularity. 

History of RUS 
Interest in elastic properties dates back to studies of the 
static equilibrium of bending beams by Galileo and other 
17th-century philosophers. With the basic physics intro­
duced by Hooke in 1660, the development of the theory 
of elasticity followed the development of the necessary 
mathematics, with contributions from Leonhard Euler, 
Joseph Lagrange, Simeon-Denis Poisson, George Green 
and others. The resulting theory was summarized in the 
treatise by Augustus Love in 1927.1 

The theory of elasticity indicated that the elastic 
constants of a material could be obtained by measuring 
sound velocities in that material. This led to the conven­
tional time-of-flight measurements with ultrasonic pulses. 
Natural frequency measurements were used at least by 
1935,2 but the early methods could find only approximate 
solutions to the forward and inverse problems. 

Around 1880 Gabriel Lame and Horace Lamb found 
analytic solutions to the forward problem for some special 
shapes (cubes and spheres) for isotropic, noncrystalline, 
materials. In 1964 D. B. Frasier and R. C. LeCraw used 
the solution for a sphere of isotropic material, inverted 
graphically, in what may be the first RUS measurement.3 

The problem of crystalline materials was considerably 
more difficult. Although some perturbative methods were 
developed for crystalline materials, it was not until after 
1956 that the power of digital computers made the more 
general forward problem soluble.4•5 

Much of the impetus for solving the inverse problem 
came from the geophysics community, where solutions 
were needed to use seismic data (particularly Earth's 
free-oscillation modes) to determine Earth's interior struc­
ture, and to measure accurately the elastic moduli of 
materials believed to be Earth's constituents. The studies 

0 1996 American Institute of Physics, S-0031-9228-9601-010-1 



a b 

of elastic moduli led to further use and development of 
RUS, in particular by geophysicists Orson Anderson, Nao­
hiro Soga, and Edward Schreiber, who collaborated at 
Columbia University to improve the method of Frasier 
and LeCraw and introduced the term resonant sphere 
technique (RST). Anderson and Schreiber generated ex­
citement when they used RST to measure spherical lunar 
samples in 1970. In their paper they quoted Erasmus­
"With this pleasant merry toy, he . . . made his friends 
believe the moon to be made of green cheese"-and they 
compared the low sound speed in lunar rock to sound 
speeds in various cheeses. Although the velocities were 
comparable, the cheeses were of much lower mass density. 
However, Anderson noted that the difference "may readily 
be accounted for when one considers how much better 
aged the lunar materials are."6 

Encouraged by the excitement the lunar measure­
ments had generated, Anderson gave his Columbia Uni­
versity student Harold Demarest the problem of extending 
the method for use with a cubic sample. Demarest found 
that the problem could be solved numerically for a rec­
tangular parallelepiped of an anisotropic, crystalline ma­
terial as well as for spheres of isotropic materials. De­
marest's method, verified with experiments, was published 
in 1971,5 and was later referred to as the rectangular 
parallelepiped resonance (RPR) method. 

A postdoc at Columbia University, Mineo Kumazawa, 
learned Demarest's method, and upon joining the faculty 
at Nagoya University, pursued the technique with gradu­
ate student Ichiro Ohno. In 1976 Ohno published a paper7 

with some significant extensions to Demarest's work. Th­
gether, the papers of Ohno and Demarest cover nearly all 
of the important aspects of RUS. Researchers in geophys­
ics have used RST and RPR extensively since 1976. 

In 1988 Albert Migliori and I were collaborating on 
an attempt to measure sound velocities in very small 
crystals ofhigh-Tc superconductor material then available, 
using small piezoelectric film transducers.8 When the 
problem of what to do with measured resonance frequen-

RUS MEASUREMENTS can be 
taken for a variety of 
samples and with a variety 
of apparatus. a: A device 
using thin piezoelectric fi lms 
has been used to measure 
samples with masses down 
to 70 micrograms. In this 
photo, the space between 
divisions on the scale is 1 
millimeter. (From ref. 17.) 
b: RUS has also been used 
to detect defects in ball 
bearings several centimeters 
in diameter. (Courtesy of 
Quatro Corporation, 
Albuquerque, New Mexico.) 
FIGURE 1 

cies had to be faced, Migliori tracked down the references 
describing RPR in the geophysics literature (confirming 
his wry observation that, "six months in the lab can save 
you a day in the library"), and the RPR technique was 
introduced into the general physics community. Migliori 
immediately extended the limits of the technique with 
regard to loading (the shifts in a sample's natural fre­
quency resulting from attaching transducers) and low­
level electronic measurement, and with William Visscher 
brought the computer algorithms to their current state. I 
applied the technique to even smaller samples (70 micro­
grams is the current record) using piezoelectric films . 
Promoting the technique in the physics community, 
Migliori introduced the term resonant ultrasound spectros­
copy to encompass all techniques in which ultrasonic 
resonance frequencies are used to determine elastic 
moduli. For the current state of RUS theory and appa­
ratus, see references 9-11. 

Finding elastic constants 
If a spring under an initial tension is subjected to an 
additional stress u , two points at positions x and x + dx 
will be displaced by Jj;(x) and Jj;(x + dx), respectively. The 
strain e is then equal to dJj;/dx, and Hooke's law is 

. u = ce, where c is a one-dimensional elastic constant. For 
a three-dimensional elastic solid, the displacement be­
comes a three-dimensional vector 1/J. The strain is defined 
as eu = alj;) ax1 + alfJ) axi. Hooke's law becomes 

cru = L L ciJklekz 
k=ll = l 

(1) 

. and Newton's second law for a small volume element with 
· mass density p is 

(2) 

The symmetry of the definitions and the assumption 

J ANUARY 1996 PHYSICS TODAY 27 



that the elastic energy must be quadratic in the strains 
reduce the number of independent elements of ciJkl from 
81 to 21. Additional symmetries of a particular crystal 
group further reduce the number of independent constants. 
For example, cubic crystals have three independent elastic 
constants, while orthorhombic crystals have nine. 

To determine the modes of vibration, one solves equa­
tions 1 and 2 assuming stress-free boundary conditions at 
the surface of the sample: 

3 

(3) 
j=l 

where the n1 are the components of the unit vector normal 
to the surface. Because of the tensor nature of the equations, 
the relation between particle displacement and the direc­
tion of wave propagation is quite complicated. One uses 
a computer first to solve numerically the forward problem 
for the natural frequencies in terms of the elastic constants 
for a solid with a given shape and stress-free boundary 
conditions and then to invert the resulting complicated 
matrix equations. Assuming a time dependence propor­
tional to cos(27r{t), solutions to equations 1-3 exist only 
for those values off that are natural frequencies. Exam­
ples of computer-generated normal modes of vibration 
found by solving the forward problem for a typical aniso­
tropic sample are illustrated in figure 2. 

The boundary value problem described by equations 
1- 3 can be replaced by a single variational problem. It 
is interesting to note that the variational problem yields 
not only the differential equation for 1/J, but also the 
stress-free boundary conditions. To quote Visscher, getting 
both equations from the basic Lagrangian is "a mathe­
matical fortuity that may have occurred during a lapse in 
Murphy's vigilance." 

One can find approximate solutions to the variational 
problem using the Rayleigh-Ritz method, in which one 
approximates 1/Ji as a linear combination of N basis func­
tions c:I>P: 

N 

1/Ji =I, apicpp 

p = l 

(4) 

Minimizing the resulting Lagrangian with respect to the 
coefficients api> one obtains a 3N x 3N matrix eigenvalue 
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COMPUTER·GENERATED ILLUSTRATIONS of some normal 
modes of vibration for a rectangular parallelepiped of 
anisotropic crystalline material. The mode displacements 
depend non-trivially on all of the elastic constants, and a 
powerful computer is required to sort out the relationships. 
Animated illustrations are available at http:/ / www.phys. 
psu.edu/MA YNARD/maynard.html on the World Wide Web. 
FIGURE 2 

problem that can be solved with a computer algorithm, 
yielding the resonance frequencies of the system and the 
expansion coefficients from equation 4. The expansion 
coefficients can be substituted into equation 4 to construct 
normal modes like those shown in figure 2. 

The basis functions should be selected to give well­
conditioned matrices and to permit analytic evaluation of 
the integrals involved. Early work on uniform rectangular 
parallelepipeds used Legendre polynomials. Because 
these were orthogonal, the matrix problem was consider­
ably simplified and could be solved with a faster computer 
algorithm. However, Visscher pointed out that using basis 
functions of the simple form x 1y mz n allowed analytic evalu­
ation of the integrals involved for a large number of 
shapes, including prisms, spheroids, ellipsoids, shells, 
bells, eggs, potatoes, sandwiches and others. The great 
versatility of this basis set more than compensates for the 
slight increase in time required to compute the solution. 

Th obtain a good approximation to the correct solutions 
and natural frequencies, it may be necessary to use as many 
as 400 basis functions. However, for most crystal types it 
is not necessary to solve the eigenvalue problem for a full 
1200 x 1200 matrix-because of the symmetry of the elastic 
tensor, a proper arrangement of basis functions will put the 
matrix into block diagonal form. The eigenvalue problem 
for each block can be solved independently, with significant 
savings in computation time. For example, for orthorhombic 
or higher symmetry, the matrices may be reduced to eight 
blocks, resulting in a nearly eightfold reduction in computa­
tion time. The details of the manipulation of the basis 
functions are in the paper by Ohno.7 

For RUS, one must invert this forward problem to 
obtain the elastic constants c iJkl in terms of the resonance 
frequencies fn· In most cases, there will be more measured 
frequencies than independent elastic constants, so one 
seeks the set of independent elastic constants that best 
fits the measured frequencies, usually in a least squares 
sense. In both the forward and the inverse problems, it is 
advisable to manipulate the matrices with singular value 
decomposition12 because this technique allows one to moni­
tor the conditioning of the matrices. In the inverse prob­
lem, the appearance of small singular values in such a 
decomposition indicates elastic constants that were not 
well determined from the measured frequencies, perhaps 
because the sample had a pathological shape. One can 



also define linear combinations of elastic constants which 
are best determined by the measured frequencies. 

To solve the inverse problem, one may start with a 
"guessed" set of elastic constants in the forward problem and 
then use an iteration procedure to find the set of constants 
that best fits the measured frequencies . Provided that the 
"guessed" elastic constants used to start the iteration proce­
dure are close to the actual values and that the forward­
problem normal modes are correctly assigned to the meas­
ured resonance frequencies, the inversion should typically 
converge to the elastic constants after a fraction of an hour 
of desktop computer time. These points are discussed below 
in the description of the measurement methods. 

Because a typical RUS measurement will usually 
provide many more frequencies than the number of inde­
pendent elastic constants, the measured frequencies can 
also be used to give a best fit to other parameters, such 
as the sample's shape and dimensions (although one 
known length is necessary) and the orientation of its 
crystallographic axes relative to its faces. In any case, 
one need not orient the crystallographic axes with respect 
to the sample faces, although this does greatly simplify 
computations. For RST, the orientation of crystallographic 
axes is irrelevant for determining the elastic constants. 

Measurement methods for RUS 
A general RUS measurement10•11 determines the natural 
frequencies of a sample with stress-free boundary condi­
tions by measuring the resonance frequencies of the sam­
ple when it is held lightly, with no bonding agents, at two 
positions on the sample surface between two transducers. 
One transducer drives vibrations in the sample at a 
tunable frequency; the second measures the amplitude 
(and possibly the phase) of the sample's response. As the 
frequency of the drive is swept, a sequence of resonance 
peaks is recorded. The positions of the peaks occur at 
the natural frequencies fn (from which the elastic constants 
are determined), and the quality factor (Q, given by fn 
divided by the full width of a peak at its half-power points) 
for each resonance provides information about the dissi­
pation of elastic energy. 

In order for the resonance frequencies to equal the 
natural frequencies with sufficient accuracy, one must mini­
mize the loading of the sample by the transducers. Samples 
can be measured with loadings only slightly greater than 
their weight, resulting in a measurement accuracy on the 
order of a tenth of a percent. This is generally no worse 

Electrical leads 

than the accuracy to which the sample's size and shape 
are known. Independent of the accuracy, the precision of 
the measurement is usually on the order of a few parts 
per million, and this helps when investigating small 
changes as a function of temperature or pressure and 
when probing phase transitions and related phenomena. 

It is worth noting that in a conventional ultrasonic 
pulse measurement, great pains are taken to maximize 
the coupling between the transducer and the sample, so 
that the resonating transducer can deliver the largest 
possible amplitude to the non-resonating sample. 10 In a 
method that resonates the sample, strong coupling is not 
necessary, because at resonance, the sample acts as a 
natural amplifier with a gain equal to the Q (typically 
1000 to 10 000), and readily measured sample amplitudes 
are generated. An additional advantage of resonating the 
sample is that when measurements change as a function 
of temperature, pressure and other variables, one can be 
confident of measuring changes due to the sample, rather 
than to the transducer or transducer bonding agent. Yet 
another benefit of a resonance method is that it u ses 
continuous wave excitation, allowing one to employ phase­
sensitive detection methods to extract signals from noise. 
This feature, along with the large gain at the sample 
resonance, permits RUS measurements in the presence of 
thermal noise at high temperatures. 13 

A simple apparatus for making RUS measurements is 
shown in figure 3.10 In the illustration, a rectangular 
parallelepiped sample is supported by transducers at dia­
metrically opposite corners. Corners are used for contact 
because they provide elastically weak coupling to the 
transducers, greatly reducing loading, and because they 
are always elastically active (that is, they are never nodes) 
and thus couple to all of the normal modes of vibration. 
The two transducers in this apparatus consist of 9-J.Lm 
thick polyvinylidene fluoride (PVDF) piezoelectric film, 10 

cut into strips about 500 J.Lm wide. The strips are partially 
metallized on each side, so that conducting portions over­
lap in the central part of the strip, forming a capacitor 
sandwiching the piezoelectric film. Electrical contact is 
made by means of the metal film on the strip to metal 
spring mounts, which maintain a small tension in the 
strips. One adjustable transducer block is brought toward 
the other until the sample is just supported by its corners 
at the centers of the strips; no bonding or ultrasonic 
coupling agent is required. As in the general RUS meas­
urement, one transducer drives the sample and the other 

Sample 

SIMPLE RUS APPARATUS holds a 
rectangular parallelepiped sample lightly 
at its corners between two 9-J.Lm-thick 
piezoelectric-film (PVDF) transducers 
One transducer excites the vibration of 
the sample; the other monitors the 
sample response and detects resonance 
frequencies. Samples may be as small as 
a few hundred microns. (Adapted from 
ref. 10.) FIGURE 3 

Adjustable 
insulator block 

Beryllium-copper 
spring mount 

PVDF 
actiYe area 
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SOPHISTICATED RUS APPARATUS supporting a sample at its 
corners. The operation is similar to that of the apparatus in 
figure 3, but the transducers are piezoelectric disks backed 
by diamond cylinders. With this apparatus, the orientation 
of the sample between the transducers can be varied, allow­
ing better determination of the mode to which a measured 
frequency belongs. (Photograph courtesy of Albert Migliori, 
Los Alamos National Laboratory.) FIGURE 4 

monitors the sample resonances. Because the thin piezo­
electric film has a low value of Q, its resonances do not 
interfere with the sample resonances. This simple appa­
ratus can be used for samples as small as a few hundred 
microns. 

A more sophisticated RUS apparatus is illustrated in 
figure 4. As in the apparatus just discussed, the 
transducers contact a rectangular parallelepiped sample 
at its corners. Constant loading is maintained (even if 
the temperature is varied) with a balanced, pivoted lever 
like the tone arm of a phonograph. The transducers are 
conventional piezoelectric disks bonded to diamond cylin­
ders to increase the resonance frequencies of the 
transducers so that they do not interfere with those of the 
sample. In this apparatus, the lower transducer may be 
moved laterally while measurements are being taken, 
yielding additional information that can be used to identify 
the normal modes. 

As mentioned in the theory section, an important 
consideration for the convergence of the RUS data analysis 
procedure is that the normal modes excited in the meas­
urement be correctly identified, in order that the measured 
frequencies may be matched with the corresponding fre­
quencies determined in the forward problem. A number 
of clever techniques for identifying the modes are dis­
cussed in the RUS literature.5•7•10•11 These include (1) 
using good values for the initial elastic constants (possibly 
theoretically predicted or obtained from incomplete pulse 
measurements) and assigning each experimental fre­
quency to the closest estimated frequency; (2) varying the 
size of the sample and using the rates of change of the 
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frequencies for identification; (3) switching assignments 
for frequencies most likely to cross during the iterations 
and searching for the best fit; 10 and ( 4) varying the 
orientation of the sample relative to the transducers and 
monitoring changes in the signal amplitude,11 as men­
tioned in the description of the second apparatus above. 
For different normal modes, the sample corner vibrates 
in different directions; hence, changing the sample's ori­
entation relative to the transducer varies the transducer 
signal amplitude in different patterns. These patterns 
can be used to identify the normal mode. 

An important application of RUS is the determination 
of elastic constants for a material at temperatures signifi­
cantly higher than its Debye temperature. At such high 
temperatures, however, the performance of ultrasonic 
transducers is severely degraded and bonding agents for 
conventional pulse measurements fare even worse . In 
1988 Anderson13 solved this problem with a variation of 
the RUS method, illustrated in figure 5a. In this vari­
ation, the sample was supported between the ends of long, 
thin alumina buffer rods which extended outside a high­
temperature oven, allowing the transducers to be mounted 
at the outer ends of the rods at a safe temperature. One 
might suspect that the long rods would have many reso­
nances which would obscure the resonances of the sample, 
but it turns out that the resonances of the rods are so 
dense and highly damped that they overlap into a smooth 
background. The resonances of the sample, with high Qs 
even at high temperatures, are easily observed above the 
background. An example of data from this RUS apparatus 
is shown in figure 5b. 

Ricardo Schwarz introduced another noteworthy vari­
ation of RUS.l4 In this case, a sample of magnetostrictive 
material or a nonmagnetic sample coated with a magneto­
strictive film is excited with an alternating magnetic field 
from a drive coil. A second coil measures the effective 
permeability of the sample, detecting elastic-resonance 
shifts in the inductive coupling. The technique is inter­
esting in that no contact with the sample is required. 

Further details of RUS apparatus and measurement 
are available in the literature. 10·

11
•
13

•
14 RUS apparatus 

may vary considerably in sophistication. One can avoid 
fabrication and development altogether by purchasing a 
commercial unit, like that shown in figure lb. A complete 
unit includes the components for holding the sample, 
automated data acquisition and computer processing. By 
simply placing a sample in the holder, one can determine 
all of the elastic constants in a fraction of an hour. 

RUS applications 
RUS has been most extensively applied in geophysics, 
where the measurement of the thermodynamic properties 
and anharmonic effects of materials at temperatures ex­
ceeding twice the Debye temperature is a high priority. 
Such elastic data can be used to check theoretical models 
and their extension to high temperature and pressure, 
where some asymptotic behavior may be convenient for 
other geophysical calculations and extrapolations. Anhar­
monic effects are evident in the Gruneisen relation and 
in the departure of heat capacity from the Law of Dulong 
and Petit. Many geophysicists have used RUS, most 
notably Anderson and the Japanese. 

Measurements of elastic constants have proved to be 
excellent probes of phase transitions. At a second-order 
phase transition, while many thermodynamic quantities 
show no obvious evidence of the transition, the elastic 
constants may show discontinuities. One may use the 
discontinuity to learn about the physics driving the phase 
transition. A particularly noteworthy application has been 
for high-temperature superconducting phase transitions, 
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HIGH-TEMPERATURE RUS measurements can be made using a modified apparatus 
which holds the sample between two alumina buffer rods in a furnace. a: The 
piezoelectric disks are attached to the buffer rods outside the furnace and couple to 

the sample through the rods . Measurements can be made at temperatures up to 1825 
kelvins. b: Because the resonances of the rods are dense and highly damped, they 
form a continuous background against which the sample resonances stand out as 
sharp peaks. T his permits high-precision determinations of elastic constants even at 
high temperatures. The peaks are labeled using the mode classification scheme from 
ref. 7. (Adapted from ref. 13.) FIGURE 5 

since elastic constants are sensitive probes of the environ­
ment in which the electrons pair. Superconducting tran­
sitions are often accompanied by structural phase transi­
tions, and elastic constants can yield information about 
the thermodynamics of the phase transitions . Even if the 
structural transition is arrested by the superconducting 
transition, the elastic constants may still indicate struc­
tural instability. Migliori and collaborators have used 
RUS to study phase transitions, including those for high­
temperature superconductors, with great success. 15 A 
good deal of physics may be studied by means of high­
precision (a few parts per million) measurements of fre­
quencies or quality factors as functions of variables such 
as temperature, pressure and isotopic content, without 
having to absolutely determine the elastic constants. The 
quality factors for different modes, governed for the most 
part by different lattice motions, can shed light on various 
aspects of the physics involved. Some complex systems 
may involve diffusive motion of constituents on a time 
scale close to that of the period of the ultrasound wave, 
and such dynamics may be studied as relaxation effects. 
Robert Leisure has demonstrated the utility of RUS in 
this area. 16 

The high accuracy and precision of RUS are evident 
in studies of quasicrystals. 17 Unlike conventional crystals, 
quasicrystals are elastically isotropic. While many physi­
cal properties of highly symmetric conventional crystals 
(for example, cubic crystals) are very nearly isotropic, the 
property of linear elasticity is fundamentally anisotropic; 
that is, the velocity of sound is different in different 
directions. Thus, it is interesting that icosahedral quasi­
crystals, while having long-range order like conventional 
crystals, must be isotropic in sound propagation. Ex­
perimentally measuring elastic anisotropy has proved 
challenging because while conventional crystals are fun­
damentally anisotropic, their elastic constants may be 
numerically very close to isotropic values, making it dif-

ficult to distinguish between intrinsically isotropic and 
anisotropic behavior in a measurement. RUS has been 
used to obtain high-precision measurements of the elastic 
constants of both quasicrystalline and closely related pe­
riodic phases. These measurements have shown the qua­
sicrystal to be isotropic with an unprecedented confidence 
level of ten standard deviations. 

Because of the ease of use of RUS and the widespread 
availability of powerful microcomputers, it is expected that 
the measurement of elastic constants will become readily 
accessible for many more research applications. 
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