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A Model of Turbulence 

Turbulence is one of those prob­
lems. Interesting. Vexing. Long­

standing. Unsolved. 
The basic physics is easy to de­

scribe: Imagine a fluid that initially 
has some sort of simple flow with a 
nonuniform velocity. As time goes on, 
the nonlinear interactions among the 
fluid elements will tend to produce 
more and more complex structures, 
with more and more fine details. This 
complexity will continue to grow un­
til , at a very fine scale, it is limited 
by viscous damping, which tends to 
smooth everything out. Note, for ex­
ample, the extremely complex small 
structures in figure 1. 

The parameter for describing the 
degree of complexity is the Reynolds 
number Re = LU/v, where U is the 
typical nonuniformity in velocity, L is 
the size of a region in which the 
nonuniformity occurs and v is the ki­
nematic viscosity of the fluid in ques­
tion. In everyday systems, fine 
scales are produced precisely because 
this viscosity is extremely small-of 
order lQ-6 m2fs for water. 

Figure 2 (on page 13) shows a sche­
matic of these turbulent processes, us­
ing concepts introduced over 70 years 
ago by L. F. Richardson. The dynam­
ics is best described in Fourier-trans­
form language in which the wavevec­
tor k serves to describe the inverse of 
the different spatial scales. Some 
large-scale process, perhaps stirring, 
is used to feed energy into the fluid 
at small k. The range of scales at 
which this addition of energy occurs 
is called the integral range. Then 
the nonlinear coupling of velocities 
causes the energy to cascade toward 
larger wavevectors. The range of 
scales dominated by the cascade is 
called the inertial range. This range 
can be quite large, since it is propor­
tional to a power of the Reynolds 
number. For even larger k 's, one 
passes into the viscous range. Here, 
viscous processes dissipate the energy 
into heat and smooth out all details. 
The problem of turbulence is to pre­
dict and understand what happens 
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A quantitative analysis of energy 
conservation in turbulent flow was in­
troduced by Andrei N. Kolmogorov in 
two papers written in 1941 and 1962 
that are now generally called K41 
and K62. The key idea is that all the 
energy that is added on the largest 
scale flows unchanged through the in­
ertial range toward higher k. The 

flow is described by a current. By di­
mensional analysis Kolmogorov found 
that the current of energy is propor­
tional to k [u (k)]3, where u(k ) is the 
spatial Fourier transform of the veloc­
ity. The conservation of energy im­
plies that in the inertial range this 
current must be independent of k. 
The 1941 paper thus gives an order 
of magnitude statement 

u(k) ~ (ir3 
where s is the energy current. 

There are two crucial assumptions 
in K41: 
[> The current s is assumed to be 
roughly constant and thus essentially 
equal to the energy input per unit time. 
[> Further, since the dissipation never 
directly appears in the argument, the 
energy flow is assumed to depend 
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only on what happens in the inertial 
and integral scales, Thus, for exam­
ple, the value of e should depend only 
on the nature of the external forcing 
and should be independent of the 
Reynolds number. 

This argument, and many sub­
sequent arguments, sees the energy 
flow as a kind of pipeline, (See again 
figure 2,) Energy is added to the pipe 
at the large scales, flows through the 
very long pipe and then flows out via 
dissipation at the far end, The 1941 
analysis implies that the flow through 
the pipe at a given point depends only 
on processes upstream of that point 
Thus, for example, inertial-range be­
havior would not be influenced by the 
value of the viscosity, since the viscos­
ity appears only in the dissipative 
range, far downstream. 

But the pipeline analogy casts doubt 
upon the assumption that no effects 
flow upstream. In a pipeline, a chok­
ing of the outlet would tend to dimin­
ish the flow. 

Initially the field focused on the 
other basic assumption of the K41 the­
ory, that of the constancy of energy 
dissipation, Partially in response to a 
criticism by Lev Landau, Kolmogorov 
changed his own point of view. In 
K62 he argued that because of fluc­
tuations, the energy input should be 
a function of space and time that can 
vary over many, many orders of mag­
nitude. These huge fluctuations are 
termed intermittency, While still as­
surning that effects only flow down­
stream, Benoit Mandelbrot and oth­
ers developed richer cascade models 
that showed how a highly fluctuating 
behavior might arise and be reflected 
in a complex fractal structure of u (k ), 

Theory cannot for the moment dis­
tinguish between the weak fluctua­
tions of K41 and the intermittency of 
K62, To settle questions of this kind 
we should look to experiment. The 
experimental evidence suggests the ex­
istence of intermittency but is not yet 
conclusive. We might also look to 
simulations. Turbulence problems 
can easily be set up on the computer, 
since a turbulent system may be cor­
rectly described by a well-known par­
tial differential equation, the Navier­
Stokes equation, Unfortunately com­
puters are too slow to allow simula­
tions to cover a sufficient range of 
scales, How can we learn more? 
One way is to set up models that cor­
rectly realize in specific form the pre­
vious theoretical ideas and then see 
how consistent these ideas might be. 

Several one-dimensional models 
have been developed that include in a 
very rough way cascades from shell 
to shell in momentum space. One 
such model, which has received con-
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flows downhill through a long inertial range and finally is dissipated in a viscously de­

termined range of scales. FIGURE 2 

siderable attention lately, is connected 
with the names of E. B. Gledzer, K. 
Okitimi and M. Yamada (inelegantly 
referred to as GOY). This is the sim­
plest model that can correctly realize 
a cascade through orders of magni­
tude of wavevector k. The system is 
described by the Fourier coefficients 
u (k ) of the velocity. Imagine a cas­
cade that goes from a k of order the 
inverse size of the system, L-1, to one 
in a shell that contains k 's a factor of 
A larger, and then to a higher shell 
with k 's of order A2L and so forth un­
til finally we reach ANL , a wavevector 
that sits far into the dissipative range. 
The real system involves many, many 
Fourier coefficients u (k ), with the 
number per shell increasing sharply 
with the shell number. This model 
tries to describe the flow by keeping 
precisely one Fourier coefficient for 
each shell. The equations of motion 
are picked to mimic Navier-Stokes 
behavior, with nonlinearity, viscous 
damping and energy conservation all 
included. The model involves two pa­
rameters that have no direct counter­
part in Navier-Stokes: the shell 
width A and a parameter c. The lat­
ter determines the ratio of the energy 
flux toward higher wavenumber to 
the .flux in the opposite sense. 

Because the equations of this model 
involve many fewer variables than do 
the Navier-Stokes equations, its quali­
tative properties can be established 
with the aid of simulations. We can 
thus ask, Do the size of the fluctua­
tions in the model agree with K41 or 
with K62? The question is sharply 
posed, and it may be sharply answered. 
The answer is yes. Yes? Yes! In one 
range of parameters (c close to unity) 
the system shows small fluctuations 
and K41 behavior, while in another 

range (smaller c) it shows very strong 
fluctuations and something more like 
K62 behavior. For this domain, the 
model permits independent fluctuations 
in the velocity ratio between neighbor­
ing shells. When one multiplies out a 
set of many independent random multi­
pliers, the result can have truly huge 
fluctuations. Thus the model serves as 
a partial justification for both K41 and 
the later, more fluctuating theories. 

However, K41 and some later theo­
ries say that the inertial-range behav­
ior should be independent of v . In re­
sponse to some prompting from Zhen 
Su She (University of Arizona), Nor­
bert Schiirghofer, Jane Wang, Detlef 
Lohse, Roberto Benzi and I looked at 
the GOY model's inertial range. In 
one situation Schiirghofer's numerics 
showed that these theoretical guesses 
were wrong: In the static solution, the 
energy flux down the pipe certainly 
does depend on v, even in the limit of 
high Reynolds number. In contrast to 
the early theories (both K41 and K62), 
here the flow down the energy pipeline 
depends on an interaction between inlet 
and outlet conditions, induced by cor­
relations carried up and down the pipe. 
(The detailed manifestation of the cor­
relation in the GOY model depends on 
the shell thickness and is thus un­
physical.) This correlation result points 
us toward the possibility that both in­
let and outlet might play a role in de­
termining the flow in real turbulence. 
If so, there will be some Reynolds-num­
ber dependence of inertial-range behav­
ior. Thus a vastly oversimplified model 
led to insights that might well play 
back into a deeper understanding of a 
truly complex phenomenon. 

Models are fun, and sometimes 
even instructive. • 
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