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A Model of Turbulence

Leo P. Kadanoff

urbulence is one of those prob-
lems. Interesting. Vexing. Long-
standing. Unsolved.

The basic physics is easy to de-
scribe: Imagine a fluid that initially
has some sort of simple flow with a
nonuniform velocity. As time goes on,
the nonlinear interactions among the
fluid elements will tend to produce
more and more complex structures,
with more and more fine details. This
complexity will continue to grow un-
til, at a very fine scale, it is limited
by viscous damping, which tends to
smooth everything out. Note, for ex-
ample, the extremely complex small
structures in figure 1.

The parameter for describing the
degree of complexity is the Reynolds
number Re = LU/v, where U is the
typical nonuniformity in velocity, L is
the size of a region in which the
nonuniformity occurs and v is the ki-
nematic viscosity of the fluid in ques-
tion. In everyday systems, fine
scales are produced precisely because
this viscosity is extremely small—of
order 1076 m?%s for water.

Figure 2 (on page 13) shows a sche-
matic of these turbulent processes, us-
ing concepts introduced over 70 years
ago by L. F. Richardson. The dynam-
ics is best described in Fourier-trans-
form language in which the wavevec-
tor k serves to describe the inverse of
the different spatial scales. Some
large-scale process, perhaps stirring,
is used to feed energy into the fluid
at small k. The range of scales at
which this addition of energy occurs
is called the integral range. Then
the nonlinear coupling of velocities
causes the energy to cascade toward
larger wavevectors. The range of
scales dominated by the cascade is
called the inertial range. This range
can be quite large, since it is propor-
tional to a power of the Reynolds
number. For even larger K’s, one
passes into the viscous range. Here,
viscous processes dissipate the energy
into heat and smooth out all details.
The problem of turbulence is to pre-
dict and understand what happens
when the inertial range is large.
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A quantitative analysis of energy
conservation in turbulent flow was in-
troduced by Andrei N. Kolmogorov in
two papers written in 1941 and 1962
that are now generally called K41
and K62. The key idea is that all the
energy that is added on the largest
scale flows unchanged through the in-
ertial range toward higher k. The

flow is described by a current. By di-
mensional analysis Kolmogorov found
that the current of energy is propor-
tional to k[u(k)l®, where u(k) is the
spatial Fourier transform of the veloc-
ity. The conservation of energy im-
plies that in the inertial range this
current must be independent of k.
The 1941 paper thus gives an order
of magnitude statement
e\l/3
u(k) %

where ¢ is the energy current.

There are two crucial assumptions
in K41:
D> The current ¢ is assumed to be
roughly constant and thus essentially
equal to the energy input per unit time.
> Further, since the dissipation never
directly appears in the argument, the
energy flow is assumed to depend

JET FLUID CONCENTRATION in a plane normal to the jet axis, 300 diameters downstream
of the jet nozzle, measured by laser-induced fluorescence. Black indicates the reservoir
fluid into which the jet is discharging. Pale yellow, red, green and blue indicate succes-
sively lower levels of jet fluid concentration. (Courtesy of Harry Catrakis and Paul Di-

motakis, Caltech.) FIGURE 1
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only on what happens in the inertial
and integral scales. Thus, for exam-
ple, the value of & should depend only
on the nature of the external forcing
and should be independent of the
Reynolds number.

This argument, and many sub-
sequent arguments, sees the energy
flow as a kind of pipeline. (See again
figure 2.) Energy is added to the pipe
at the large scales, flows through the
very long pipe and then flows out via
dissipation at the far end. The 1941
analysis implies that the flow through
the pipe at a given point depends only
on processes upstream of that point.
Thus, for example, inertial-range be-
havior would not be influenced by the
value of the viscosity, since the viscos-
ity appears only in the dissipative
range, far downstream.

But the pipeline analogy casts doubt
upon the assumption that no effects
flow upstream. In a pipeline, a chok-
ing of the outlet would tend to dimin-
ish the flow.

Initially the field focused on the
other basic assumption of the K41 the-
ory, that of the constancy of energy
dissipation. Partially in response to a
criticism by Lev Landau, Kolmogorov
changed his own point of view. In
K62 he argued that because of fluc-
tuations, the energy input should be
a function of space and time that can
vary over many, many orders of mag-
nitude. These huge fluctuations are
termed intermittency. While still as-
suming that effects only flow down-
stream, Benoit Mandelbrot and oth-
ers developed richer cascade models
that showed how a highly fluctuating
behavior might arise and be reflected
in a complex fractal structure of u(k).

Theory cannot for the moment dis-
tinguish between the weak fluctua-
tions of K41 and the intermittency of
K62. To settle questions of this kind
we should look to experiment. The
experimental evidence suggests the ex-
istence of intermittency but is not yet
conclusive. We might also look to
simulations. Turbulence problems
can easily be set up on the computer,
since a turbulent system may be cor-
rectly described by a well-known par-
tial differential equation, the Navier—
Stokes equation. Unfortunately com-
puters are too slow to allow simula-
tions to cover a sufficient range of
scales. How can we learn more?

One way is to set up models that cor-
rectly realize in specific form the pre-
vious theoretical ideas and then see
how consistent these ideas might be.

Several one-dimensional models
have been developed that include in a
very rough way cascades from shell
to shell in momentum space. One
such model, which has received con-

12 SEPTEMBER 1995



Add energy

Integral scale
+—r ¢

Energy flows to smaller scales

Inertial range

Energy dissipates

Viscous range
> < ey

» <€

=
O
Z
=)
=
=)
2
=)
=

Increasing log
Decreasing log R

vy

PIPELINE ANALOGY

Add water

Water flows downhill

l""’"l‘

Water is distributed

TURBULENCE AS A DOWNHILL FLOW. In this physical model energy is added on the
integral scale and flows “downhill” toward shorter scales, R, and higher values of the
wavevector k. The process can be viewed as a kind of pipeline in which the energy
flows downhill through a long inertial range and finally is dissipated in a viscously de-

termined range of scales. FIGURE 2

siderable attention lately, is connected
with the names of E. B. Gledzer, K.
Okitimi and M. Yamada (inelegantly
referred to as GOY). This is the sim-
plest model that can correctly realize
a cascade through orders of magni-
tude of wavevector k. The system is
described by the Fourier coefficients
u(k) of the velocity. Imagine a cas-
cade that goes from a k of order the
inverse size of the system, L™, to one
in a shell that contains K’s a factor of
A larger, and then to a higher shell
with K’s of order A°L and so forth un-
til finally we reach A¥L, a wavevector
that sits far into the dissipative range.
The real system involves many, many
Fourier coefficients u(k), with the
number per shell increasing sharply
with the shell number. This model
tries to describe the flow by keeping
precisely one Fourier coefficient for
each shell. The equations of motion
are picked to mimic Navier—Stokes
behavior, with nonlinearity, viscous
damping and energy conservation all
included. The model involves two pa-
rameters that have no direct counter-
part in Navier—Stokes: the shell
width A and a parameter ¢. The lat-
ter determines the ratio of the energy
flux toward higher wavenumber to
the flux in the opposite sense.
Because the equations of this model
involve many fewer variables than do
the Navier—Stokes equations, its quali-
tative properties can be established
with the aid of simulations. We can
thus ask, Do the size of the fluctua-
tions in the model agree with K41 or
with K62? The question is sharply

posed, and it may be sharply answered.

The answer is yes. Yes? Yes! In one
range of parameters (c close to unity)
the system shows small fluctuations
and K41 behavior, while in another

range (smaller c) it shows very strong
fluctuations and something more like
K62 behavior. For this domain, the
model permits independent fluctuations
in the velocity ratio between neighbor-
ing shells. When one multiplies out a
set of many independent random multi-
pliers, the result can have truly huge
fluctuations. Thus the model serves as
a partial justification for both K41 and
the later, more fluctuating theories.

However, K41 and some later theo-
ries say that the inertial-range behav-
ior should be independent of v. In re-
sponse to some prompting from Zhen
Su She (University of Arizona), Nor-
bert Schoérghofer, Jane Wang, Detlef
Lohse, Roberto Benzi and I looked at
the GOY model’s inertial range. In
one situation Schoérghofer’s numerics
showed that these theoretical guesses
were wrong: In the static solution, the
energy flux down the pipe certainly
does depend on v, even in the limit of
high Reynolds number. In contrast to
the early theories (both K41 and K62),
here the flow down the energy pipeline
depends on an interaction between inlet
and outlet conditions, induced by cor-
relations carried up and down the pipe.
(The detailed manifestation of the cor-
relation in the GOY model depends on
the shell thickness and is thus un-
physical.) This correlation result points
us toward the possibility that both in-
let and outlet might play a role in de-
termining the flow in real turbulence.
If so, there will be some Reynolds-num-
ber dependence of inertial-range behav-
ior. Thus a vastly oversimplified model
led to insights that might well play
back into a deeper understanding of a
truly complex phenomenon.

Models are fun, and sometimes
even instructive. |
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