(Even in one as short as that given, Ehrlich should have included the Morrisons' book Powers of Ten, (Freeman, 1991) based on the fabulous Eames film of the same name.)

The essays are mostly successful. The book should be in the library of any teacher offering a course for nonscience majors. It would make a nice gift to a curious person of any age.

BRIAN B. SCHWARTZ

Brooklyn College of the City University of New York

Dynamics: Numerical Explorations

Helena E. Nusse and James A. Yorke Springer-Verlag, New York, 1994. 484 pp. \$79.00 hc ISBN 0-387-94254-8

If you learn by example, this is the dynamics book for you. But beware, because Dynamics: Numerical Explorations and its accompanying software are addictive. Before you get to the end of the book you may succumb to the allure of dynamical systems. This happened to me several years ago, and I've been working in the field ever since.

Yorke, more than anyone else, understands the importance of a graphical intuition about dynamical systems, and for several years he has circulated his graphics-based software program with the intent of conveying the beauty and intricacies of nonlinear dynamics. Now he and coauthor Helena E. Nusse present the most current investigative tools of nonlinear dynamical systems in a beautifully illustrated book that includes the Dynamics software package.

Tools such as dimensions, Lyapunov exponents, bifurcation diagrams, basins of attraction, straddle trajectories, unstable and stable manifolds and unstable periodic orbits are presented in numerous hands-on examples. All of these tools can be put to use on an extensive list of nonlinear differential equations and maps, including the Henon, cubic, logistic, tent and Ikeda maps and the forced damped pendulum, Lorentz, Lotka-Volterra and Duffing differential equations. The authors also provide excellent instructions, enabling the readers to add their own favorite dynamical systems to the program. This makes Dynamics an excellent research tool, because the included tools and techniques are state of the art.

This is not a conventional textbook. Think of it as an exploratorium of nonlinear dynamics and chaos. Consequently it would serve

as an excellent companion volume to a textbook on dynamical systems (such as the excellent Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering by Steven H. Strogatz (Addison-Wesley, 1994) or as a standalone text for a dynamical systems computer lab (all source code in C is provided).

The accompanying Dynamics program runs under the MS-DOS and UNIX operating systems. I found the MS-DOS installation to be quite straightforward. For the UNIX installation I shamelessly procured the help of Hank Roark, a UNIX-savvy undergraduate. He installed the program on several unsuspecting workstations with equal ease.

Lest you think I am in the pay of the authors, I should offer a few critical comments. First, a Macintosh version of the software would be nice. Also, the user interface for Dynamics, while easy to use, looks a bit dated compared to more current Windows-based interfaces. Paradoxically this may also be Dynamics's strength, as the hardware requirements to support the interface are quite modest (PC and VGA graphics) and the source code is very readable. Indeed the authors encourage the use of their excellent routines in the user's own programs (with proper citation of course).

With all the books on chaos and nonlinear dynamics appearing these days, one has to show some discrimination in what to read. I can recommend Dynamics: Numerical Explorations as high on the list of required reading for those who are interested not just in reading about but in exploring dynamical systems. But be forewarned: You might be seduced by the beauty of dynamics before you know it.

WILLIAM L. DITTO

Georgia Institute of Technology, Atlanta

A Friendly Guide to Wavelets

Gerald Kaiser

Birkhäuser, Boston, 1994. 300 pp. \$34.50 hc ISBN 0-8176-3711-7

Wavelet transforms have been finding widespread acceptance over the past 10 years, with contributions coming from the mathematics, physics and engineering communities. Wavelets may be thought of as atomic functions that are localized in both time and frequency and whose dilates and translates span some Hilbert space of interest. The field is much richer than one might expect upon casual ob-

THE FUTURE IS HERE!

DASIS

The New Standard for Alpha Spectroscopy!

- Proven technology and reliability
- Used in government and private labs worldwide
- All hardware controlled and monitored by a personal computer
- No user adjustment required
- Seamless network integration allows remote data input and spectral analysis on-the-fly
- Uses industry-standard Microsoft® ACCESS™ database for custom data reporting

KEY FEATURES:

- Windows®-based software 100% PC-controlled
- Automatic vacuum control Push-button operations
- Battery back-up
- Low background Auto calibration
- ROI-directed analysis
- Library-directed analysis
- Tracer or non-tracer mode 8 independent 4K spectra
- Decay corrections
- Sample manager
 Expandable to hundreds of inputs

OPTIONAL FEATURES:

- Network support Cartesian Diver
- Reverse bias sample holders
 Eight 4K external inputs
 Quality control
 Multi-level security

- Usage and error log database

Oxford Instruments Inc **Nuclear Measurements Group**

601 Oak Ridge Turnpike Oak Ridge, Tennessee 37831-2560, USA Tel: (615) 483-8405 Fax: (615) 483-5891

Circle number 48 on Reader Service Card