
THE PHYSICS 
OF BASEBALL 

The illumination of the or­
dinary-of why the sky 

is blue or why the stars 
shine-is not the least im­
portant role of physics and 
physicists. Then can't we 
add to the list of deeper que­
ries some of the questions 
that seemed so important to 
me in my youth: How can 
Babe Ruth hit so many home 
runs? What makes Carl 

For almost a century and a half, baseball 
has played a significant role in defining 

the United States; in defining the physics 
of baseball we confront the ill-defined 
physics of the world in which we live. 

But estimates are a part 
of the physicist's repertoire. 
Enrico Fermi supposedly 
said that a competent physi­
cist should be able to esti­
mate anything to a useful 
degree. That supposed facil­
ity is put to the test when a 
physicist addresses sports: 

Robert K. Adair Little is precisely calculable, 
and much must be derived 

Hubble's curveball and screwball swerve in their trips to 
the plate? And if baseball plays no known role in the 
fundamental structure of the universe (see The Iowa 
Baseball Confederacy by W. P . Kinsella1 for a contrary 
position), it is not of trivial importance in the perception 
and appreciation of that universe by some of its inhabi­
tants. Although not quite so important now, in the period 
between the Civil War and World War II baseball was a 
significant part of what defined the United States. Forty 
years ago, Jacques Barzun, a preeminent student of 
American culture and a native of France, said, "Whoever 
wants to know . . . America had better learn baseball."2 

But, even as the game itself is subtle and complex, I have 
found subtleties and complexities in my attempts3 to know 
the physical bases of this American game. 

Baseball, like golf and tennis, which also center on the 
flight of a ball struck by an implement, has important 
elements that can be addressed intelligently by a physicist. 
The aerodynamic forces on the ball as it passes through the 
air play an important role in the ball's flight and the 
character of the game. The laws of mechanics constrain the 
largely physiological character of the transfer of energy to 
the bat by the player, and they define the collision of the 
ball and bat. But the physics of baseball is not the clean, 
well-defined physics of fundamental matters but the ill-de­
fined physics of the complex world in which we live, where 
elements are not ideally simple and the physicist must make 
best judgments on matters that are not simply calculable. 
The baseball is not uniformly smooth or rough but is char­
acterized by the familiar yin-yang pattern of raised stitches. 
Moreover, the ball is not made of a uniform elastic substance 
but is constructed, following an ancient, arcane formula, from 
various kinds of wool yarn and cotton thread. And the bat 
is not a rigid cylinder with simple mechanical properties but 
a more complicated wooden figure with significant flexibility. 
Hence conclusions about the physics of baseball must depend 
on approximations and estimates. 
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through intelligently con­
structed approximations. Moreover, there are too few 
reliable experimental data . Indeed, for baseball, some of 
the best data are derived from the game itself; what we 
see in the game constrains the physics of the game. Even 
as interested physicists should know the game, they 
should know the way the players play the game. After 
more than 100 years of trial and error, we must assume 
that what the experienced professional ballplayer does in 
playing the game is very nearly optimum. (See figure 1.) 
What the player says about the game should be taken 
seriously, but must often be reinterpreted. 

And so, in the spirit of a comment by Paul Kirk­
patrick4 in an early, seminal paper on the physics of 
baseball, "Our aim is not to reform [baseball], but to 
understand it," we look at a few aspects of the game. 

The flight of the ball 
The aerodynamic forces on the baseball are of the same 
magnitude as gravity, and to understand the flight of the 
ball we must know something of the aerodynamics of 
spheres passing through fluids. Following Fermi's advice 
on approximations, we estimate the drag force on the ball, 
with cross section A, as about the force required to give 
the cylinder of stationary air of density p ahead of the 
moving ball the velocity u of the ball. From this model, 
the drag force Fd will be (Cd/2)Apu2, where Cd / 2 is a 
dimensionless proportionality constant (the Y2 is a con­
vention) that we might guess would be somewhat less 
than 1 because some of the air will slide around the 
spherical ball before reaching the ball velocity. 

This is a good model. For table-tennis balls and for 
baseballs traveling less than 60 miles per hour (27 meters 
per second), Cd"' 0.5 over a span of velocities that covers 
more than two orders of magnitude. For baseballs trav­
eling faster than 120 mph (54 m/s), for dimpled golf balls 
and for tennis balls hit hard by professional players, 
Cd "' 0.3 and again does not vary strongly with velocity. 

But baseball is played largely at velocities greater 
than 60 mph-about the initial velocity of a ball tossed 
softly from third base to first-and less than 120 mph-the 
initial velocity of the longest home run of the season. 
Hence baseball velocities fall between the two aerody­
namic regimes, and the complexities of that interregnum 
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A NEARLY PERFECT SWING. Ted Williams of the Boston Red Sox was reputed to have one of the most efficient swings in 
baseball. After over 100 years of trial and error, the techniques of experienced professionals like Williams must be considered 
very nearly optimum, and so help to define the physics of the game. (Photo from the National Baseball Library and Archive, 
Cooperstown, New York.) FIGURE 1 

enrich the game. 5 The air passes around the slow balls 
rather smoothly, held away from the ball by a layer of 
still air called the Prandtl boundary; behind the ball the 
airstream curls off in classical vortices. A very small 
insect, say a plant aphid, sitting on a ball sailing through 
the air at 50 mph (22 rn/s) would scarcely note a breeze. 
The same bug would have to dig in against the wind and 
hold on for dear life on a ball traveling at 120 mph, when 

the boundary layer is largely blown away and the air 
behind the ball is turbulent. 

The drag crisis-the transition between the smooth 
and turbulent regimes-occurs at lower velocities for 
rougher spheres. For a very rough ball the size of a 
baseball, the transition may take place at a velocity as 
low as 25 mph (11 rn/s); for a very smooth ball, the 
transition might be delayed until 175 mph (78 rn/s). 
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AERODYNAMIC FORCES on a ball moving through air depend on both the ball's velocity 
and its surface roughness. a: Low-velocity balls, regardless of surface roughness, pass smoothly 
through the air, generating an area of positive pressure in front of them and an area of 
negative pressure along their surfaces as the air speeds up to go around the ball. This area of 
negative pressure extends to the rear of the ball, generating a significant drag force. In the 
ball 's wake, the air swirls in classical von Karman vortices. b: At some velocity, whose value 
decreases as the ball's surface roughness increases, the flow of air around the ball becomes 
turbulent. Such flow still generates a positive pressure at the front of the ball. H owever, the 
area of negative pressure at the sides and rear of the ball is reduced. Thus, counterintuitively, 
the drag force is less for a rough ball than for a smooth ball. FIGURE 2 

Figure 2 suggests the character of the air flow and pres­
sure patterns about a rough and smooth sphere when the 
velocity is in the transition region. The pressure is posi­
tive on the front of both balls, negative, as per Bernoulli, 
as the air speeds up to go around the ball, and negative 
at the rear of the smooth ball. The negative pressure 
behind the smooth ball results in a significant drag. Thus, 
counterintuitively, the drag force on the rough ball is less, 
because the negative pressure there is minimal and en­
compasses a smaller area. For rough or smooth balls the 
drag crisis looks about the same. 

But where does a baseball, with its rough stitches 
and smooth cover, fit in? It seems that for different 
orientations of the ball, different sectors of the stitching 
catch the air and induce drag-crisis transitions at different 
velocities. Figure 3a, shows the variation of the drag 
coefficient with velocity for a specific uniformly rough ball, 
where the transition takes place at about 70 mph (31 m/s), 
and an estimate (made in the light of wind tunnel meas­
urements) of an average effective drag coefficient of a 
rotating baseball with its changing orientations. Figure 
3b shows the drag forces for a baseball derived from the 
drag coefficients of figure 3a. Note that at about 95 mph 
(42 m/s), the drag force is equal to the force of gravity. 

With these recipes for the drag force, together with 
a small correction for typical backspin, one can calculate 
the trajectories of balls hit or thrown with a given initial 
velocity and projection angle. The quadratic dependence 
of distance on velocity for projectiles in a vacuum is 
modified by air resistance to an almost linear relation for 
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baseballs with velocities over 70 mph (31 m/s); for such 
velocities the maximum distance varies approximately as 
200 + 5(v - 70), where the distance is in feet and the 
velocity in miles per hour. Thus a ball traveling with an 
initial velocity of 110 mph ( 49 m/s) will travel about 400 
feet (122 m) instead of the 809 feet one might expect in 
a vacuum. Also, the angle of projection for maximum 
distance, rather than being the 45° optimum for a vacuum, 
is reduced to about 35°. 

Home runs account for about 30% of the runs scored 
in baseball, and it seems that the probability of balls going 
over the fence varies as about the tenth power of the 
distance balls are hit. Hence the variation of that distance 
with the air temperature and altitude is important. Since 
the drag varies as the density of the air, it might seem 
simple to calculate the effect of altitude and temperature. 
If the drag coefficient were independent of altitude and 
temperature (as it is for a golf ball), the baseball would 
travel about 2% farther for every 1000 feet (300 m) of 
altitude-thus increasing the home run probability by 
about 20%-and about 0.5% farther for every 10 oF 
(5.5 °C) increase in temperature . But broadly speaking, 
the drag coefficient scales with Reynolds number 
R = dvp I YJ , where d is the ball diameter and YJ the viscos­
ity. Hence at higher altitudes and temperatures, the drag 
coefficient curves of figure 3a move to the right, reducing 
the variation of the drag with altitude and temperature 
by perhaps a factor of two. But since that reduction of 
the variation depends on the precise shape of the drag 
coefficient curve in the transition region, which we don't 



DRAG ON A BASEBALL. The drag force on a uniformly 
rough ball of cross-sectional area A moving with velocity v 

through air of density pis approximately (C/2)Apv2. 
a: Baseball velocities are typically between 60 and 120 miles 
per hour, where the transition to turbulent flow-or "drag 
crisis" -causes Cd to vary rapidly with velocity. A rotating 

baseball is neither uniformly smooth nor rough, since it 
presents both its smooth cover and raised stitching to the air. 

This smooths the transition somewhat. However, a ball of 
radius r spinning with angular velocity w interacts with air of 
density p through which it passes, generating a Magnus force 

equal to CmPAwrv/ 2 perpendicular to the direction of motion 
and the axis of the spin. This is the force that makes a 

curveball curve. Below 60 mph the Magnus coefficient Cm is 
effectively constant with a value of about 1. The values are 

not well known at higher velocities; hence the results shown 
on the graph should be considered as sensible estimates. 

b: The drag force (calculated using the coefficients from a) 
increases monotonically and becomes equal to the force of 

gravity at about 95 mph. The Magnus force for w = 1800 rpm 
is always less than the force due to gravity but is still 

significant. FIGURE 3 

know very well, our estimates of the effects of altitude 
and temperature are uncertain by about a factor of two. 
Even simple matters are not always easy. · 

The curveball 
As tennis players noted long ago, spinning balls curve. 
Why? The 23-year-old Isaac Newton answered that the 
court-tennis balls curve because the side of the ball that 
moves fastest through the air meets more resistance than 
the side that moves more slowly. For a simple-and 
simplistic-description of a complicated process, that will 
still do as well as any other. When the right-handed 
sandlot pitcher throws a wide, breaking curveball to the 
plate such that it rotates at a rate of about 1800 rpm 
about a vertical axis and travels at a mean velocity of 70 
mph, the side toward third base is traveling forward at a 
top-to-bottom average speed of about 80 mph (36 m/s), 
while the side toward first base is only moving at 60 mph 
(27 m/s). In Newton's description, the larger drag on the 
third-base side translates to a larger force-or pressure­
and the ball swerves toward first base. (The big-league 
pitcher throws a tactically more effective curve, with more 
overspin and less sidespin, which then drops more but 
curves less. ) 

Physicists usually find it more congenial to discuss 
the spinning ball in the wind tunnel system where the 
ball is stationary and the air is moving. Then the third­
base-side surface of the ball impedes and slows the flow 
of air around the ball, and the magnitude of the negative 
pressure at the side of the ball (see figure 2) is reduced 
according to Bernoulli's principle. The area over which 
the negative pressure extends is also reduced, as the 
airstream leaves the ball a little earlier. On the first-base 
side the air is speeded up and the negative pressure is 
increased (relative to that for the slower surface-air in­
terface speed of the nonspinning ball). The air current 
also extends further around the ball, and the negative­
pressure area is larger. And because the airstream is 
carried further around the ball on the first-base side than 
the third-base side, the airstream behind the ball is 
directed a little toward third base. Pressure difference or 
conservation of momentum, it's the same physics with 
different words: The ball curves toward first base, cross­
ing the plate-60 feet 6 inches (18 m) from the pitcher's 
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mound-as much as a foot and a half (0.5 m) from where 
the noncurving ball would have crossed, and the sandlot 
batter swings where the ball isn't and misses. 

The curveball effect is called the Magnus effect and 
the force causing the curve the Magnus force, after Gustav 
Magnus, who measured the phenomena about 1850. 

If the pitcher threw a smoother ball a little faster and 
with a little more spin, the faster, third-base side of the 
ball would initiate the drag crisis and blow away the 
boundary layer, causing the air on that side to hug the 
ball more closely for a longer distance around the perime­
ter of the ball (as shown in figure 2), thus leaving a 
low-pressure area over a large region and creating a 
turbulent wake. On the slower, first-base side the air 
would still flow smoothly around the boundary layer and 
separate from the ball surface relatively early. As a 
consequence, the total pressure force on the ball would be 
toward third base, the air around the ball would be 
deflected toward first base, and the ball would curve 
toward third base! Lyman Briggs saw such an "inverse 
Magnus effect" for smooth balls in the course of wind 
tunnel experiments in the 1950s.6 

For rotating baseballs showing different aspects to 
the air, the drag crisis seems to be smoothed out-as 
shown in figure 3a-so nothing so dramatic as a reversed 
curve shows up. Smooth golf balls traveling from a solid 
hit off the tee with velocities in the transition region and 
with a backspin of about 3600 rpm duck into the ground 
as a consequence of such an inverse Magnus effect and 
won't go a hundred yards (90 m). But when properly 
roughened by dimples, the ball travels in a wholly turbu­
lent regime, and with a normal Magnus effect, where the 
backspin generates lift, the low-trajectory drive travels for 
long distances. 
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These qualitative insights into the Magnus effect do 
not lead unerringly to a quantitative understanding. 
However, we can make some useful guesses starting from 
Newton's description of the Magnus force as proportional 
to the difference between the drag forces on the slow side 
and fast side of the spinning ball. If the drag force is 
proportional to the square of the velocity, as it is for balls 
at velocities below and above the drag crisis, the Magnus 
force can be described by the relation 

Fm cc [Fd(u + wr) -Fd(v- wr)]---7 CmpAwrv/2 

where w is the angular velocity, r is the ball's radius, and 
the Magnus coefficient Cm is determined to be about 1 at 
low velocities according to experimental measurements by 
Robert Watts and Ricardo Farrar.7 The variation with 
velocity of that coefficient for baseballs taken from the 
above relation is shown in figure 3a, and the variation of 
the Magnus force with velocity of balls spinning at 1800 
rpm is shown in figure 3b. While the Magnus force is 
less than the drag force and less than gravity, it is 
sufficient to move the slow curveball as much as 2 feet 
on its trip to the plate. 

This expression for the Magnus force and the curve 
of figure 3b for baseballs are verified experimentally only 
below 50 mph. But the relation does account, qualita­
tively, for the negative Magnus effect for balls with a 
uniform surface and also fits what we know about base­
ball. For example, the forces from figure 3b explain the 
break in the 65-mph curveball quite well and show why 
the tailing 90-mph fastball breaks only about 4 or 5 inches 
(10 em). If there were no dip in the Magnus coefficient 
at 90 mph, we could expect the fastballs to tail off-and 
hop-much more. 

How much does the spin of a ball affect the drag? 
Measurements disagree. But from the laboratory defined 
by the games, I conclude that the drag on a ball is not 
much increased by its spin; otherwise I can't account for 
John Daly's 300-yard (275m) golf drives. And how much 
does the reaction from the forces that cause the spinning 
ball to curve slow down that spin? If I am to understand 
the trajectories of pop flies, the reason home-run hitters 
swing up at balls and why, after my right arm was 
disabled in World War II, I could catch fly balls bare­
handed with one hand, but not foul balls, I have to 
conclude that the spin falls off quickly in time. The 
physicist's model of the game must fit the game. 

The knuckleball 
In a wind tunnel, wires placed in an appropriate position 
on the surface of a sphere can trip the drag-crisis transi­
tion at relatively low velocities. So when a pitcher throws 
a knuckleball off the fingertips at a velocity near 60 mph, 
with so little spin that the ball will rotate no more than 
one-half revolution on the way to the plate, the raised 
stitching can catch the air on one side of the ball and trip 
the transition to turbulence while the air continues around 
the boundary layer on the other side. The ball then veers 
toward the stitch that catches the air. Sometimes, if 
rarely, the ball will rotate such that the stitches on one 
side will trip the transition early in the flight to the plate 
and then stitches on the other side will take over. Watts 
and Eric Sawyer8 have shown that such a ball can execute 
a double curve! 
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The asymmetric forces that are generated are consid­
erable, so the ball breaks so sharply that it is almost 
impossible to hit and very difficult even to catch. But 
even the most skillful pitcher has great difficulty in 
throwing the ball with the precision required to generate 
a reproducible break, so the pitch is too often a surprise 
to everyone-batter, catcher and pitcher. 

Batting and throwing 
The study of the complex interaction of muscle, tendon 
and bone that underlies the swing of the bat is a game 
best played by physiologists, not physicists. But a physi­
cist can limn the character of the swing through simple 
analyses of the variation with time of the energy trans­
ferred to the bat. Although nothing as elegant and com­
plete as Ted Jorgenson's study of the golf swing9 is 
available for baseball, simple arguments still lead to some 
interesting conclusions. We proceed by modeling the 
swing and analyzing the model. 

The modeling is made possible by the character of 
the swing; the bat is swung by the good batter-a little 
like a rock on the end of a string. The torque applied by 
the hands and wrists is negligible. I could thus estab­
lish-by trial and error-a time-dependent position of the 
hands that pull the bat about the familiar arc with a peak 
speed of the bat's "sweet spot"-the spot that transfers 
maximum energy from the bat to the ball-{)[ about 70 
mph, the velocity that would drive a ball for a long 380-foot 
home run. Checked with photographs and videos of play­
ers swinging a bat, the model is sufficiently good to allow 
one to draw reliable, broad conclusions. 

It takes about 0.2 seconds from when the batter begins 
the swing until the bat crosses the plate. Hence the batter 
must begin swinging at the fastball when the ball is about 
halfway from pitcher to plate-though the batter can still 
hold back while the ball travels another 10 feet. As shown 
in figure 4, the peak rate of energy transfer to the bat, 
which occurs about 30 milliseconds before the ball is hit, 
reaches about 9 horsepower. Taking the maximum power 
generated by muscles as no more than 1 horsepower per 
10 pounds (about a kilowatt per 6 kg), we see that the 
contribution of the hands and wrists cannot be important; 
the energy must come largely from the large muscles of 
the thighs and thorax. Even then, it is difficult to under­
stand the energy transfer without postulating a storage 
mechanism. It seems that early in the swing the batter 
stores energy in the translation and rotation of the body, 
and that energy is transferred to the bat, by means of the 
strong arms of the hitter, in the 50 milliseconds before 
impact. From videos, one can see that the bodies of some 
especially efficient batters are almost motionless when the 
bat hits the ball; the centrifugal force of the bat exerted 
through the arms of the batter has stopped the batter's 
motion-all of the energy has gone into the bat. 

The energy transfer in pitching is even harder to 
understand to one's satisfaction, but again a simple model 
provides useful insights. Assuming the ball is accelerated 
at a constant rate through a distance of about 8 feet (2.5 
m), a force of about 10 lbs (45 N), giving an acceleration 
of about 40 times gravity, is required to throw the ball 
with an initial velocity of 97 mph (43 m/s), so that it 
crosses the plate at 90 mph (40 m/s), the speed of a typical 
major-league fastball. The average energy transfer over 
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BATTING POWER. A batter's swing typically lasts 0.2 

seconds, during which time the rate of energy transferred to 

the bat increases from 0 to about 9 horsepower during the 
first 0.15 seconds and then decreases to 0 as the bat crosses the 

plate. Because muscle can generate only about 1 horsepower 
per 10 pounds, the majority of the swing's power must come 

from the large muscles of the legs and thorax rather than from 
the hands and wrists. Even assuming a major contribution by 
these large muscles, the power of the swing can be explained 

only if the batter stores translational and rotational kinetic 
energy early in the swing and transfers that energy to the bat 

late in the swing. FIGURE 4 

the 0.11 seconds of acceleration is about 1.5 horsepower 
(1.1 kW), meaning that the total energy of the hard-thrown 
ball is about one-third that of the hard-swung bat and is 
generated in about 60% of the batting time. More real­
istically, the peak power must be appreciably larger than 
1.5 hp and cannot be generated by the arm alone. As in 
batting, the energy must come largely from the muscles 
of the thighs and thorax. 

The bat and the ball 
The character of baseball has evolved as a result of delicate 
balances-between hitter and pitcher, between bat and 
ball. Drop a baseball onto concrete from 10 feet and the 
ball will bounce up only about 3 feet; the coefficient of 
restitution is then about ..J3 I 10 = 0.55. At higher veloci­
ties the ball appears to be even less elastic. A home run 
that sends the 90-mph fastball back with a velocity of 110 
mph (50 rnls) generates that reversal in a very short time. 
If the 2.9-inch (7.35 cm)-diameter ball were crushed to 
one-half its diameter and acted as a linear spring, the 
collision would take about 2 milliseconds. But rough 
stress-strain measurements on the ball give the common­
sense result that the spring is nonlinear-the force in­
creases to about 9000 lbs (40 000 N) as the ball is com­
pressed- and the total collision time is only about 1 
millisecond, with most of the momentum transfer taking 
place in about 0.6 milliseconds. 

Given the coefficient of restitution, various people 
have calculated the kinematics of the collision of the ball 
with the swinging bat assuming the bat is a rigid body 
with a given mass and moment of inertia, sometimes with 
a comment about neglecting the effect of the hands on the 
bat. But on the time scale of the collision, the bat is not 
at all rigid. If you tap a 34-inch (0.85 m)-long wooden 
bat with a light hammer, the bat rings with a note 
corresponding to a frequency of about 180 Hz. With a 
little more tapping, you can define the wavelength of the 
sound by finding the nodes on the bat. These are typically 
about 20 inches (0.5 m) apart. Crudely speaking, the 
velocity of transverse waves in the bat will then be on the 
order of 600 ftlsec (180 m/s) and it will take the collision 
impulse signal about 8 milliseconds to go the 5 feet (1.5 
m) from the point of impact to the hands and back. But 

the ball will have long left the bat in that time and will 
never know whether or not hands were holding the bat. 
On the time scale of the collision, the bat is flexible . In 
the same vein, the ball will not know if weight was added 
near the handle; the moment of inertia of the bat is not 
relevant in any simple way to the collision kinematics. 

In one of the more elegant calculations in sports 
physics, Lonnie Van Zandt has properly considered the 
flexibility of the wooden bat and the resultant complexities 
of collisions of the bat and ball. 10 Van Zandt's results 

may also have explained some bat manufacturing com­
plexities that had puzzled me. I had doubted the standard 
wisdom that good bats could only be made from very 
special growths of American ash. VanZandt's calculated 
spectrum of the fundamental and first 20 harmonics of 
his bat fit measured values to about 1%, but only after 
the handbook values for the elasticity of ash were changed 
to give a 25% correction. So I suspect that the bat was 
made with especially "good wood" and the manufacturers 
do know what they are doing. 

Baseball rules require that the bats used in profes­
sional baseball be constructed of wood, whereas amateur 
players can use aluminum bats. Players agree that the 
aluminum bats drive the ball much farther; the balls come 
off the aluminum bat with more velocity. Why? When 
the ball hits the wooden bat, the bat compresses about 
2% as much as the ball-and hence stores about 2% of 
the collision energy. The ball, with a coefficient of resti­
tution at high velocities of about 0.45, returns about 20% 
of its 98% of the stored energy, while the bat, which is 
about as elastic as the ball, returns about the same 
proportion. By contrast, the hollow aluminum cylinder 
that forms the barrel of the aluminum bat is distorted 
about 10% as much as the ball by the collision and so 
stores about 10% of the collision energy. And it returns 
that energy efficiently-probably at a level of about 80%. 
Adding the ball and bat contributions, about 26% of the 
collision energy is returned, the ball leaves the aluminum 
bat with a higher velocity, and the 370-foot drive to the 
warning path by the wooden bat goes over the fence, for 
a 400-foot home run. Overall, the use of aluminum bats 
could be expected to double the number of home runs hit 
during a season. And that would change the balance of 
the game too much. 
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