A Prime Investment

Buy 2 to 5 Silicon Membranes at VSI's 100 Rate

Virginia Semiconductor,

Inc. is aware that the purchase of UltrathinTM silicon membranes can be an expensive investment.

This winter, VSI will be collecting orders, large and small, that fall within a common range. Combined batches will then be processed together. Prices for all orders will be based on VSI's 100 wafer purchase rate. For customers buying 2 to 5 UltrathinTM silicon membranes, that is a 50% savings.

To place an order or receive additional information, please telephone, fax, or mail **Virginia Semiconductor, Inc.** To guarantee these savings, place your order by April 28, 1995.

VIRGINIA SEMICONDUCTOR, INC. 1501 Powhatan Street Fredericksburg, VA 22401 Phone: (703) 373-2900 Fax: (703) 371-0371 cal and thermal) and magnetic properties. A good selection of problems amplifies the discussion in each chapter; no solutions are given.

This text is suitable for junior and senior undergraduate majors in physics or geology, as little more than the introductory courses in each of these subjects is presumed. Indeed, the authors have cut through much of the geological terminology, simplifying the usual classification of rocks and focusing on a subset of the most important minerals. A background of two years of college mathematics should suffice: Vector calculus appears and the authors briefly introduce cartesian tensors, but there is no calculus of complex functions.

The main flaws in this book are minor irritants, including awkward wording and specialized terms that go undefined; also, units are not used uniformly (GPa vs. Mbar, for example) and, after carefully defining one sign convention for stress, the authors use an alternative convention without warning. These potential sources of confusion may limit the book's usefulness for self-study but should be easy to clean up in a new edition.

Introduction to the Physics of Rocks can be particularly effective as a text for a lecture course. Gueguen and Palciauskas provide clear physical descriptions of the concepts, tending toward intuitive explanations or simplified derivations rather than actual proofs. This stripped-down approach, with results sometimes given as foregone conclusions, may present difficulties for students wanting to learn the material on their own. However, the details can be clarified through lectures, which should also serve to counter any minor confusions arising from the text.

In summary, Gueguen and Palciauskas have written an excellent textbook. They successfully communicate the applications as well as the intellectual challenges of rock physics. My sense is that most students of the physical sciences can learn much from this book—and enjoy themselves while doing so.

RAYMOND JEANLOZ University of California, Berkeley

Atmospheric Convection

Kerry A. Emanuel Oxford U. P., New York, 1994. 570 pp. \$59.95 hc ISBN 0-19-506630-8

Thermal conduction, radiation and convection are the three general proc-

esses by which heat can be transferred from place to place, as we are taught in our elementary physics classes. Radiation alone operates in a vacuum and only radiation and conduction in a solid, but convection can occur in a fluid (liquid or gas), giving rise to the possibility of convective heat transfer, which often dominates over the other processes. In the Earth's atmosphere, conduction is utterly negligible in the response of the atmosphere to differential solar heating; the average temperature contrast between tropical and polar regions is maintained, rather, by convective heat transfer associated with largescale flow at about one-third of the "radiative equilibrium" value.

Atmospheric Convection, an excellent monograph by a leading atmospheric scientist, is not about convection in its broadest sense as understood by physicists and engineers. Meteorologists, for reasons hard to discover, restrict the use of the term "convection" to the comparatively small-scale, fluid-dynamical processes that occur in the lower reaches of the atmosphere, where they are largely responsible for transferring heat upwards from the underlying surface. four-fifths of which is ocean. The thermodynamics and hydrodynamics of these processes are complex, for they involve considerations of multiphase systems comprising air together with water in all its forms (vapor, liquid and solid.)

Kerry Emanuel's monograph is aimed largely at research meteorologists, many of whom nowadays are obliged to ride on the "global warming" and "climate change" bandwagon, where it is necessary to justify activities on the basis of their direct relevance to improving global numerical models of the atmosphere used in weather and climate prediction. In these models convection, being a small-scale process, is not represented explicitly. Rather it is "parameterized"—that is, its effects on largescale motions (which are represented explicitly) are expressed in terms of relationships involving transfer coefficients and other empirical quantities. And it is probably fair to say that deficiencies in parameterization schemes for convection in these global numerical models produce some of the most serious prediction errors. So it is likely that many meteorological readers of Atmospheric Convection will jump straight to the final two chapters, in which the interaction of convection with large-scale flows and the representation of cumulus clouds in numerical models are discussed.

Emanuel leads up to these final

chapters in a commendably systematic way, starting in the first three chapters with the simple cases of "dry" convection, caused by local heat sources (laminar and turbulent plumes), and by distributed heat sources (including the Rayleigh-Bénard problem of convection in a fluid between horizontal plates maintained at different temperatures, where theory is at its best). The technicalities of the theory of "moist" convection involve subtle thermodynamic considerations, through which the reader is carefully guided in chapters 4 to 6, as a preliminary to a discussion in the main part of the book (chapters 7 to 14) of the dynamics and thermodynamics of cumulus and other types of clouds.

About 30 years ago, two leading dynamical meteorologists introduced the concept of CISK ("conditional instability of the second kind"), according to which moist convection in the tropical atmosphere was controlled by largescale circulation through mechanical interactions in the frictional boundary layer. The CISK idea greatly influenced methods used for parameterizing moist convection in numerical models, and it was not seriously challenged until comparatively recently, when Emanuel pointed out that CISK overlooks the simple fact that convection is a response to the generation of instability, not the supply of water vapor per se. The details of Emanuel's arguments can be found in his original papers, including the published version of his Symons Memorial Lecture to the Royal Meteorological Society in London (K.A. Emanuel, J.D. Neelin, and C.S. Bretherton, "On large-scale circulations in convecting atmospheres", Quart. J. Royal Met. Soc., 120, 1111, 1994). The arguments are well summarized in this monograph, which will be consulted by everyone interested in the complexities of dynamical meteorology and in the improvement of practical methods of climate and weather prediction.

> RAYMOND HIDE University of Oxford United Kingdom

The Knot Book: An **Elementary Introduction** to the Mathematical Theory of Knots

Colin C. Adams Freeman, New York, 1994. 306 pp. \$32.95 hc ISBN 0-7167-2393-X

There have been tremendous recent developments both in the theory of knots as a mathematical enterprise

FOR ALL YOUR MAGNETIC SHIELDING NEEDS

Amuneal has provided magnetic shielding solutions to the scientific community for 30 years.

- · Custom shielding for scientific instrumentation and systems.
- · Complete fabrication from specialized components to complex assemblies.
- · High permeability sheet and foil materials from stock.

• In-house engineering, design, heat treat and test facilities.

Circle number 32 on Reader Service Card

What makes a curve ball curve?

THE PHYSICS OF **SPORTS**

Edited by Angelo Armenti, Jr., Villanova University

Applying fundamental laws of physics, this armchair volume puts to rest a number of popular sports-related misconceptions and accounts for phenomena that, for many, have been a source of wonder since childhood. Why does a golf ball have dimples? How can a sailboat travel almost directly into the wind? The answers are eye-opening—for professionals, students, and teachers in the fields of both physics and sports.

> 1992, 260 pages, illustrated, 0-88318-946-1, paper \$35.00 Members \$28.00

To order, call toll-free: 1-800-488-BOOK

(In Vermont, 802-878-0315)

Marketing and Sales 335 East 45th Street S New York, NY 10017

Member prices are for members of AIP Member Societies (APS/OSA/ASA/SOR/AAPT/ACA/AAS/AAPM/AVS/AGU/SPS). To order at member rates, please use the toll-free number.