ELECTRONIC STRUCTURE
CALCULATIONS FOR
MAGNETICALLY ORDERED
SYSTEMS

Ithough magnetism was known

to the ancients, its uses before
modern times were very limited.
The compass was probably the
most important application before
the 19th century. After Oersted’s
discovery, in 1820, that magnets
interact with electric currents, the
number of applications grew rap-
idly. The classical union of elec-
tricity and magnetism culminated,
of course, in Maxwell’s beautiful
theory of the electromagnetic field.

The discovery of the electron’s
intrinsic spin, early in this century,
showed us a new kind of magnetic
source, not explicitly related to the
motion of electric charge. After that it became possible,
in principle at least, to predict the macroscopic magnetic
behavior of arbitrary systems.

Maxwell’s equations only provide us with a macro-
scopic theory. Properties of materials are parameterized
via susceptibilities. But a proper microscopic theory re-
quires the quantum theory of atoms, molecules and solids.
The connection between microscopic and macroscopic de-
scriptions is made as follows: Quantum electrodynamics
couples the free-space electromagnetic fields to the quan-
tum mechanical fields that describe matter. That’s all
one needs, in principle, for the description of magnetic
phenomena.!

For macroscopic systems it is, of course, much easier
to separate external (macroscopic) from internal (micro-
scopic) fields and solve the standard Maxwell equations
on a macroscopic level, simply parameterizing the micro-
scopic behavior of materials in terms of magnetic suscep-
tibility. One does need quantum effects to evaluate sus-
ceptibility, but fortunately ordinary nonrelativistic
quantum mechanics suffices.

The theoretical methods described in this article are
valid for systems containing many atoms as well as for
single atoms. Nowadays
one can do calculations for
a hundred atoms in a unit
cell. The article on page 43,
by David Awschalom and
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Density functional theory
calculated on fast
computers is a powerful
tool for describing
magnetic phenomena in
solids. It can even handle
magnetic anisotropy in
ayered systems.

Henri J. F. Jansen

HENRI JANSEN is a professor of physics at Oregon State
University, in Corvallis. He is currently on sabbatical leave
at the University of Oregon, in Eugene.

David DiVincenzo, describes the
fabrication of small magnetic ele-
ments with about that many atoms.
In that sense experiment and the-
ory are converging on a common
ground.

Magnetic moments of atoms

All magnetic properties of a solid
are attributable to its electrons. In
a free atom or ion, there are two
contributions to the magnetic mo-
ment: First of all, every electron
has intrinsic spin s and its associ-
ated magnetic moment. Then
there is the magnetic moment as-
sociated with the electron’s orbital
angular momentum /. In a free atom these contributions
are typically comparable in magnitude. For all but the
heaviest atoms we can use Hund’s rules (see the box on
page 51.) to predict the ground-state configuration of the
electrons. Hund’s rules assume that angular momentum
states are well described by LS (Russell-Saunders) cou-
pling. But that is a poor approximation for the heaviest
atoms (the actinides), where jj coupling prevails. Our
discussion here, which assumes the validity of Hund’s
rules, will therefore not be valid for the actinides.

To build up a net spin moment S, the individual
electron spins have to point in the same direction. This
alignment is due mainly to the Pauli principle. Because
of the antisymmetry of the wavefunction under exchange,
the probability of finding two electrons with the same spin
orientation must vanish as they approach each other.
Therefore electrons with parallel spins tend to be further
apart than electrons with antiparallel spins, for which
there are no Pauli-principle restrictions. Coulomb repul-
sion also favors configurations with larger distances be-
tween electrons. Thus one can say that the Pauli principle
causes spin alignment. But the fact that Coulomb repul-
sion operates irrespective of spin orientation reduces the
energy difference between
parallel and antiparallel
pairs and hence lowers the
degree of spin alignment.

The formation of mag-
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netic moment in atoms has been studied in great detail.?
Nowadays one can perform full quantum mechanical cal-
culations for light atoms to obtain their electronic configu-
rations without resorting to simplifying approximations.
One finds that the individual contributions of spins and
orbits to the total magnetic moment follow Hund’s rules
quite nicely. One can’t do these complete calculations for
heavier atoms, because the complexity of the quantum
mechanical problem scales exponentially with the number
of electrons. We do, however, have very good approximate
results for heavier atoms, and the formation of atomic
magnetic moments is well understood.

Magnetism in solids

The situation is quite different for solids. There the
number of electrons involved is extremely large, and
complete calculations are never possible. It is therefore
very useful to have simple models that describe magnetism
in solids to first approximation. These models give us the
vocabulary needed to discuss magnetism in real, compli-
cated systems like magnetoelectronic devices.

One way of describing the formation of a solid is to
think of individual atoms being brought together, each
carrying its own magnetic moment. Because atomic mo-
ments are localized, such models describe localized mag-
netism in the solid. But because the atoms are not
infinitely far apart, electrons can hop from atom to atom.
In this way they carry information about the magnetic
state of one atom to another. In models of localized
magnetism this hopping does not occur rapidly. Most of
the time, therefore, the electronic configuration of an atom
or ion is in the ground state.

When atoms are brought together to form a solid in
such models, the atoms have definite valences. When an
electron hops from one atom to another, their valences
change. Because the changed valence state generally has
a higher energy, the atom will try to return to its most
favorable valence as soon as possible. Thus in localized
models we think of magnetism as being caused by well-
defined magnetic moments centered on atomic sites inter-
acting with each other by way of electrons hopping back
and forth.

This picture is grounded in quantum mechanical cal-
culations. If we examine the interaction between two
atoms only, the basic mechanism is an exchange of elec-

HEISENBERG EXCHANGE interaction
energy between two localized magnetic
moments with angular momenta J; and
], is proportional to J; - J,. The sign
and magnitude of the proportionality
constant depend on details of the
electron configurations. FIGURE 1

trons between them. Thus they share magnetic informa-
tion without relinquishing their states. The interaction
energy of the atomic magnetic moments due to this kind
of exchange can be written® in the form

E=-AJ,-J,

where each J is the angular momentum of that atom’s
electron configuration, and the magnitude and sign of the
coefficient A depend on the details of the configurations.
This interaction is called Heisenberg exchange. (See fig-
ure 1.) It has to be distinguished from the exchange
energy due to the Pauli principle, but unfortunately the
term “exchange interaction” is used both for the interac-
tion between local magnetic moments and for the Pauli
electron exchange.

Local magnetic-moment models are characterized by
atomic correlation. The interaction between the atoms is
not strong enough to destroy the atomic character of the
local electronic configuration. These are very useful mod-
els for describing magnetism in materials containing rare
earth or actinide atoms. They also let us calculate tem-
perature-dependent effects. In fact, they are the natural
models for discussing spin waves (magnons), even in cases
where the magnetism is itinerant.

A gas of wandering electrons

In general, however, itinerant magnetism in solids, where
the electrons are not bound to individual atoms, calls for
a completely different approach, one based on the notion

HUND’S RULES

or the ground state of an ion with a partially filled
shell, Hund’s rules state that:
1. The total spin S of the system has the largest value
consistent with the Pauli exclusion principle.
2. The total orbital angular momentum L has the largest
value consistent with the Pauli principle and with the first
rule.
3. The angular momentum vectors L and S couple anti-
parallel for electron shells less than half full, and parallel
for shells more than half full.
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of a homogeneous electron gas. If we consider a collection
of electrons interacting with each other in a constant
external potential, we can again calculate the properties
of such a system in a completely quantum mechanical
way. At low electron densities, one finds, the electron
spins align in the same direction to produce magnetic
order. In these models the only contribution to the mag-
netic moment is due to electron spins; there are no orbital
moments. Just as in the case of localized magnetism,
however, this magnetic order is attributable to the Pauli
principle. And as before, correlation tends to decrease the
amount of magnetic order.

Itinerant models are natural for describing magnetism
in metals. All the core atomic electrons are, of course, very
much localized. But they are all spin-paired; the filled shells
contribute no net moment. Only the valence electrons con-
tribute to the magnetism, and they are clearly itinerant.
This is even true for the transition metals: Although the
3d electrons in materials like iron and nickel are spatially
localized, their hopping is fast enough that one can ignore
their orbital magnetic moments. Itinerant magnetism ex-
plains very well the nonintegral values of the angular mo-
menta of 3d-transition-metal atoms in crystals.*

To describe the magnetic moments of the 3d transition
metals one doesn’t need to partition the valence electrons
into localized and itinerant electrons, as older models did.
Those models were based on the fact that the hopping
time for the 3d electrons depends strongly on the quantum
mechanical state of the electron. That dependence does,
however, have important consequences when one has to
choose a simple model to describe experimental results.
Photoemission spectroscopy, for example, is characterized
by very short interaction times and it sees all electrons
as localized. Méossbauer and de Haas—van Alphen spec-
troscopy, on the other hand, are characterized by a long
time scale; they see the 3d electrons as itinerant. Only
when an experimental technique sets a time scale in the
midrange of hopping times is it useful to separate the 3d
electrons into localized and itinerant.

Real systems obviously do not behave exactly like
either of the two classes of models I've been discussing.
To improve our theory of magnetism in solids we have to
combine the features of the two extreme cases. Real
systems range from rare earth materials, which exhibit a
localized type of magnetism, to systems like NisAl, in
which the magnetic order is weak and itinerant. Mag-
netism in the 3d transition metals is still itinerant, but
it does have aspects of localization: The orbital moment
does not vanish completely. Permanent magnets like
NdFe,4,B are especially hard to describe, since they com-
bine the behavior of transition metals and rare earths.

Because we don’t have a complete model of magnetism
in solids, the description of real systems has to start with
the simple model that works best in first approximation.
Localized systems are best described by Hubbard-like mod-
els.® The two ingredients of such models are a description
of the local atomic state and a term in the Hamiltonian that
corresponds to electron hopping. The latter is often included
in a very approximate way, and one has to be careful in
using these models for itinerant systems.

Density functional theory
A different approach to understanding the physics of
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magnetic materials is offered by density functional theory.5
This theory includes the electron hopping in a much better
approximation than do the Hubbard models. Electron
exchange and correlation (the effects that lead to Hund’s
rules in atoms) are included in principle, but the true
functional that would give the exchange-correlation energy
in terms of the charge density distribution is not known.

That’s where the major approximations are required
in real calculations in density functional theory. The
usual choice (the so-called local density approximation) is
guided by the results of analytical and Monte Carlo
calculations for a homogeneous, interacting electron gas.
Therefore the calculations represent the itinerant limit
exactly.

Density functional theory is based on minimization of
the total energy. Thus it yields results only for the ground
state of an interacting electron system at zero temperature.
One could minimize the Helmholtz energy to obtain a tem-
perature-dependent theory. But that only gives a nonzero
temperature to the electron system. That excludes phonon
effects. Furthermore such a formalism can only describe
collective thermal behavior, not individual electronic excita-
tions. It is, however, possible to describe spin waves and
other finite-temperature effects by combining density func-
tional calculations with localized models.®

The total energy of a system of interacting electrons
has two components: kinetic and potential energy. In
density functional theory one writes the total energy as
the sum of four terms. The kinetic energy is replaced by
the kinetic energy of a similar system of noninteracting
electrons. The potential energy is replaced by the classical
Coulomb energy of the interacting electrons plus the
energy due to the nuclei and any external fields. That
leaves an error term, because total energy reckoning has
left out the so-called exchange-correlation energy. That’s
an unfortunate name, because the neglected energy is not
quite the same as the exchange-correlation energy in the
standard Hartree—Fock sense. In density functional the-
ory the error term also includes a part of the kinetic
energy.

All the approximations that have to be made to arrive
at a useful form of the theory are related to this exchange-
correlation energy. The standard procedure is the follow-
ing: At each point in space the exchange-correlation
properties are determined by the local charge density of
interacting electrons. The exchange-correlation energy
density is simply the exchange-correlation energy of a
homogeneous interacting electron system with that den-
sity. Then the total exchange-correlation energy is ob-
tained by integrating over all space.

A magnetoelectronic device consists of many atoms.
Applying the Schriodinger equation directly to such a
system is impossible. The first complexity reduction
comes from ignoring the motion of the nuclei. Nuclear
motion can be included again at the end by a collective
description in terms of phonons. There are some inter-
esting questions related to the interaction between pho-
nons and magnetism, but I will ignore them here. I will
also ignore the very small magnetic moments of the nuclei.

A magnetoelectronic device can be modeled by a unit
cell of atoms that is repeated periodically throughout a
lattice. The simplest Co—Pd multilayer system can be
described by a unit cell with only two atoms, but the
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complexity of the unit cell increases rapidly if one wants
to treat effects like interface roughness. Much work has
been done to speed up density functional calculations.”

Results of local density calculations

The local density approximation is exact for a homogene-
ous electron gas. So the theory works very well for simple
metals in which all bonding characteristics are determined
by free electrons. Comparisons between calculated and
experimental lattice constants of simple metals consis-
tently show differences of less than 1%. From a theorist’s
perspective that’s good agreement. One wants the theo-
retical errors to be smaller than typical differences in
lattice constants between materials or between modifica-
tions of the same material. Local density calculations
have also been very successful in determining the depend-
ence of crystal structure on pressure.

It is somewhat surprising that local density calcula-
tions also give very good results for semiconductors and
transition metals. For example, a new phase transition
in silicon under pressure was predicted by such methods
and later confirmed by experiment.® For transition met-
als with nonmagnetic ground states, the errors in the
calculations are similar to those for simple metals. The
errors are somewhat larger for the 3d transition metals
with magnetically ordered ground states. There the error
in the lattice constant is typically 3%.

Magnetism plays an important role in determining
the crystal structure of the ground state. If, for example,
we treat iron as a paramagnetic (rather than ferromag-

FELECTRONIC SPIN DENSITY contour map, calculated for a
seven-layer iron surface, shows the upper half of a cross
section normal to the surface. Nuclei are shown in red. Spin
densities labeling contour lines are in atomic units (% per cubic
Bohr radius); adjacent contour lines differ by a factor of 2.
The calculation assumes there is no net orbital contribution.
Therefore, in the absence of spin-orbit coupling, the
ferromagnetization direction is arbitrary. Dotted lines indicate
spin density in the opposite direction. The integrated net
electronic spin per atom in the central layer s 2.25 #.
(Adapted from ref. 11.) FIGURE 2

netic) system, the ground state comes out with the wrong
symmetry (face-centered cubic instead of body-centered
cubic) and the equilibrium density of the bce phase is
much too high. If we let magnetic order develop, the bec
phase acquires a large ferromagnetic moment, while the
fecc phase becomes slightly antiferromagnetic. The bec
equilibrium density and magnetic moment are then much
closer to the experimental values. The total energies of
the bee and fee phases are almost the same, but even the
best local density approximation wrongly gives the fcc
phase the lower energy.® Only after improving the ex-
change-correlation energy by adding gradient corrections
to the exchange-correlation energy does one find that the
ground state of the iron crystal is indeed bee.??

In contrast with the models of localized magnetism,
which are based on model Hamiltonians with free parame-
ters, density functional calculations involve no arbitrary
parameters. Once the choice of exchange-correlation po-
tential is made, the calculations are truly ab initio, that
is to say, from first principles. In the local density
calculation one includes all effects of electron exchange
and correlation present in a homogeneous electron gas.
Therefore these calculations are very well suited for de-
scribing itinerant magnetism. They correctly yield, for
example, the nonintegral spins of the 3d transition metals.

Figure 2 represents the electronic spin density near
the surface of iron.!'! This contour diagram shows very
clearly the high spin density near each nucleus. That’s
from the 3d shell of the iron atom, and it explains why
magnons can be treated in a localized model, even for
itinerant magnets. In the ground state of this quintes-
sential ferromagnetic material the spin moments on all
the atoms point in the same direction, which is arbitrary
in the absence of spin—orbit coupling. In excited states
they can point in different directions, but the spin density
remains spatially localized in the 3d shell. Integrating
the spin density in figure 2 shows that the magnetic
moment is largest at the surface. That’s a common feature
of transition metals, related to the smaller number of
nearest neighbors at the surface.

Although density functional calculations within the
local density approximation give good results for the
magnetic moments of the 3d transition metals, they fail
in describing the magnetic moments in the rare earths.
Electron exchange and correlation are very important in
the rare earths, and the total magnetic moment has both
spin and orbital contributions. The exchange and corre-
lation effects leading to spin pairing are much the same
in atoms and in the homogeneous electron gases. Both
are related to the Pauli-principle tendency of electrons to
avoid each other when their spins point in the same
direction. Thus Hund’s first rule is to some extent built
into the local density approximation.

Hund’s second rule dictates how the orbital moment
is determined in atomic ground states. It involves the
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correlation of different orbital states. That is clearly a
nonlocal effect: The orbital state is characterized by the
rotational properties of the electronic wavefunction about
the nucleus. In other words, one needs to know the charge
density of the electrons around the nucleus, and not just
at the single point in question. This part of the exchange-
correlation energy cannot be derived from the homogene-
ous electron-gas picture. Because it is homogeneous and
unbounded, the electron gas would always have zero
angular momentum. The correlation needed here is
atomic. Including such atomic effects will bridge the gap
between the localized models and density functional the-
ory. That is now the focus of my research.

Such correlation effects also depend on the electron
density distribution around the atom. They are very hard
to recover in expansions of the exchange-correlation en-
ergy in terms of gradients; such expansions converge
slowly. Therefore extensions of the local density approxi-
mation that only include the lowest-order gradients are
not useful for getting at Hund’s second rule.

Magnetic anisotropy

As a rule one can say that for any system, like the 3d
transition metals, in which the orbital magnetic moment
is much smaller than the spin magnetic moment, the local
density approximation gives good results for the magni-
tude of the spin moment. But the magnitude of the
magnetic moment is not the only important issue. Its
direction is often even more important for technological
applications. Magnetic anisotropy is what determines
how the energy of a system varies when the direction of
the magnetic moment changes.

An important determinant of magnetic anisotropy is
the shape of the sample. That issue can be treated as a
purely classical effect completely describable by Maxwell’s
equations, but it also follows from the exact microscopic
theory.!? Because of the discontinuity at a surface, the
shape of the sample can determine the direction of the
magnetic moment. A rod, for example, has two preferred
orientations of the magnetization. In a disk the magnetic
moment lies in the plane of the disk. Because a perfectly
spherical piece of material has, by definition, no shape
anisotropy, the direction of its magnetic moment is clas-
sically undetermined.

Microscopically there are, of course, no perfectly
spherical samples. The local arrangement of the atoms
produces an additional term in the anisotropy. Crystalline
anisotropy determines the interaction between the direc-
tion of the magnetic moment and the local atomic envi-
ronment. The energy involved is normally much smaller
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THEORETICAL ANISOTROPY ENERGY DENSITY times
cobalt-layer thickness ¢, calculated as a function of ¢ for a
Co-Pd multilayer system. Lines are best fits, for two
different crystal orientations, to individual points (blue dots)
calculated from theory. Red cross indicates the experimental
interface anisotropy energy, which should correspond to the
¢ = 0 limit of the calculated points. (Adapted from ref. 14.)
FIGURE 3

than that of the shape anisotropy, but not always.’®* There
are multilayer and overlayer systems in which the direc-
tion of the magnetic moment is perpendicular to the layers,
indicating that the crystalline anisotropy is stronger than
the shape anisotropy, which favors magnetization in the
plane. Such systems have great promise as materials for
magnetic computer disks.

The origin of crystalline anisotropy is the spin—orbit
interaction. This interaction also dictates how the spin
and orbital magnetic moments are coupled in free atoms.
Hund’s third rule summarizes the result for the ground
states of free atoms. The inclusion of spin—orbit coupling
modifies the calculation of the kinetic energy of the non-
interacting reference system. Unfortunately however, it
increases the numerical complexity of the calculations by
an order of magnitude.

The local density approximation is geared toward
itinerant magnetism. We expect the best results for
magnetic anisotropy from systems where the orbital mo-
ment is very small. A standard theorem of atomic physics
tells us that the orbital angular momentum is zero when
the ground state is nondegenerate and no external mag-
netic field is present.® Because a free atom is in a
rotationally symmetric environment, it is degenerate, and
therefore its orbital angular momentum is often large, as
predicted by Hund’s second rule. But if we bring free
atoms together to form a crystal, the symmetry is lowered
and consequently the degeneracy is decreased. That has
important consequences as soon as the interaction energy
is comparable to the energy splitting of the atomic mul-
tiplet states: The orbital angular momentum becomes
smaller and smaller as we bring the atoms together; it is
quenched. That’s when the local density approximation
works best. The 3d transition metals are in that regime;
the rare earth materials are not.

Multilayer systems yield the best results for ab initio
calculations of magnetic anisotropy. They also exhibit
larger anisotropies. Much work has focused on Co—Pd
multilayer systems. Such calculations correctly describe
the perpendicular orientation of the anisotropy, and they
reproduce reasonably well the dependence of the aniso-
tropy energy on layer thickness.'* (See figures 3 and
4.) These results are actually quite remarkable, consid-
ering how small the energy differences are. The calcula-
tions have to be done with great care, but the state of the
art is good enough to yield results that really help us
understand the experimental data and point the way to
new experiments.

For bulk materials such as iron, nickel and cobalt, on
the other hand, the calculation of magnetic anisotropy



2=

“g

<

o

)

X

£ oo

w

Z

44}

)

D

9

~

Z

g or
1 I I | | i | |
0 2 4 6 8 10 12 14

COBALT-LAYER THICKNESS ¢ (angstroms)

constants has not been very successful. They often differ
from the measured constants by orders of magnitude, and
even the sign is wrong half the time. Part of the problem
is numerical: The necessary Brillouin-zone integrations
are much more difficult in three dimensions than in two.
But there’s also an important analytical problem related
to the local density approximation.

The local density calculations of the magnetic aniso-
tropy describe the spin magnetic moment quite well. If
you ignore the spin—orbit coupling in the kinetic energy,
the calculations do not give any orbital magnetic moment,
because there are no terms in the exchange-correlation
energy that generate orbital angular momentum. Includ-
ing spin—orbit coupling changes this picture. Now the
spin moment produces orbital angular momentum, which
couples to the spatial directions in the crystal. By varying
the direction of the spin moment one can measure the
change in total energy and thus get the magnetic aniso-
tropy energy. In this approach the spin—orbit coupling
both causes the orbital magnetic moment and couples it
to the spin moment.

That’s clearly the wrong mechanism for rare earth
materials. There the orbital angular momentum is driven
by electronic exchange and correlation, mainly through
the Pauli principle. Thus there have to be additional
terms, of atomic character, in the exchange-correlation
energy. With these extra terms in density functional
calculations we can get a much improved description of
rare earth materials. Approximate calculations along
these lines have demonstrated the importance of such
corrections, and they illustrate the difficulties of describing
magnetic anisotropy in rare earth systems and bulk tran-
sition metals by the local-density approximation.'®

Electronic-structure calculations for itinerant systems
are very promising. They have been especially successful
at surfaces and interfaces. It is now possible to describe
the strain in metallic multilayers in terms of the total
energy, and one can predict the structure of overlayers.
Even calculations of the magnetic anisotropy for multilay-
ers are now reliable, because correlation effects are small
in these low-dimensional systems. In principle, theoreti-
cal calculations can now predict in which systems one will
find perpendicular anisotropy.

MEASURED ANISOTROPY ENERGY DENSITY times
cobalt-layer thickness ¢ in a Co~Pd multilayer system (red data
points and empirical fitted lines) is plotted against #. Blue
points and their error bars indicate ab initio theoretical
calculations and their uncertainties. Upper and lower data sets
are for multilayers fabricated by deposition at different
temperatures. (Adapted from ref. 15.) FIGURE 4

Challenges for the future include modeling itinerant
systems with structure corresponding to the imperfections
of real samples.’” In such work one has to consider unit
cells containing many atoms. That will require faster
calculational techniques. We also want to understand
magnetic anisotropy in rare earths and bulk transition
metals. For that we will need a better description of
exchange-correlation effects in density functional theory
and how they generate orbital magnetic moments.

In this article I have only addressed ground-state
properties of magnetic systems. Transport phenomena
fall outside this domain. But an understanding of spin-
polarized transport, the subject of the article by Gary Prinz
on page 58, must start from a good description of the
ground state of itinerant magnets.
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