
ELECTRONIC STRUCTURE 
CALCULATIONS FOR 

MAGNETICALLY ORDERED 
SYSTEMS 

Although magnetism was known 
to the ancients, its uses before 

modern times were very limited. 
The compass was probably the 
most important application before 
the 19th century. Mter Oersted's 
discovery, in 1820, that magnets 
interact with electric currents, the 
number of applications grew rap­
idly. The classical union of elec­
tricity and magnetism culminated, 
of course, in Maxwell's beautiful 
theory of the electromagnetic field. 

Density functional theory 
calculated on fast 

computers is a powerful 
tool for describing 

magnetic phenomena in 
solids. It can even handle 

David DiVincenzo, describes the 
fabrication of small magnetic ele­
ments with about that many atoms. 
In that sense experiment and the­
ory are converging on a common 
ground. 

Magnetic moments of atoms 
All magnetic properties of a solid 
are attributable to its electrons. In 
a free atom or ion, there are two 
contributions to the magnetic mo­
ment: First of all, every electron 
has intrinsic spin s and its associ­
ated magnetic moment. Then 

magnetic anisotropy in 
layered systems. 

The discovery of the electron's 
intrinsic spin, early in this century, 
showed us a new kind of magnetic 

Henri J. F. Jansen 

source, not explicitly related to the 
motion of electric charge. Mter that it became possible, 
in principle at least, to predict the macroscopic magnetic 
behavior of arbitrary systems. 

Maxwell's equations only provide us with a macro­
scopic theory. Properties of materials are parameterized 
via susceptibilities. But a proper microscopic theory re­
quires the quantum theory of atoms, molecules and solids. 
The connection between microscopic and macroscopic de­
scriptions is made as follows: Quantum electrodynamics 
couples the free-space electromagnetic fields to the quan­
tum mechanical fields that describe matter. That's all 
one needs, in principle, for the description of magnetic 
phenomena.1 

For macroscopic systems it is, of course, much easier 
to separate external (macroscopic) from internal (micro­
scopic) fields and solve the standard Maxwell equations 
on a macroscopic level, simply parameterizing the micro­
scopic behavior of materials in terms of magnetic suscep­
tibility. One does need quantum effects to evaluate sus­
ceptibility, but fortunately ordinary nonrelativistic 
quantum mechanics suffices. 

The theoretical methods described in this article are 
valid for systems containing many atoms as well as for 
single atoms. Nowadays 

there is the magnetic moment as­
sociated with the electron's orbital 

angular momentum l. In a free atom these contributions 
are typically comparable in magnitude. For all but the 
heaviest atoms we can use Hund's rules (see the box on 
page 51.) to predict the ground-state configuration of the 
electrons. Hund's rules assume that angular momentum 
states are well described by LS (Russell-Saunders) cou­
pling. But that is a poor approximation for the heaviest 
atoms (the actinides), where jj coupling prevails. Our 
discussion here, which assumes the validity of Hund's 
rules, will therefore not be valid for the actinides. 

To build up a net spin moment S, the individual 
electron spins have to point in the same direction. This 
alignment is due mainly to the Pauli principle. Because 
of the antisymmetry of the wavefunction under exchange, 
the probability of finding two electrons with the same spin 
orientation must vanish as they approach each other. 
Therefore electrons with parallel spins tend to be further 
apart than electrons with antiparallel spins, for which 
there are no Pauli-principle restrictions. Coulomb repul­
sion also favors configurations with larger distances be­
tween electrons. Thus one can say that the Pauli principle 
causes spin alignment. But the fact that Coulomb repul­
sion operates irrespective of spin orientation reduces the 

energy difference between 
one can do calculations for 
a hundred atoms in a unit 
cell. The article on page 43, 
by David Awschalom and 

H ENRI J ANSEN is a professor of physics at Oregon State 
University, in Corvallis. He is currently on sabbatical leave 

at the University of Oregon, in Eugene. 

parallel and antiparallel 
pairs and hence lowers the 
degree of spin alignment. 

The formation of mag-
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netic moment in atoms has been studied in great detaiP 
Nowadays one can perform full quantum mechanical cal­
culations for light atoms to obtain their electronic configu­
rations without resorting to simplifying approximations. 
One finds that the individual contributions of spins and 
orbits to the total magnetic moment follow Hund's rules 
quite nicely. One can't do these complete calculations for 
heavier atoms, because the complexity of the quantum 
mechanical problem scales exponentially with the number 
of electrons. We do, however, have very good approximate 
results for heavier atoms, and the formation of atomic 
magnetic moments is well understood. 

Magnetism in solids 
The situation is quite different for solids. There the 
number of electrons involved is extremely large, and 
complete calculations are never possible. It is therefore 
very useful to have simple models that describe magnetism 
in solids to first approximation. These models give us the 
vocabulary needed to discuss magnetism in real, compli­
cated systems like magnetoelectronic devices. 

One way of describing the formation of a solid is to 
think of individual atoms being brought together, each 
carrying its own magnetic moment. Because atomic mo­
ments are localized, such models describe localized mag­
netism in the solid. But because the atoms are not 
infinitely far apart, electrons can hop from atom to atom. 
In this way they carry information about the magnetic 
state of one atom to another. In models of localized 
magnetism this hopping does not occur rapidly. Most of 
the time, therefore, the electronic configuration of an atom 
or ion is in the ground state. 

When atoms are brought together to form a solid in 
such models, the atoms have definite valences. When an 
electron hops from one atom to another, their valences 
change. Because the changed valence state generally has 
a higher energy, the atom will try to return to its most 
favorable valence as soon as possible. Thus in localized 
models we think of magnetism as being caused by well­
defined magnetic moments centered on atomic sites inter­
acting with each other by way of electrons hopping back 
and forth. 

This picture is grounded in quantum mechanical cal­
culations. If we examine the interaction between two 
atoms only, the basic mechanism is an exchange of elec-

HEISENBERG EXCHANGE interaction 
energy between two localized magnetic 
moments with angular momenta J 1 and 
] 2 is proportional to }1 · ] 2• The sign 
and magnitude of the proportionality 
constant depend on details of the 
electron configurations. FIGURE 1 

trons between them. Thus they share magnetic informa­
tion without relinquishing their states. The interaction 
energy of the atomic magnetic moments due to this kind 
of exchange can be written3 in the form 

where each J is the angular momentum of that atom's 
electron configuration, and the magnitude and sign of the 
coefficient A depend on the details of the configurations. 
This interaction is called Heisenberg exchange. (See fig­
ure 1.) It has to be distinguished from the exchange 
energy due to the Pauli principle , but unfortunately the 
term "exchange interaction" is used both for the interac­
tion between local magnetic moments and for the Pauli 
electron exchange. 

Local magnetic-moment models are characterized by 
atomic correlation. The interaction between the atoms is 
not strong enough to destroy the atomic character of the 
local electronic configuration. These are very useful mod­
els for describing magnetism in materials containing rare 
earth or actinide atoms. They also let us calculate tem­
perature-dependent effects. In fact , they are the natural 
models for discussing spin waves (magnons), even in cases 
where the magnetism is itinerant. 

A gas of wandering electrons 
In general, however, itinerant magnetism in solids, where 
the electrons are not bound to individual atoms, calls for 
a completely different approach, one based on the notion 

HUND'S RULES 
or the ground state of an ion with a partially filled 
shell, Hund 's rules state that: 

1. The total spin S of the system has the largest value 
consistent with the Pauli exclusion principle. 
2. The total orbital angular momentum L has the largest 
value consistent with the Pauli principle and with the first 
rule. 
3. The angular momentum vectors L and S couple anti­
parallel for electron shells less than half full , and parallel 
for shells more than half full. 
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of a homogeneous electron gas. If we consider a collection 
of electrons interacting with each other in a constant 
external potential, we can again calculate the properties 
of such a system in a completely quantum mechanical 
way. At low electron densities, one finds, the electron 
spins align in the same direction to produce magnetic 
order. In these models the only contribution to the mag­
netic moment is due to electron spins; there are no orbital 
moments. Just as in the case of localized magnetism, 
however, this magnetic order is attributable to the Pauli 
principle. And as before, correlation tends to decrease the 
amount of magnetic order. 

Itinerant models are natural for describing magnetism 
in metals. All the core atomic electrons are, of course, very 
much localized. But they are all spin-paired; the filled shells 
contribute no net moment. Only the valence electrons con­
tribute to the magnetism, and they are clearly itinerant. 
This is even true for the transition metals: Although the 
3d electrons in materials like iron and nickel are spatially 
localized, their hopping is fast enough that one can ignore 
their orbital magnetic moments. Itinerant magnetism ex­
plains very well the nonintegral values of the angular mo­
menta of 3d-transition-metal atoms in crystals.4 

To describe the magnetic moments of the 3d transition 
metals one doesn't need to partition the valence electrons 
into localized and itinerant electrons, as older models did. 
Those models were based on the fact that the hopping 
time for the 3d electrons depends strongly on the quantum 
mechanical state of the electron. That dependence does, 
however, have important consequences when one has to 
choose a simple model to describe experimental results. 
Photoemission spectroscopy, for example, is characterized 
by very short interaction times and it sees all electrons 
as localized. Mossbauer and de Haas-van Alphen spec­
troscopy, on the other hand, are characterized by a long 
time scale; they see the 3d electrons as itinerant. Only 
when an experimental technique sets a time scale in the 
midrange of hopping times is it useful to separate the 3d 
electrons into localized and itinerant. 

Real systems obviously do not behave exactly like 
either of the two classes of models I've been discussing. 
To improve our theory of magnetism in solids we have to 
combine the features of the two extreme cases. Real 
systems range from rare earth materials, which exhibit a 
localized type of magnetism, to systems like Ni3Al, in 
which the magnetic order is weak and itinerant. Mag­
netism in the 3d transition metals is still itinerant, but 
it does have aspects of localization: The orbital moment 
does not vanish completely. Permanent magnets like 
NdFe14B are especially hard to describe, since they com­
bine the behavior of transition metals and rare earths. 

Because we don't have a complete model of magnetism 
in solids, the description of real systems has to start with 
the simple model that works best in first approximation. 
Localized systems are best described by Hubbard-like mod­
els.3 The two ingredients of such models are a description 
of the local atomic state and a term in the Hamiltonian that 
corresponds to electron hopping. The latter is often included 
in a very approximate way, and one has to be careful in 
using these models for itinerant systems. 

D ensity functional theory 
A different approach to understanding the physics of 
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magnetic materials is offered by density functional theory.5 

This theory includes the electron hopping in a much better 
approximation than do the Hubbard models. Electron 
exchange and correlation (the effects that lead to Hund's 
rules in atoms) are included in principle, but the true 
functional that would give the exchange-correlation energy 
in terms of the charge density distribution is not known. 

That's where the major approximations are required 
in real calculations in density functional theory. The 
usual choice (the so-called local density approximation) is 
guided by the results of analytical and Monte Carlo 
calculations for a homogeneous, interacting electron gas. 
Therefore the calculations represent the itinerant limit 
exactly. 

Density functional theory is based on minimization of 
the total energy. Thus it yields results only for the ground 
state of an interacting electron system at zero temperature. 
One could minimize the Helmholtz energy to obtain a tem­
perature-dependent theory. But that only gives a nonzero 
temperature to the electron system. That excludes phonon 
effects. Furthermore such a formalism can only describe 
collective thermal behavior, not individual electronic excita­
tions. It is, however, possible to describe spin waves and 
other finite-temperature effects by combining density func­
tional calculations with localized models.6 

The total energy of a system of interacting electrons 
has two components: kinetic and potential energy. In 
density functional theory one writes the total energy as 
the sum of four terms. The kinetic energy is replaced by 
the kinetic energy of a similar system of noninteracting 
electrons. The potential energy is replaced by the classical 
Coulomb energy of the interacting electrons plus the 
energy due to the nuclei and any external fields. That 
leaves an error term, because total energy reckoning has 
left out the so-called exchange-correlation energy. That's 
an unfortunate name, because the neglected energy is not 
quite the same as the exchange-correlation energy in the 
standard Hartree-Fock sense. In density functional the­
ory the error term also includes a part of the kinetic 
energy. 

All the approximations that have to be made to arrive 
at a useful form of the theory are related to this exchange­
correlation energy. The standard procedure is the follow­
ing: At each point in space the exchange-correlation 
properties are determined by the local charge density of 
interacting electrons. The exchange-correlation energy 
density is simply the exchange-correlation energy of a 
homogeneous interacting electron system with that den­
sity. Then the total exchange-correlation energy is ob­
tained by integrating over all space. 

A magnetoelectronic device consists of many atoms. 
Applying the Schrodinger equation directly to such a 
system is impossible. The first complexity reduction 
comes from ignoring the motion of the nuclei. Nuclear 
motion can be included again at the end by a collective 
description in terms of phonons. There are some inter­
esting questions related to the interaction between pho­
nons and magnetism, but I will ignore them here. I will 
also ignore the very small magnetic moments of the nuclei. 

A magnetoelectronic device can be modeled by a unit 
cell of atoms that is repeated periodically throughout a 
lattice. The simplest Co-Pd multilayer system can be 
described by a unit cell with only two atoms, but the 



complexity of the unit cell increases rapidly if one wants 
to treat effects like interface roughness. Much work has 
been done to speed up density functional calculations.7 

Results of local density calculations 
The local density approximation is exact for a homogene­
ous electron gas. So the theory works very well for simple 
metals in which all bonding characteristics are determined 
by free electrons. Comparisons between calculated and 
experimental lattice constants of simple metals consis­
tently show differences of less than 1%. From a theorist's 
perspective that's good agreement. One wants the theo­
retical errors to be smaller than typical differences in 
lattice constants between materials or between modifica­
tions of the same material. Local density calculations 
have also been very successful in determining the depend­
ence of crystal structure on pressure. 

It is somewhat surprising that local density calcula­
tions also give very good results for semiconductors and 
transition metals. For example, a new phase transition 
in silicon under pressure was predicted by such methods 
and later confirmed by experiment.8 For transition met­
als with nonmagnetic ground states, the errors in the 
calculations are similar to those for simple metals . The 
errors are somewhat larger for the 3d transition metals 
with magnetically ordered ground states. There the error 
in the lattice constant is typically 3%. 

Magnetism plays an important role in determining 
the crystal structure of the ground state. If, for example, 
we treat iron as a paramagnetic (rather than ferromag-

ELECTRONIC SPIN DENSITY contour map, calculated for a 
seven-layer iron surface, shows the upper half of a cross 
section normal to the surface. Nuclei are shown in red. Spin 
densities labeling contour lines are in atomic units (n per cubic 
Bohr radius); adjacent contour lines differ by a factor of 2. 
The calculation assumes there is no net orbital contribution. 
Therefore, in the absence of spin-orbit coupling, the 
ferromagnetization direction is arbitrary. Dotted lines indicate 
spin density in the opposite direction. The integrated net 
electronic spin per atom in the central layer is 2.25 n. 
(Adapted from ref. 11.) FIGURE 2 

netic) system, the ground state comes out with the wrong 
symmetry (face-centered cubic instead of body-centered 
cubic) and the equilibrium density of the bee phase is 
much too high. If we let magnetic order develop, the bee 
phase acquires a large ferromagnetic moment, while the 
fcc phase becomes slightly antiferromagnetic. The bee 
equilibrium density and magnetic moment are then much 
closer to the experimental values. The total energies of 
the bee and fcc phases are almost the same, but even the 
best local density approximation wrongly gives the fcc 
phase the lower energy.9 Only after improving the ex­
change-correlation energy by adding gradient corrections 
to the exchange-correlation energy does one find that the 
ground state of the iron crystal is indeed bcc.10 

In contrast with the models of localized magnetism, 
which are based on model Hamiltonians with free parame­
ters, density functional calculations involve no arbitrary 
parameters. Once the choice of exchange-correlation po­
tential is made, the calculations are truly ab initio, that 
is to say, from first principles. In the local density 
calculation one includes all effects of electron exchange 
and correlation present in a homogeneous electron gas. 
Therefore these calculations are very well suited for de­
scribing itinerant magnetism. They correctly yield, for 
example, the nonintegral spins of the 3d transition metals. 

Figure 2 represents the electronic spin density near 
the surface of iron.11 This contour diagram shows very 
clearly the high spin density near each nucleus. That's 
from the 3d shell of the iron atom, and it explains why 
magnons can be treated in a localized model, even for 
itinerant magnets. In the ground state of this quintes­
sential ferromagnetic material the spin moments on all 
the atoms point in the same direction, which is arbitrary 
in the absence of spin-orbit coupling. In excited states 
they can point in different directions, but the spin density 
remains spatially localized in the 3d shell. Integrating 
the spin density in figure 2 shows that the magnetic 
moment is largest at the surface. That's a common feature 
of transition metals, related to the smaller number of 
nearest neighbors at the surface. 

Although density functional calculations within the 
local density approximation give good results for the 
magnetic moments of the 3d transition metals, they fail 
in describing the magnetic moments in the rare earths. 
Electron exchange and correlation are very important in 
the rare earths, and the total magnetic moment has both 
spin and orbital contributions. The exchange and corre­
lation effects leading to spin pairing are much the same 
in atoms and in the homogeneous electron gases. Both 
are related to the Pauli-principle tendency of electrons to 
avoid each other when their spins point in the same 
direction. Thus Hund's first rule is to some extent built 
into the local density approximation. 

Hund's second rule dictates how the orbital moment 
is determined in atomic ground states. It involves the 
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correlation of different orbital states. That is clearly a 
nonlocal effect: The orbital state is characterized by the 
rotational properties of the electronic wavefunction about 
the nucleus. In other words, one needs to know the charge 
density of the electrons around the nucleus, and not just 
at the single point in question. This part of the exchange­
correlation energy cannot be derived from the homogene­
ous electron-gas picture. Because it is homogeneous and 
unbounded, the electron gas would always have zero 
angular momentum. The correlation needed here is 
atomic. Including such atomic effects will bridge the gap 
between the localized models and density functional the­
ory. That is now the focus of my research. 

Such correlation effects also depend on the electron 
density distribution around the atom. They are very hard 
to recover in expansions of the exchange-correlation en­
ergy in terms of gradients; such expansions converge 
slowly. Therefore extensions of the local density approxi­
mation that only include the lowest-order gradients are 
not useful for getting at Hund's second rule. 

Magnetic anisotropy 
As a rule one can say that for any system, like the 3d 
transition metals, in which the orbital magnetic moment 
is much smaller than the spin magnetic moment, the local 
density approximation gives good results for the magni­
tude of the spin moment. But the magnitude of the 
magnetic moment is not the only important issue. Its 
direction is often even more important for technological 
applications. Magnetic anisotropy is what determines 
how the energy of a system varies when the direction of 
the magnetic moment changes. 

An important determinant of magnetic anisotropy is 
the shape of the sample. That issue can be treated as a 
purely classical effect completely describable by Maxwell's 
equations, but it also follows from the exact microscopic 
theory.12 Because of the discontinuity at a surface, the 
shape of the sample can determine the direction of the 
magnetic moment. A rod, for example, has two preferred 
orientations of the magnetization. In a disk the magnetic 
moment lies in the plane of the disk. Because a perfectly 
spherical piece of material has, by definition, no shape 
anisotropy, the direction of its magnetic moment is clas­
sically undetermined. 

Microscopically there are, of course, no perfectly 
spherical samples. The local arrangement of the atoms 
produces an additional term in the anisotropy. Crystalline 
anisotropy determines the interaction between the direc­
tion of the magnetic moment and the local atomic envi­
ronment. The energy involved is normally much smaller 
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THEORETICAL ANISOTROPY ENERGY DENSITY times 
cobalt-layer thickness t, calculated as a function of t for a 
Co-Pd multilayer system. Lines are best fits, for two 
different crystal orientations, to individual points (blue dots) 
calculated from theory. Red cross indicates the experimental 
interface anisotropy energy, which should correspond to the 
t = 0 limit of the calculated points. (Adapted from ref. 14.) 
FIGURE 3 

than that of the shape anisotropy, but not always. 13 There 
are multilayer and overlayer systems in which the direc­
tion of the magnetic moment is perpendicular to the layers, 
indicating that the crystalline anisotropy is stronger than 
the shape anisotropy, which favors magnetization in the 
plane. Such systems have great promise as materials for 
magnetic computer disks. 

The origin of crystalline anisotropy is the spin-orbit 
interaction. This interaction also dictates how the spin 
and orbital magnetic moments are coupled in free atoms. 
Hund's third rule summarizes the result for the ground 
states of free atoms. The inclusion of spin-orbit coupling 
modifies the calculation of the kinetic energy of the non­
interacting reference system. Unfortunately however, it 
increases the numerical complexity of the calculations by 
an order of magnitude. 

The local density approximation is geared toward 
itinerant magnetism. We expect the best results for 
magnetic anisotropy from systems where the orbital mo­
ment is very small. A standard theorem of atomic physics 
tells us that the orbital angular momentum is zero when 
the ground state is nondegenerate and no external mag­
netic field is present.3 Because a free atom is in a 
rotationally symmetric environment, it is degenerate, and 
therefore its orbital angular momentum is often large, as 
predicted by Hund's second rule. But if we bring free 
atoms together to form a crystal, the symmetry is lowered 
and consequently the degeneracy is decreased. That has 
important consequences as soon as the interaction energy 
is comparable to the energy splitting of the atomic mul­
tiplet states: The orbital angular momentum becomes 
smaller and smaller as we bring the atoms together; it is 
quenched. That's when the local density approximation 
works best. The 3d transition metals are in that regime; 
the rare earth materials are not. 

Multilayer systems yield the best results for ab initio 
calculations of magnetic anisotropy. They also exhibit 
larger anisotropies. Much work has focused on Co-Pd 
multilayer systems. Such calculations correctly describe 
the perpendicular orientation of the anisotropy, and they 
reproduce reasonably well the dependence of the aniso­
tropy energy on layer thickness. 14·15 (See figures 3 and 
4.) These results are actually quite remarkable, consid­
ering how small the energy differences are. The calcula­
tions have to be done with great care, but the state of the 
art is good enough to yield results that really help us 
understand the experimental data and point the way to 
new experiments. 

For bulk materials such as iron, nickel and cobalt, on 
the other hand, the calculation of magnetic anisotropy 
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constants has not been very successful. They often differ 
from the measured constants by orders of magnitude, and 
even the sign is wrong half the time. Part of the problem 
is numerical: The necessary Brillouin-zone integrations 
are much more difficult in three dimensions than in two. 
But there's also an important analytical problem related 
to the local density approximation. 

The local density calculations of the magnetic aniso­
tropy describe the spin magnetic moment quite well. If 
you ignore the spin-orbit coupling in the kinetic energy, 
the calculations do not give any orbital magnetic moment, 
because there are no terms in the exchange-correlation 
energy that generate orbital angular momentum. Includ­
ing spin-orbit coupling changes this picture. Now the 
spin moment produces orbital angular momentum, which 
couples to the spatial directions in the crystal. By varying 
the direction of the spin moment one can measure the 
change in total energy and thus get the magnetic aniso­
tropy energy. In this approach the spin-orbit coupling 
both causes the orbital magnetic moment and couples it 
to the spin moment. 

That's clearly the wrong mechanism for rare earth 
materials. There the orbital angular momentum is driven 
by electronic exchange and correlation, mainly through 
the Pauli principle. Thus there have to be additional 
terms, of atomic character, in the exchange-correlation 
energy. With these extra terms in density functional 
calculations we can get a much improved description of 
rare earth materials. Approximate calculations along 
these lines have demonstrated the importance of such 
corrections, and they illustrate the difficulties of describing 
magnetic anisotropy in rare earth systems and bulk tran­
sition metals by the local-density approximation.16 

Electronic-structure calculations for itinerant systems 
are very promising. They have been especially successful 
at surfaces and interfaces. It is now possible to describe 
the strain in metallic multilayers in terms of the total 
energy, and one can predict the structure of overlayers. 
Even calculations of the magnetic anisotropy for multilay­
ers are now reliable, because correlation effects are small 
in these low-dimensional systems. In principle, theoreti­
cal calculations can now predict in which systems one will 
find perpendicular anisotropy. 

MEASURED ANISOTROPY ENERGY DENSITY times 
cobalt-layer thickness tin a Co-Pd multilayer system (red data 
points and empirical fitted lines) is plotted against t. Blue 
points and their error bars indicate ab initio theoretical 
calculations and their uncertainties. Upper and lower data sets 
are for multilayers fabricated by deposition at different 
temperatures. (Adapted from ref. 15.) FIGURE 4 

Challenges for the future include modeling itinerant 
systems with structure corresponding to the imperfections 
of real samplesP In such work one has to consider unit 
cells containing many atoms. That will require faster 
calculational techniques. We also want to understand 
magnetic anisotropy in rare earths and bulk transition 
metals. For that we will need a better description of 
exchange-correlation effects in density functional theory 
and how they generate orbital magnetic moments. 

In this article I have only addressed ground-state 
properties of magnetic systems. Transport phenomena 
fall outside this domain. But an understanding of spin­
polarized transport, the subject of the article by Gary Prinz 
on page 58, must start from a good description of the 
ground state of itinerant magnets. 
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