The American Physical Society has chosen San Jose, California, as the site for its March meeting, which runs from 20-24 March. The Fairmont Hotel will serve as the headquarters for the meeting, and most of the sessions will be held in the San Jose Convention Center; the division of high polymer physics will convene at the Holiday Inn Park Center, and the divisions of materials physics and computational physics will have some of their sessions in the Fairmont Hotel.

The convention will be every bit as large as those in the past, with some 4400 contributed presentations and 575 invited talks. The talks will deal with such topics as condensed matter physics, materials physics, high polymer physics, chemical physics, biological physics, instruments and measurement science and fluid dynamics. In addition to the more specialized divisional symposia, there will be a number of general interest sessions.

Participants were able to submit their abstracts electronically for the first time this year, and over 70% took advantage of that opportunity. The meeting program will be available on the APS Home Page. It can be accessed on the World Wide Web through http: //aps.org or by ftp at aps.org. If using ftp, log in as "anonymous" and change to directory /pub/baps/march_95.

On the weekend that precedes the meeting, the APS high polymer physics division is offering a short course on the application of microscopies in polymer physics. On Sunday, 19 March, APS is sponsoring a number of half-day tutorials: recent advances in lasers; an introduction to data parallel computing; nanostructures and

APS Makes Its Way To San Jose In March

nanotechnology; cleaning the environment; GeSi—from materials research to devices and technology; the science and technologies of thin films and innovations; and computer simulations with Mathematica. Also scheduled for Sunday is a workshop on promoting the qualitative understanding of physics ideas among elementary school teachers, using examples from light.

For those in the job market, APS and the American Institute of Physics will offer two career development workshops in the Fairmont Hotel on Sunday from 9 am to 12 noon and from 1 to 4 pm. In addition AIP will operate a job placement center Monday through Wednesday from 9 am to 5 pm and Thursday from 9 am to noon. The center will be located in the registration area on the concourse level of the convention center.

On the outreach side, APS will conduct a high-school physics teachers' day on Thursday. Also, AIP will conduct a hands-on science program for sixth graders from the San Jose area on Wednesday morning as part of its program Students to Explore and Experience Physics.

Cryogenic equipment, superconducting magnets, UHV analyzers and lots of other new products will be on display at the APS show, arranged by AIP. The show hours will be: Tuesday from noon to 6 pm, Wednesday from 10 am to 5 pm and Thursday from 10 am to 3 pm.

A reception will be held on Monday evening at 6:30 pm at the San Jose Convention Center. It will be followed, at 7:30 pm, by the ceremonial session, featuring the presentation of APS awards and prizes.

Ten individuals will be honored at the meeting. The Herbert P. Broida Prize will be given to Ahmed Zewail, the Linus Pauling Professor of Chemical Physics at Caltech, for "his seminal and outstanding contributions to chemical physics, pioneering work on the development and studies of molecular dynamics with ultrafast lasers, novel multiple-pulse optical coherence techniques and ultrafast electron diffraction, and for his breakthrough development of the field of femtochemistry, which opened up worldwide research in theory and experiment on dynamics at the atomicscale time resolution." Rolf Landauer of the IBM Thomas J. Watson Research Center in Yorktown Heights, New York, will receive the Oliver E. Buckley Prize for "his invention of the scattering theory approach to the analysis and modeling of electronic transport."

Max G. Lagally, the E. W. Mueller Professor of Materials Science at the University of Wisconsin, Madison, will be honored with the Davisson—Germer Prize for his "seminal studies of structural disorder at surfaces and far-reaching contributions to understanding the fundamental mechanisms of epitaxy." The High Polymer Physics Prize will go to Jacob Klein, a professor in the materials and inter-

faces department of the Weizmann Institute of Science, in Rehovot, Israel, for "his pioneering experiments on diffusion and interfacial structure of polymers."

APS will also honor George Benedek, the Alfred H. Caspary Professor of Physics and Biological Physics at MIT, with the Irving Langmuir Prize for "his outstanding invention of dynamic light-scattering spectroscopy and its fundamental applications to critical phenomena, macromolecular transport and ocular diseases." The 1995 Onsager Prize will be given to Michael E. Fisher, Regents Professor and Distinguished University Professor in the Institute for Physical Science and Technology at the University of Maryland. Fisher is being cited for "his numerous and seminal contributions to statistical mechanics, including but not restricted to the theory of phase transitions and critical phenomena, scaling laws, critical exponents, finite size effects and the application of the renormalization group to many of the above problems."

The George E. Pake Prize will go to James C. McGroddy, Senior Vice President for Research at the IBM Thomas J. Watson Research Center, for "his scientific creativity, sound judgment and inspiring leadership during his career as a researcher, manager of science and technology, and technology leader and strategist in the IBM Corporation." The cita-

Sessions with Invited Speakers

Monday, 20 March

Morning

New probes of the high-temperature superconductors' pairing state. Kirtley, Mathai, Dynes, Valls, Klemm

New studies of Isaac Newton's works. Shapiro, Chandrasekhar, Nauenberg

Glassy dynamics. Menon, Leslie-Pelecky, Angell, Kivelson, Anderson Strongly correlated metals. Tokura, Thomas, Robinson, Bucher, Maple

Semiconductor optoelectronic devices. Coleman, Dutta, Miller, Campbell, Pollack

Tribology and scanning force microscopy of complex interfaces. Marti, Lieber

Dissipative tunneling in quantum systems. Golding, Andrei, Goodkind, Ao, Lea

Metal superlattices, other layered systems. Mitzi

Electronic structure theory I. Smith

Theory of materials I: Large-scale approaches. Wang

Diamonds and related materials I. Diamond growth and charac $terization.\ Jamison$

Laser processing of materials I: Fundamentals. Schawlow, Haglund Conducting polymers I: Photoexcitations I. Vardeny

Computer simulation and theory I. Douglas

High-Tc theory. Abrikosov, Pines, Chakravarty

Chaos in ballistic microstructures. Berry, Baranger, Keller, Weiss,

Conducting polymers. Monkman, Stegeman

Finite-time singularities in fluids. Kadanoff, Caflisch, Bhattacharjee, Kerr, Pelz

Technology: Physics and policy issues of electric battery vehicles. Stempel, Ovshinsky, Schafer

Complexity at interfaces: Recent advances in scanning tunneling microscopy. Sautet, Poirier, Wilson

Metal-insulator transition in 2-D systems. Dahm

Spin-density waves and magnetic order. Clark

Theory of materials II: Interatomic potentials and tight binding. Abraham

Silicon and silicon-based clusters: Structure, stability and optical response. Jackson

Fullerenes I: Structure and dynamics. Meingast

Laser processing of materials II: Pulsed laser deposition. Pronko Conducting polymers II: Photoexcitations II and NLO. Yan

Surfaces, interfaces and thin film I. Composto

Afternoon

Supersolids and other exotic phases. Fischer, Kapitulnik, Zimanyi Raman scattering from cuprate superconductors. Klein, Hackl Future directions of the semiconductor industry: The role of physics. Seidel, Fuller, Tasch, Bartelink

Topological defects in liquid crystals. Kleman, Lubensky, Toner, Laurentovich, Yurke

Revolutionary superconductive sensors. Clarke, Paik, Lukens, Dunlap

Prizes and awards of APS: Chemical physics. Zewail, Kinsey, Benedek Ground states and domain walls in spin glasses. Stein, Gingras

Can culture change? Sadoulet, Barnes, Shutt, Stubbs

Electronic structure of high-Tc. Andersen

Liquid crystals: Dynamics and ferroelectrics. Goulian

Metal-non-metal transition in low-dimensional systems. Carini

Instrumentation: Mostly optical. Wright

Magnetic heterostructures: GMR-metallic II. Bass

Theory of materials III: Phase diagrams and transformations. Sugino, Chen

Diamond and related materials II: Diamond growth and characterization. McCauley

Fullerenes II: Doped materials A. Gunnarsson, Zettl

Reactive surfaces in plasma processing. Ibbotson, Adams, Fisher, Engel, Coltrin

Conducting polymers III: Theory. Rice

Surfaces, interfaces and thin film II. Koberstein

Tuesday, 21 March

Morning

 $v = \frac{1}{2}$ quantum Hall effect. *Ioffe, Tsui, Wilczek*

Local optical spectroscopy: From molecules. Yoo, Levy, Grober Cryogenic elementary particle detectors. Sadoulet, Cabrera, Nahum Pattern formation in micro-organism colonies. $Shapiro,\ Ben-Jacob,$ Budrene, Levine, Steinbock

Physics-based modeling of microelectronic, mechanical and thermofluidic systems. Verdonckt-Vandebroek, Dutton, Pinto, Senturia Complexity at interfaces: New developments in scanning force micros-

copy. Rugar, Ohnesorge Thermal transport. Moler

Collisions below 1 K: Collisions of optically cooled and trapped atoms. Hulet, Williams, Rolston

Carbon clusters: Assemblies, metcars and fullerenes analogs. Bernier Fullerenes III: Doped materials B. Palstra

High Polymer Physics Prize symposium. Klein, Ball, Pincus, Fetters,

Six decades of condensed matter physics: Origins and trends. Herring, Anderson, Cohen, Hamann, Geballe

Optical properties of excited state of conjugated polymers. Shinar, Br'edas

Polarization: A manifestation of quantum phase. King-Smith, Resta Point defect dynamics in silicon. Poate, Jones, Plummer

X rays in condensed matter. Magnussen, Arthur

Excitations of Mott insulators. Wells, Bulut

Physics of reduced dimensionality. Mochena, Richardson, Ravelo, Encinosa, Williams, Akinwande

Complexity at interfaces: Atomic-scale properties and engineering of novel interfaces—Theory and simulation. Musgrave, Mailhiot, Havdock

Physics education: An international perspective. Jossem, Rodriguez, Subbaswamy, Olenick, Pearson

Flux lattice imaging. Bishop

Electronic structure methods. Burke

Collisions below 1 K: Cold collisions in atomic beams. Weiner, Vredenbregt, Gentry

Magnetic heterostructures: Exchange coupling II. Edwards Theory of materials IV: Oxides and related materials. Ceder tion goes on to say that McGroddy "has redefined the role of a world-class industrial research laboratory for the 21st century." **James L. Kinsey,** Dean and D. R. Bullard—Welch Foundation Professor of Science at Rice University, will garner the Earl K. Plyler Prize. The citation praises "his outstanding contribution to molecular spectroscopy, in particular, his studies of the spectroscopy of molecules in their process of falling apart, dynamics of mole-

cules by stimulated emission pumping, and the significant advance of Fourier-transform Doppler spectroscopy."

Marc Kastner, the Donner Professor of Science in the physics department and director of the Center for Materials Science and Engineering at MIT, will receive the David Adler Lectureship Award. Kastner, who is cited for "his pioneering work on amorphous semiconductors, on narrowband oxides with emphasis on both

the magnetic and transport properties of high- $T_{\rm c}$ superconductors and, most recently, on nanoscale semiconductor structures," will present his award lecture Wednesday morning. The John H. Dillon Medal will be presented to **Stephen Z. D. Cheng,** associate professor of polymer science at the University of Akron, Ohio, for "his outstanding productivity in research on semicrystalline, liquid crystalline and high-performance polymers.

Stress and epitaxy: Electronic and optical properties. *Petroff* Fullereness IV: Doped materials C. *Mihaly, Mele* Laser processing of materials III: Applications. *Duley, Tam* Tribology: Theory of interfaces and atomic force microscopy. *Hirano* Phase transitions I. *Tran-Cong*

Afternoon

High-precision spectroscopy of confined excitons. Shah, Bigot, Bar-Ad Composite fermions. Read, Wu

Fluctuations and high- T_c superconductors. Mook, Walstedt

Structured fluids in flow. Balsara, Marques

Magnetic flux in superconductors. Tonomura, Kaiser, Guntherodt Prizes and awards of APS. Landauer, Fisher, McGroddy

New perspectives in the quantum Hall regimes. Sohn, Barrett, Simon, Goldman, Bayot

Quantum fluids in aerogel. Parpai, Halperin, Muzikar, Mulders, Oja Microsensors. Kaiser, Ezekiel, Harrison, White

Complexity at interfaces: Theory and simulation. *Graves, Tosatti* The status and future of data storage. *Kryder, Weller, Gibson, Hesselink*

Local tunneling (STM, etc.). Black

Superconductivity in T-J model. Dagotto

Collisions below 1 K: Finite-size boson condensates. Huisken, Whaley, Burnett, Kasevich

Magnetic heterostructures: Magnetic circular dichroism. *Hillebrecht* Theory of materials V: Defects in oxides and semiconductors. *Heine* Stress and epitaxy: Relaxation and alloying. *Feenstra*

Tribology: Adhesion of small particles, friction and deformation of absorbates. Robbins

Dillon Medal symposium. Cheng

Industrial research in polymer physics I. Eusebi, Wirth, Galvin, Wolfe, Pratt. Yoon

Magnetic properties in superconductors. Soininen. Sauls

Site visits to physics departments to improve the climate for women. Franz, Dresselhaus, Clark

Wednesday, 22 March

Morning

Stacked Josephson junction arrays. Müller, Ustinov

Fundamentals of growth: Davisson-Germer Prize lecture. Lagally, Himpsel, Zuo, Ratsch, Lanczycki

Photoemission from metallic quantum wells and multilayers. Chiang, Horn

Protein folding: Theory. Wolynes, Socci, Dill, Thirumalai, Levitt Advances in computational materials science. Krakauer, Arias, Mehl, Mitas, Troullier Jr

Complexity at interfaces: Nuclear magnetic resonance at interfaces. Slichter, Driehuys, Chmelka

Adler Prize symposium: Magnetic effects in layered superconductors. Kastner

Hg-based cuprates. Gupta

Quantum chaos. Sridhar

 $\dot{\mathbf{M}}$ agnetic heterostructures: Spin-polarized electronic structures. Johnson

Theory of clusters: Fragmentation, assembly, reactions and response.

Tománek

Fullerenes V: Nanotubes A. Iijima

X-ray and neutron scattering I: Inelastic. Kao, Endoh

Avalanches I: Experiments on noise and avalanches. Marley

Block copolymers. Stadler

Neutron scattering from polymers I. McConnelly, Dadmun

Industrial research in polymer physics II. Haynes, Feng, Fruitwala, Lovinger, O'Reilly, Bubeck

Double quantum wells. Simmons, Tamborena

C-axis coupling in high-temperature superconductors. Cooper, Basov, Uchida

Bscco in the mixed state. Zeldov, de la Cruz

Electron scattering in mesoscopic systems. Petrashov, de Vegvar, Nazarov, Ralph, Hershfield

Macroscopic quantum phenomena in magnetic systems. Giordano, Stamp, Garg, Wernsdorfer, Loss

Protein folding: Experiment. Jonas, Eaton, Wand, Dyer Liquid crystal displays. Kosaka, Drevillon, Kmetz, Steemers Complexity at interfaces: Surface dynamics via time-resolved spec-

troscopy. Harris, Miller, Ho Jobs and education. Czujko, Aylesworth, Dresselhaus Colloids I. Mason

Comparison of reaction dynamics in vapor and condensed phases I. Apkarian, Syage, Vaida

Biological spectroscopy and microscopy. Ritter Magnetic heterostructures: Micromagnetic imaging. Zhu

Theory of materials VI: Ferroelectrics and related materials. Zhong Stress and epitaxy: Stress-induced roughening. Roland

X-ray and neutron scattering II: SAS and surfaces. *Keimer* Avalanches II: Experiments on fracture and avalanches. *Rice*

Afternoon

Vortices in superconductors. Vinokur, Krusin-Elbaum, Bhattacharya Heavy-fermion superconductors. Joynt, Jansen, Norman, Luke, Taillefer

Photonic band gap materials and applications. $\ddot{O}zbay$, Villeneuve, Brown

Non-Fermi liquid behavior in 1D. Gruner, Schulz, Giamarchi, Fujimori

Dynamics of the heart. Glass, Ditto, Kaplan, Winfree

Conduction electron scattering at surfaces. Tobin, Krim, Persson, Williams, Hebard

Complexity at interfaces: Nonlinear spectroscopy of complex interfaces. Shen, Peremans, Richter

Changing work styles of physicists in industry. Brinkman, Shreve, Fisher, Orlowski, Nelson

Defects in semiconductors: Mostly wide band gap. Johnson

Interfacial and growth phenomena. Barabási

Nanostructured materials, clusters and fine particles. Ziolo, Hadjipanayis

Comparison of reaction dynamics in vapor and condensed phases II. Cukier, Hynes, Martens

Metal surfaces: Clean and physisorbed. Wiechert

Magnetic heterostructures: Itinerant magnetism theory. Jansen Theory of materials VII: Dielectric properties. Ortiz, Dal Corso Nanoclusters: Growth, magnetism and characterization. Majetich

Fullerenes VI: Nanotubes B. Amelinckx

Noncrystalline materials I: Structure and transport. Barocchi Avalanches III: Avalanches and earthquakes. Rutledge Phase transformations I. Fultz

Alternative science: Foolish, fraudulent and phobic. Randi, Lewis, Park

Connecting graduate education to teaching needs. Adelberger, Hieggelke, Heller, McDermott

Evening

Special symposium on neutron physics—past, present and future. Shull, Brockhouse, Birgeneau, Rush

Thursday, 23 March

Morning Rare-earth-nickel-borocarbide superconductors. Cava, Sinha, Canfield

Metal-insulator transition in the integer quantum Hall effect. Engel, Johnson, Kirk, Wei, Wang

Defects in wide band gap semiconductors. Chadi, Han, Franciosi, Glaser, Boguslawski

Manipulation of single DNA molecules. Chu, Bensimon, Volkmuth, Zimmermann Rustamante

Bosonization of Fermi systems. Haldane, Castro Neto, Marston, Schmeltzer

Complexity at interfaces: Surface forces in thin films and particulate systems. Helm, Chaudhury, Bike

Trends in scintillators and phosphors. Blasse, Weber, Pappalardo, Soules

Applications of artificial neural networks and other artificial intelligence to chemical systems I. Shelton, Venkatasubramanian, Roppel

Magnetic heterostructures: Magneto-optics. Bennemann

Stress and epitaxy: Structure. Albrecht

Noncrystalline materials II: Dynamics. Mitch

Phase transformations II. Thompson, Clapp

High-T_c superlattices and PBCO. Suzuki, Fehrenbacher

Hall dynamics of vortices in high-Tc superconductors. Samoilov, Clinton, Geshkenbein

Hysteresis and criticality in disordered nonequilibrium systems. Dahmen, Adams, Field, Ortín, Shore

Diffusion, growth and morphology of surfaces. Feibelman, Khor, Ercolessi, Watson, Held

Reading the physics in sequence data. Trifonov, Stanley, Voss, Mandell

Energy efficiency in buildings. Schwartz, Levine, Akbari, Goldstein Complexity at interfaces: Probing complex interfaces with electrons. Bartynski, Langell, Van Hove

Microwave processing of materials. Oda, Booske, Goldberg, Kriegsmann

YBCO-related films: Properties. Yazdani

Mesoscopic chaos and resonant tunneling. Efetov

General fluids. Löfstedt

Applications of artificial neural networks and other artificial intelligence to chemical systems II. Sumpter, Liebovitch

Quasi-crystals. Bürgler

Magnetic heterostructures: Novel magnetic materials. Ortiz Positron applications I: Diffraction and Auger spectroscopy. Duke Fullerenes VII: Thin films. Hashizume

Afternoon

Normal-state properties of cuprates. Batlogg, Xiuguang Solid hydrogen at megabar pressure. Silvera, Hemley, Natoli Nonequilibrium intersub-band dynamics: Lasing, harmonic generation and energy relaxation. Faist, Heyman, Woods, Leburton, Julien

Physicists working in government policy. Tsang, Howes, Moore, Londono, Hammer

Phase coexistence and structures in dipolar fluids. Martin, Fraden, Liu, Luo, Stevens

High-temperature superconductor applications in electronics. Forrester, Withers, Nisenoff, Braginski

Complexity at interfaces: Recent advances in near-field microscopy.

Barbara, Trautman, Xie, Hochstrasser Semiconductor heterostructures: III–V optical properties—experi- $\mathrm{ment}.\ Buratto$

Phase transitions: Experiments with x rays and neutrons (mainly). Stenhenson

Magnetic heterostructures: Tunneling and 4f exchange. Landolt Diamonds and related materials VI: Physics of wide band gap semiconductor devices and related issues. Trew. Gildenblat

Theory of materials X: Mechanical properties. Knantha

Fullerenes VIII: Dynamics and reactivity. Scuseria Noncrystalline materials III: Metallic glasses. Johnson

Avalanches VI: Scaling, self-organized criticality and avalanches (theory). Mehta

Phase transformations II. Briber

Neutron scattering from polymers II. Ankner, Li

Sensitive measurements using mechanical resonators. Greywall,

Friday, 24 March

Morning
Biotechnology. Salmelin, Kawana, Giaever

Mechanisms for pattern formation. Warren, Cummins, Cladis, Zimmermann, Swinney

 $Strained-layer\ epitaxy.\ Joannopoulos,\ Urban,\ Jesson,\ Pidduck,$ Legoues

DNA-ligand interactions. Dickerson, Lee, Chen, Feigon

Federal policy initiatives and physics research aspects of sustainable technology. Lempert, Rosenfeld, Richards, Kartha, Anderson,

Complexity at interfaces: X-ray scattering studiens at interfaces. Song, Safinya, You

Photoemission. Shen

Density functional theory. Umrigar

Elemental and compound glasses. Cappelletti

Quantum dots and mesoscopic semiconductors. Leonard

Phonons: Spectroscopy. Fahy

Metal surfaces: Ion interactions. Goodstein

Magnetic heterostructures: Epitaxial magnetic films. Clemens Positron applications II: Momentum densities and defect spectroscopy. Nieminen

Fullerenes IX: Dynamics and reactivity. Brühwiler

High dielectric constant materials I: Bulk properties. Cross

Proximity tunneling in cuprate superconductors. Durusoy, Char High-frequency electrodynamics of type-II superconductors. Orenstein, Tsui

Studies of ballistic electron emission microscopy. Sajoto, Bell, Ludeke, von Känel, Prietsch

Defect dynamics on semiconductor surfaces. Ebert, Weimer, Weber, Chen, Moison

Electron tunneling in biology. Okamura, Regan, Therien, Beratan, Schmickler

Visualization and simulation. Wickham-Jones, Bryson, Letteri, Belak Electronic structure: Alloys. Muller

Phonons: Lattice dynamics. Bickham

Positron applications III: Defects in semiconductor films and interfaces. Van Veen

High dielectric constant materials II: Thin films. Fork

Afternoon

Organic electroluminescence for display applications. Tang, Dodabalapur, Parker

Aharonov-Casher effects in condensed matter physics. Mathur, Dresselhaus, Lyanda-Geller, Mooij, Stern

Highly correlated coupled chains. Takano, Noack, Barnes, Tsunetsugu, Affleck

Electron transport in random B fields. Arovas, Geim, Mancoff, Per, Miller

Spin glassiness in strongly frustrated antiferromagnetics. Ramirez, Greedan, Uemura, Tun, Sachdev

Complexity at interfaces: Molecular beam studies of complex interfaces. Nahtanson, Sibener, Kay, Rettner

DCMP: General. Bunde

Spin-Peierls systems. Harris

Magnetic heterostructures: Magnetic oxides. Lind