How WouLD A PHYSICIST
DESIGN A TENNIS RACKET?

Physics, anyone? Contemplating the analytical mechanics of tennis rackets may
improve your game—but it’s no substitute for practice.
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HOWARD BRODY is 4 professor of physics at the University of
Pennsylvania, in Philadelpbia, where be is also academic and technical
adviser to the men’s and women’s varsity tennis teams.

T ennis players dream of finding the perfect racket that
will immediately transform them into champions.
While that may be wishful thinking, it is generally agreed
that today’s rackets are much better than those of 20
years ago. Though they may not turn you into an instant
Wimbledon winner (after all, your opponent has one too),
they will clearly improve your game. There is still hope
among inventors, racket manufacturers and players that
a perfect racket will come along someday. If and when
such a racket is developed, what will its properties be and
how will it affect the game of tennis?

As a tennis player for more than half a century, and
a physicist for not quite that long, I never thought about
these problems until the oversize rackets came along in
the late 1970s. None of the tennis professionals I asked
were able to explain the new rackets, and there was almost
nothing in the technical literature. So I set up a small
lab to do simple experiments and I began to see tennis
in a different light. There I have accumulated a lot of
interesting data, resulting in a number of papers, a book
and even a commercial videotape.

The official rules of tennis give the player a great
deal of latitude in what he or she may use to hit the ball.
The rules specify a maximum total length for the racket
frame and maximum length and width for the head. For
a long time the rules allowed the frame to be “of any
material, weight, size or shape.” But the proliferation of
oversize rackets in the late 1970s made it clear that some
limits were needed. The present rules also require that
the crossed string pattern be flat and that the shape or
weight distribution of the racket not change in the course
of playing a single point.

There still are no restrictions concerning the type of
material used in the frame or strings; the number of
strings; the racket shape, weight or weight distribution;
or even the thickness of the frame. Head shapes have
ranged from round or oval to square, diamond or hexago-
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nal. Heads have been joined at various angles to the
shaft, which itself is allowed to be bent. Split shafts are
quite common. Though eight-sided racket handles are
standard, handles have been made with hexagonal and
even rectangular cross sections. One need only to look in
the files of US Patent Office to appreciate the ingenuity
of racket inventors.

The rules concerning the ball, on the other hand, are
very stringent about size, weight, color, deformation under
load and rebound. To be sanctioned for official tournament
play, a tennis ball may rebound no more than 58 inches and
no less than 53 inches when it’s dropped onto a concrete
surface from a height of 100 inches. This requirement, that
the ball lose almost half its energy in such a rebound,
significantly influences the design of the racket.

What would a perfect racket be like? It would clearly
be very light and have minimal air resistance, so that it
could be swung with little effort for hours on end; and yet
the player’s hand or arm would feel no unpleasant shock,
jar or vibration when the ball is hit. The racket would
be “powerful”; that is to say, high speed could be imparted
to the ball with moderate racket head speed. Further-
more, the racket’s response would be uniform and com-
pletely predictable.

The strings
The strings of a tennis racket act as a medium that absorbs
much of the incoming ball’s kinetic energy and then
returns some fraction of that energy back to the ball.
Strings are used instead of an elastic membrane because
the air resistance of a membrane would be too great. You
can demonstrate that by swinging a racket with and
without a piece of paper covering the strings. The effect
of the paper is quite pronounced.

Tennis players usually specify the tension they want
in their strings, but the absolute value is not very mean-
ingful, because the spacing between strings and the size
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of the head vary from racket to racket. A more meaningful
measure of how the strings will perform is how much the
strings deform under a given load. One can think of the
string plane as if it were a spring; then the plane defor-
mation determines an effective spring constant k. If &
and the ball mass (58 grams) are known, one can estimate
the dwell time of the ball on the strings: The dwell time
should be about 5 milliseconds, half the period of the
corresponding simple harmonic motion. Such estimates
are in good agreement with measurements of the actual
duration of contact between racket and ball. But as the
ball speed increases, the dwell time becomes shorter.!
That’s because the string plane deformation becomes non-
linear with increasing force. The harder you hit the ball,
the stiffer, in effect, are the strings.

In the ball-racket interaction it is advantageous to
have most of the energy stored in the strings, which can
give back as much as 95% of it, rather than in the ball,
which is designed to dissipate energy. Having the strings

JIMMY CONNORS prepares to hit a two-handed backhand.
Connors uses less wrist or forearm rotation here than most
other professionals, so his two-handed backhand has an
unusually long radius of swing. FIGURE 1

deform more, and therefore store a larger fraction of the
energy, results in more kinetic energy being returned to
the ball. Direct measurements of ball rebound speeds for
different string tensions tend to agree with this line of
argument.

I have determined a lower limit on the fraction of
incident energy returned by the strings to a ball by
dropping a wooden bocce ball (which absorbs much less
deformation energy than a tennis ball) onto a horizontal,
clamped racket head and measuring the ratio of rebound
height to drop height.? That ratio ran from 0.93 to 0.95,
which shows that the strings dissipate very little of the
energy they absorb. It follows that tighter strings, allow-
ing less string-plane deformation, generate lower ball
speeds in play.

There is, of course, a point of diminishing returns.
After all, you can’t play tennis with a butterfly net. When
the strings start moving and rubbing within the string
plane, you begin to get serious energy loss.

The conventional wisdom nowadays is that tighter
strings allow the player more control over the ball. Be-
cause control is not a well-defined term, I know of no
definitive experiment that has proved or refuted this
claim. Twenty years ago the conventional wisdom was
that loose strings gave control and tight strings gave
power. The argument went: “Most top professionals
string their rackets at high tension, and they hit the ball
very hard. Therefore tight strings give power.”

The elasticity of the strings is a very important factor
in their ability to store and return energy. Because
thinner strings are more elastic, manufacturers have been
developing thinner strings to improve performance. Gut
(made from beef intestines) is the preferred material for
strings, since it retains its elasticity at high tensions.
Many synthetic materials lose some elasticity as the string
tension increases, and that leads to a stiff, or “boardy,”
feeling when shots are hit hard.

The string manufacturer seeks to optimize strength,
elasticity and durability. A typical tennis string is made of
a core (or multicore), one or more twisted wrap layers and
possibly a coating. Decisions about how to construct the
string and what material to use are based on measuring the
dynamic tangent modulus of elasticity at high tension, the
tensile strength, the abrasion resistance (most strings break
because of abrasive weakening) and the relaxation properties
(strings eventually lose tension). Stringing at higher tension
will often prolong string life, because it inhibits in-plane
movement and the resultant abrasion.

Center of percussion

If the racket vibrates or smarts against your hand when
you hit the ball, you will be unhappy. But the shock or
jar is minimized if the ball strikes the head of the racket
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at a certain location. That location (actually a pair of
conjugate points) is called the center of percussion. When
a ball hits the center of mass of a free racket initially at
rest, the racket will recoil to conserve momentum. If the
ball hits in a region near the geometric center of the head
(well beyond the center of mass), the racket will still recoil
to conserve linear momentum, but it will also pivot about
the center of mass to conserve angular momentum. Most
of the racket will then be moving in the original ball
direction, but the handle end will be moving in the
direction of the recoiling ball.

It is possible then for the two motions (translation
and rotation) to cancel out at one location on the handle.
If you were holding the racket at exactly that location,
your hand would feel a minimum of shock when the ball
hit. For every point on the handle, there is a conjugate
point of ball impact (the center of percussion) that will
yield this desirable cancellation. For the normal one-
handed end-of-handle grip, the racket designer strives to
have the center of percussion close to the center of the
strung region of the head.

One can determine the distance from the hand to the
center of percussion by turning the racket into a physical
pendulum pivoted on an axis through the grip and parallel
to the string plane. One then measures this pendulum’s
oscillation period T

If a struck ball undergoes a momentum change Ap,
a racket of mass M will have a recoil velocity V = Ap/M.
If the ball hits at a distance b beyond the center of mass,
the racket will rotate with an angular velocity w =
bAp /I, where I is the racket’s moment of inertia about its
center of mass. If a is the distance from the center of
mass to the hand, then the condition for cancellation of
motion at the hand is that V must equal wa. Thus we
conclude that the moment of inertia about an axis in the
string plane and through the racket’s center of mass
should equal abM. Measuring the period T gives the
racket’s moment of inertia about the pendulum pivot.
Then one can use the parallel-axis theorem of mechanics
to conclude that the distance a + b between the hand and
the desired impact point is g7%4m2.

For the classic wooden rackets of bygone days, the
center of percussion was usually in the throat area of the
head. In figure 1 tennis star Jimmy Connors wields a
typical modern racket, with a larger head and lighter
frame than the wooden rackets had. These rackets have
the center of percussion close to the center of the head.
Figure 2 shows me testing such a racket in my lab at the
University of Pennsylvania. In some modern rackets the
center of percussion is actually closer to the tip of the
head than to the throat. .

Racket vibrations

When a tennis racket handle is clamped in a vise, the
frame can oscillate in the manner shown in figure 3a. A
freely suspended racket would exhibit the oscillation mode
shown in figure 3b. To determine the frequencies and
nodes of these two modes, I taped a small piece of Kynar,
a thin piezoelectric film, to the throat of a racket and
observed its output when the racket was struck in various
locations. For a typical racket with its handle firmly
clamped, the fundamental frequency was about 25-30
hertz, while a free racket had a lowest frequency in the
range of 100-200 Hz. The precise eigenfrequencies de-
pend on the frame’s mass and stiffness. For a given racket
weight, the measured resonant frequencies are good stiff-
ness indicators.

To determine the behavior of a free (as distinguished
from constrained) racket, I suspend the racket from strings
attached along the nodal line in the handle in order to
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IN HIS LABORATORY at the University of Pennsylvania,
Brody examines whether the impact position of a tennis ball
can be determined from the magnitude and phase of the
resulting racket vibration. FIGURE 2

minimize external damping. Because there has been some
question as to whether a clamped or free racket is a better
laboratory model for a handheld racket, I measured the
vibration frequencies of rackets held in the hand. Finding
no sign of the lower frequencies when the rackets were
struck near the throat or far end, even when the hand
grip was very tight, I concluded that a freely suspended
racket is the better laboratory approximation to what
happens on the court.?

The amplitude of the frame’s oscillation depends on
the relative velocity between racket and ball, the frame’s
stiffness and the distance from the impact point to the
node in the head. You can determine the location of that
node without special equipment, simply by holding the
frame at the top of the grip (the other node) with two
fingers and striking the strings at various places along
the midline. You will be able to feel the amplitude of the
resultant oscillation and it will have a minimum when
the racket is struck at the node. Figure 4 illustrates the
dependence of the oscillation amplitude on the point of
impact. Looking at the leading edges of the signals, it is
clear that the oscillation phase changes as the impact
point moves from below to above the node.

Many manufacturers advertise that their frames damp
out vibrations quickly and therefore feel better and do less
harm to your arm. There is no clinical evidence that racket
vibrations are the cause of the notorious “tennis elbow”
ailment that plagues so many players. The very best device
for quickly reducing the amplitude of vibrations is the human
hand, and not some special material built into the racket
frame.* Figure 5 shows the oscillation of a handheld racket
(top trace) and of the same frame freely suspended. Some
designers have tried using encapsulated granules, lead shot
or other very small objects that can move around inside the
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VIBRATION MODES of a tennis racket (a) with the handle
clamped and (b) with both ends free. FIGURE 3

frame. Such schemes can do an effective job of absorbing
some of the vibrational energy left in the racket after the
ball has departed.

One often sees the strings near the throat festooned
with small rubber beans, plastic worms or other objects put
there to damp out vibrations. They do indeed reduce string
vibration near 500 Hz, but they do essentially nothing to
damp out frame vibrations.® The effect on play is purely
psychological; they just make the hit sound cleaner. If such
small ornaments attached to the strings were really absorb-
ing most of the vibrational energy of the much heavier racket,
they would get pretty hot after a few hundred hits.

I know of very few serious attempts to find out where
on the racket the average tennis player hits the ball on
a ground stroke. There is, however, a published report
by Herbert Hatze® (University of Vienna) which contends
that the node, rather than the center of percussion or the
geometric center of the strung area, is the place where
most players hit the ball.

Power from the racket

Players look for the frame that will give them the highest
ball speed for the least effort. Two-body kinematics tells
us that for a given head velocity a heavier racket will
impart more speed to the ball. But the head speed is of
course not entirely independent of the racket mass. Un-
like a baseball player, who may swing 10-15 times in an
entire game, a tennis player swings hundreds of times
during a match. I have seen no data on swing speed
versus racket weight or moment of inertia. Nor have I
seen any studies of fatigue versus racket weight.

The recent trend, however, has been toward lighter
rackets. The classic wooden rackets of 20 years ago
weighed 14 to 15 ounces, and they were of a neutral
balance; that is to say, the center of mass coincided with
the geometric center. Some of the newest frames on the
market weigh only 9 or 10 ounces, and they are head-
heavy. This very considerable weight reduction has been
accomplished by using modern composite materials (usu-
ally graphite fibers) and removing as much weight from
the handle and shaft as possible. Even though a 30-40%
overall reduction has been achieved in the weight of the
racket, the “swing weight,” as tennis players call the
moment of inertia about the butt end, has not been

reduced in the same proportion. The result is a racket
that is significantly lighter but still packs almost the same
punch as a heavier racket would.

In the tennis literature there are often statements to
the effect that a very firm grip on the racket will add the
arm’s weight (inertial mass) to the racket’s weight, there-
fore giving more “power.” By performing a simple experi-
ment I have been able to prove that assertion wrong. I
measured the resonant frequencies of both a free racket
and one that was being gripped very tightly. The gripped
racket had a lower frequency, as one would have expected,
because of damping by the hand. Ignoring the damping,
we can assume that the entire lowering of the resonant
frequency is due to some fraction of the mass of the hand
and arm being added to the racket. I determined experi-
mentally that adding 40 grams to the handle end of the
free racket produces the same frequency shift as a tight
grip. A scant ounce and a half is not enough additional
mass to increase ball speed appreciably.

The speed imparted to a ball depends on where it
strikes the racket head. If the ball is hit precisely at the
racket’s center of mass, no energy goes into racket rotation.
With increasing distance from the center of mass, more
and more energy is diverted into racket rotation. By
moving mass from the handle to the head, the designer
moves the center of mass up toward the center of the
head, thus increasing the speed imparted to the ball.
Sometimes, however, the ball strikes the racket off center,
or even off axis. To minimize racket rotation when this
happens, one wants to maximize the moments of inertia
about the two principal axes in the plane of the frame.

The fact that the strings are more elastic in the middle
of the head tends to shift the power point slightly away
from the center of mass. The racket is additionally dead-
ened near the tip because that’s where the frame is most
flexible and flexing takes energy away from the ball. The
newest (inappropriately called “wide-body”) rackets over-
come the latter problem by increasing the thickness of the
frame near the tip.

The dominant factor in a racket’s response to a par-
ticular hit is the distance of the impact from the two
in-plane principal axes. A ball hitting just a few inches
away from the long (polar) axis will rebound with low
velocity, because the moment about this axis is about
one-tenth of the moment about the other in-plane axis.
One can increase the polar moment either by adding
weight at the periphery of the frame or by making the
racket wider. Because the moment of inertia goes as mr?,
a wider racket head is the preferred solution. Measuring
the polar moments of a number of rackets with a thin-wire
torsional pendulum, I have found that the moments scale
well with mass times the square of the head’s width.”
That’s because most of the popular rackets, even the
oversize ones, have essentially the same head shape. So
it’s size that determines the moment of inertia.

Racket manufacturers test their products by firing
tennis balls at a stationary racket that is either freely
suspended or held in a very flexible mount. They record
the ratio of the ball rebound speed to incident speed for
impacts at many locations on the head. That ratio, des-
ignated as e, is often mistakenly described as the coeffi-
cient of restitution. But it is not, because it neglects the
recoil velocity of the racket. Typical values of e run from
about 0.5 for on-axis impacts near the center of mass to
0.2 for impacts well off axis or near the tip.

Ball-racket interaction

Unlike the laboratory situation, on the tennis court most
shots are hit with the racket moving at a speed comparable
with that of the incoming ball. Therefore to apply the
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laboratory data to actual play one must transform the
interaction into a reference frame where the racket is at
rest, solve the problem and then transform back into the
court (moving-racket) frame. For most players a non-
relativistic treatment should suffice.

Doing this simple exercise, one finds that v’, the ball’s
rebound velocity on the court, is given by

vV=—ev+(1l+e)V (1)

where v is the ball’s incident velocity on the court and V
is the velocity of the racket’s impact point. (Both terms
are positive, because v is negative relative to the other
velocities and e is positive by definition.)

Because players swing rackets rather than simply
translating them forward, the velocity of the impact point
depends on the effective pivot point of the swing at the
moment of impact and on the distance of the impact from
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VIBRATION AMPLITUDE TRACES for a freely suspended
tennis racket struck at various locations on its longitudinal
axis. At the node the phase of the oscillation is reversed.
FIGURE 4

that pivot.

I determined the instantaneous pivot points of the
swings of several college varsity tennis players by simul-
taneously measuring the velocities of two points on the
racket just before impact. The pivot point varied consid-
erably depending on the type of stroke. A two-handed
backhand, for example, generally has an effective pivot
very close to the butt end of the racket, while a one-handed
forehand has a much longer radius of swing. Connors’s
two-handed backhand, shown in figure 1, has an unusually
long swing radius.

The average distance of the pivot point from the butt
end of the racket is about 20 centimeters for forehand
ground strokes. With that information and the e map of
the racket head, one can determine the location on the
racket that will produce maximum ball speed, either for
a specific player and racket or for an average swing radius
and a mathematical model of rackets of various mass
distributions and string properties. In the older rackets,
the maximum-power location was close to the throat, but
in the latest generation the power point is near the center
of the head and close to the node and the center of
percussion.

On a serve, as distinguished from a ground stroke,
the effective pivot point is very close to the butt end of
the racket, because the serve involves considerable pro-
nation, or axial rotation, of the forearm. Therefore the
racket tip is moving much faster than the throat. Fur-
thermore the new head-heavy rackets have the center of
mass closer to the tip than did the old neutral-balance
frames. Also, the extra stiffness of the newest racket
heads cuts down energy dissipation due to frame defor-
mation near the tip. These three effects result in a
displacement of the maximum-power point up the racket
from where it is for ground strokes. All other considera-
tions aside, that upward displacement makes the latest
rackets better for serving simply because, in effect, they
make the server taller. Figure 6 shows these locations
for a flexible, neutral-balance, oversize racket (the old
Prince Classic) and for a more modern, quite stiff, head-
heavy frame.

Designing a better racket

No tennis racket will correct for your mistakes if you hit
the ball in the wrong direction or much too hard. But a
good racket provides a uniformity of response when the
ball hits at different locations on its face. That lets you
miss the “sweet spot” (or whatever spot on the strings you
are aiming for) and still have the ball end up where it
would have gone if it had hit the optimal location on the
strings. Some of the ways one might achieve this desired
uniformity have been outlawed by the International Ten-
nis Federation: for example, a curved string surface to
“focus” off-axis hits or a stabilizing gyroscope built into
the frame. There are, however, other ways to get a more

DAMPING BY HAND-HOLDING is evident in the vibration
trace (top) of a hand-gripped tennis racket struck at its head end.
For comparison, the bottom trace records the vibration of a
freely suspended racket struck in the same way. FIGURE 5




We've
already discussed some of these: stiffer frame, larger
moment of inertia and center of mass higher on the racket
head. Minimizing the moment of inertia about the butt
end while maximizing the moment about the center of
mass yields a powerful yet maneuverable racket.
Another way to compensate for off-axis hits is to

uniform response over the face of the racket.

design an asymmetrical racket. If the long axis of a
symmetric racket is horizontal at impact, a ball striking
above the axis will twist the racket so that the ball
rebounds at a large upward angle with little speed. Thus
the ball is likely to clear the net and land in the court.
But if the ball strikes below the axis, its diminished speed
accompanies a more downward trajectory, so that the ball
usually goes into the net. That would be an argument
for designing an asymmetric racket with the handle dis-
placed to one side in the string plane. Players would then
aim to hit the ball above the axis.

So much for off-axis hits. What about the location of
the hit along the racket’s long axis? It would be nice if
the response of the racket to the swing of a typical player
could be made independent of the longitudinal position of
the hit. For a steady rally, the incident velocity v of
equation 1 is typically half of v’, the ball’s velocity just
after it’s hit. Therefore

l+e

V=1 e2” =

The racket speed V at the point of impact equals wr, the
product of the racket’s angular velocity and the distance
from the effective pivot to the impact point.

If one wants v’ to be independent of r, then the quantity
r(1+e)/(1—e/2) should be a constant %, independent of

POWER SPOT FOR SERVING a tennis
ball is higher on the racket than for a
ground stroke, because the effective
pivot point of the service motion is very
close to the butt end of the racket. For
a very stiff, head-heavy racket (right) the
power point is higher than it is for a
more flexible, neutral-balance racket
(left). Successive contours going
outward from the optimal power point
(red) indicate loci for 99%, 95% and
90% of maximum ball speed. FIGURE 6

where along the axis the ball hits the
racket. Solving that condition for e,
one getse = (k —r)/(r+k/2). The con-
stant % is determined once the effective
pivot distance is known. For typical
values of e that can be achieved with
present racket technology, % ranges be-
tween 1 and 1.4 meters. Manufactur-
ers have not yet attempted to imple-
ment this desired variation of e.

Buying a racket
If you're not going to design and make
your own racket, youll have to buy a
frame off the shelf. Some words of
advice: Don’t automatically pick the one that Andre
Agassi or Steffi Graf uses. The manufacturers give the
stars a lot of money to use specific rackets with prominent
logos. The professional player selects a frame that suits
his or her style of play. It may not be the best frame for
you.
As a general rule, a bigger racket head gives the
average amateur more stability, more power and fewer
mis-hits. A lighter frame with a midsize head is best for
the serve-and-volley player or the very competitive ground-
stroker who swings with abandon. The more conservative
recreational player should use an oversize (or “super-over-
size”) racket, not strung too tightly, of a weight and inertial
moment that make the hits feel solid.

Knowing the physics of the game may improve your
pleasure. But it’s not enough: I have never won a tennis
tournament.

Equipment used in some of the test measurements was provided
by grants from the United States Tennis Association and from the
University of Pennsylvania Research Foundation. Tennis rackets
used for testing were supplied by Prince Mfg.
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