He returned to Harvard in 1938 to work on cosmic rays with Curry Street, and he received his PhD in 1943.

During World War II he worked on radar projects, at first at Harvard on countermeasures and then, from 1944 to 1945, in the southwest Pacific as a technical adviser for radar. At the end of the war he returned to cosmic-ray physics as a research associate at MIT with Bruno Rossi. In September 1946 he went to Washington University in Saint Louis to start his own group in cosmic-ray physics. He became a full professor there in 1952.

Sard's group at Washington University used a variety of techniques, including cloud chambers and fast coincidence circuits with neutron detectors. In 1951–52 Sard proposed using a neutron coincidence trigger for the cloud chamber experiments and collaborated with Patrick Blackett's group at Manchester, the group that first observed "strange" particles.

In 1961 he came to the University of Illinois to join the groups studying particles produced in high-energy accelerators. His colleagues included Giulio Ascoli, Richard Brown, Robert Klanner, Ulrich Kruse and David Mortara.

From 1971 to 1972 he joined a group at CERN in Switzerland to collaborate in experiments at what was then the world's highest-energy accelerator, at Serpukhov, near Moscow.

On returning to Illinois he continued to analyze data from Serpukhov in productive collaborations with Georgian Soviet scientists. In the 1980s he became part of an Illinois group that joined the large Collider Detector Facility collaboration at the Fermi National Accelerator Laboratory, in Batavia, Illinois, which in April 1994 announced evidence for the top quark (PHYSICS TODAY, June 1994, page 17). Although he was increasingly physically debilitated by neuropathy during the last few years of his life, Sard's mind remained excellent, and he took a great deal of pleasure from having been a member of the CDF collaboration.

Sard was a scholar with an excellent memory. Combined with his broad experimental experiences, this memory gave him a profound knowledge of the history of physics, and for about four years he was an associate editor of the *History of Physics Newsletter*.

Bob was a thoroughly old-world gentleman in many respects. His students had many occasions to appreciate his patience and his caring attention. He cared deeply about science, music and political rationality and was never quite reconciled to how the world was run on either side of the Iron Curtain. Toward the end of his life he told his son David that he was proud of having been "a soldier of physics." His friends and colleagues will miss his thoughtful, gentle honesty.

MICHAEL WEISSMAN
ALBERT WATTENBERG

University of Illinois, Urbana-Champaign

Joseph Callaway

Joseph Callaway, Boyd Professor of Physics at Louisiana State University, in Baton Rouge, died on 17 June 1994, two weeks before his 63rd birthday. He was an internationally recognized physicist in both condensed matter and atomic scattering theory.

Joe was born in New Jersey. He graduated with a degree in physics from the College of William and Mary in 1951 and received a PhD in physics from Princeton under Eugene Wigner in 1956. As a graduate student, in addition to writing several papers on general relativity, he calculated the electronic structures of germanium, potassium and iron. The electronic structure of materials became his lifelong work.

After Princeton, Joe went to the University of Miami in Florida. During a summer at Westinghouse Research Laboratory in 1959, he developed the theory of phonon scattering in insulators that remains the standard theory of thermal conduction in the insulating state of solids.

Joe's second academic appointment, in 1960, was at the University of California, Riverside, where he was one of the prime architects of the physics department's graduate program. His first book, *Electronic Energy Bands in Solids* (Academic Press), was published in 1964. During his years at Riverside Joe became seriously interested in the theory of magnetism, in both metals and insulators. One of Joe's great attributes was that he did calculations that could easily be compared with experimental results.

In 1967 Joe moved to Louisiana State, and in 1970 he became the chair of the department of physics and astronomy. Four years later he was made Boyd Professor, a research chair. At LSU he put together a small army of students and postdocs that has been prolific in developing methods for determining the electronic structures of many materials, formulating the theory of itinerate magnetism in metals, studying electron—hydrogen scattering and perform-

ing calculations of the properties of high-temperature superconductors from their electronic structures.

Joe wrote *The Quantum Theory of the Solid State* (Academic Press, 1974) and its several revisions. It is both a standard reference and student text.

In all of Joe's choices for places to live and work, there was one underlying condition: They had to be near the ocean. Joe was a sailor, and he enjoyed sailing with his family on weekends and on longer outings.

Joe was always actively engaged and (loudly) heard in committees, both at LSU and nationally. His voice, although now stilled, will be remembered by the physics community for years to come.

ROY G. GOODRICH
A. RAVI P. RAU
Louisiana State University
Baton Rouge

Charles Louis Critchfield

Charles Louis Critchfield died on 12 February 1994 at his home in Los Alamos, New Mexico, after leading an active life in his final six years despite a battle with cancer.

Critchfield was among the first physicists to come to Los Alamos in 1943 to work on the atomic bomb.

Born in 1910, "Critch" received his MA and his PhD in 1939, both from George Washington University, in Washington, DC. Critchfield's graduate education at George Washington was unique. The first—for a time, the only-graduate student of Edward Teller and George Gamow, he learned much in the homes of these two men, who often played host to such luminaries as Hans Bethe. Niels Bohr and Enrico Fermi. Critchfield's thesis, on field theory and strong coupling, was one of the first to deal with elementary particles. Teller and Critchfield later published a joint paper on strong coupling.

After graduation Critchfield accepted an offer from Victor Weisskopf to teach optics at the University of Rochester. A year later Critchfield became a National Research Council Fellow at Princeton, where he followed up on his work on strong coupling, working with Eugene Wigner.

Critchfield then taught for a year at Harvard before returning to Washington, DC, and a job in the Department of Terrestrial Magnetism of the Carnegie Institute. There he concentrated on the use of *sabots*, a technique for firing small-caliber projectiles from large-caliber bores. His work, published in several National

Defense Research Committee reports, led directly to some of the first successful antitank guns.

In December 1942 Teller and J. Robert Oppenheimer approached Critchfield about working at Los Alamos. Oppenheimer suspected that sabots might play an important role in developing the interior ballistics of the nuclear gun for the atomic bomb. Among Critchfield's greatest contributions to the Los Alamos laboratory was the suggestion to use small-caliber guns to simulate a fullscale gun. As a result of this suggestion the full-scale device was designed almost a year before the required fissile materials could be produced. Critchfield also worked on the initiator for the implosion device.

After the war Critchfield returned briefly to George Washington University to teach physics, then left to help Wigner establish Queens College for Nuclear Knowledge at Oak Ridge National Laboratory. In 1947 he accepted a professorship in physics at the University of Minnesota. He returned to Los Alamos on a leave of absence during the 1952-53 academic year to help the laboratory with calculations on a new approach to the hy-

drogen bomb.

Critchfield remained at Minnesota until 1955, when at the urging of John von Neumann he joined the Convair Division of General Dynamics in San Diego as director of scientific research, bolstering its fledgling missile program. Critchfield left Convair in 1960 to become associate division leader for research at the Whitaker Corporation in California, which was just starting work on stealth technology. He held that position briefly before returning to Los Alamos, where he retired in 1977.

While the main focus of Critch's technical interests was, naturally, physics, and his abilities in that field were widely recognized, he had an irrepressible curiosity about other areas of human intellectual endeavor. This curiosity added wonderfully to the pleasure of his company, particularly at a time when we wondered if anyone in Los Alamos had any interest other than physics.

After his retirement Critchfield remained an affiliate of Los Alamos and assisted in the research on and publication of a technical history of the laboratory's World War II years.

CARSON MARK

LOUIS ROSEN

EDWARD TELLER

ROGER MEADE

Los Alamos National Laboratory

Los Alamos, New Mexico

HERMETICALLY SEALED CONNECTORS

- ☐ CARBON, STAINLESS STEELS, SPECIAL ALLOYS
- ☐ SOLDER, PANEL OR WELD MOUNT
- ☐ STANDARD CONTACTS, THERMOCOUPLE, P.C., EYELET OR YOUR DESIGN
- ☐ FOR MILITARY, COMMERCIAL, INDUSTRIAL

Call us to discuss your standard or custom requirements for Connectors and Headers to operate over a wide temperature range, even in severe environments.

SINCE 1959 - Standard and Modified

Designs of Connectors, as well as Headers and Terminals.

10660 E. RUSH ST. • SO. EL MONTE, CA 91733 • PHONE (818) 579-7130 • FAX (818) 579-1936

Circle number 38 on Reader Service Card

Compromise on Superconducting Magnet Systems? Never!

Cryomagnetics has assembled one of the most complete custom superconducting magnet system engineering and production facilities in the world. Our complete state of the art facility includes full magnet,

dewar, and electronic design and construction capabilities.

We can offer you more flexibility to better fit your needs because we do not have to rely on outside sources as often as some other superconducting magnet suppliers.

Why Compromise?

· Have Cryomagnetics supply all superconducting magnet your needs.

For a **FREE** superconducting magnet systems application guide and gift, please circle the number on the reader service card or contact us directly.

CRYOMAGNETICS, INC.

1006 Alvin Weinberg Drive Oak Ridge, TN 37830 Phone: (615) 482-9551 Fax: (615) 483-1253

E-mail: cryomagnet@aol.com