
QUANTUM INFORMATION 
AND COMPUTATION 

Theoretical computer sci­
entists, like their coun­

terparts in physics, suffer 
and benefit from a high level 
of intellectual machismo. 
They believe they have some 
of the biggest brains around, 
which they need to think 
about some of the hardest 
problems. Like mathemati­
cians, they prove theorems 
and doubt the seriousness of 
those who don't. Lately, 

A new quantum theory of 
communication and computation is 

emerging, in which the stuff transmitted 
or processed is not classical information, 

but arbitrary superpositions of 
quantum states. 

the state in another particle 
which has never been any­
where near the first particle. 
Cryptographic keys can be 
distributed by quantum 
means, with near-perfect se­
curity against undetected 
eavesdropping. Quantum 
computers, meanwhile, are 
theoretically capable of solv­
ing certain problems, such as 
the factoring of large num-Charles H. Bennett 

however, theoretical com-
puter scientists have sought the help of physicists in 
understanding quantum mechanics, a hard part of physics 
which they now believe has great significance for their 
own field. 

Until recently, classical notions have sufficed. A con­
ventional digital computer operates with bits-the Boolean 
states 0 and l-and after each computation step the 
computer has a definite, exactly measurable state. Simi­
larly, classical information theory considers transmissions 
conveying classical states, such as sequences of characters, 
each character having its own frequency of occurrence in 
a given context. In contrast to this, quantum information 
processing involves quantum states. The state of a quan­
tum computer is described by a wavefunction or a state 
in a Hilbert space, and quantum information theory con­
siders the transmission of quantum states from source to 
receiver. 

Fundamental properties of quantum systems now 
seen to be relevant to information processing include: 
[> Superposition: A quantum computer can exist in an 
arbitrary complex linear combination of classical Boolean 
states, which evolve in parallel according to a unitary 
transformation. 
[> Interference: Parallel computation paths in the super­
position, like paths of a particle through an interferometer, 
can reinforce or cancel one another, depending on their 
relative phase. 
[> Entanglement: Some definite states of a complete quan­
tum system do not correspond to definite states of its parts. 
[> Nonclonability and uncertainty: An unknown quantum 
state cannot be accurately copied (cloned) nor can it be 
observed without being disturbed. 

Quantum information processing exhibits some star­
tling differences from the classical case. States can be 
transmitted by "quantum teleportation," a process that 
disembodies the exact quantum state of a particle into 
classical data and Einstein-Podolsky-Rosen (EPR) corre­
lations, and then uses these ingredients to reincarnate 
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bers, in dramatically fewer 
steps than any known algo­

rithm on a classical computer. (Cryptography schemes in 
use throughout the world depend on the difficulty of 
factoring for their security.) 

Qubits 
To illustrate the new results, it is sufficient to consider 
operations on and pairwise interactions between quantum 
systems of the simplest sort: two-state systems or "qu­
bits."1 Examples include the polarization of a photon or 
a spin-% particle, the relative phase and intensity of a 
single photon in two arms of an interferometer, or an 
arbitrary superposition of two atomic states. The classical 
Boolean states, 0 and 1, can be represented by a fixed 
pair of orthogonal states of the qubit (say, IO) = 1-), 
II) = It)), but a qubit can also exist in superpositions such 
as 1/ ) = (10) + 11)) /--JZ and I'- ) = (10) - 11)) /--JZ. Moreover, a 
pair of qubits can exist in entangled states such as the 
singlet state -qr- = (101) -110))/--JZ, in which neither qubit 
by itself has a definite state. More generally, a string of 
n qubits can exist in any state of the form 

11 ... 1 

'¥ = L Cx lx) 
X= 00 ... 0 

where the ex are complex numbers and the index x ranges 
over all 2n classical values of an n-bit string. Quantum 
data processing consists of applying a sequence of unitary 
transformations to the state vector '¥. 

Some quantum logic operations are simply extensions 
of classical Boolean operations to superpositions of input 
states, for example NOT, represented by the unitary matrix 

(Tx =(~~J 
which flips the Boolean state of a single bit, and the 
controlled-NOT or exclusive-OR (XOR), which flips the 
second of two bits if and only if the first is 1. Others, such 
as the unitary operation represented by the 2 x 2 matrix 

~u-~J 
which corresponds to a 45° rotation of the polarization, 

c 1995 American Inst itute of Physics 



A 

UNIVERSAL QUANTUM LOGIC GATE, as realized with high-finesse microwave cavities and 
two-state atoms. All possible quantum computations can be built up with a network of such 
gates. Passing atom lA) through the empty cavity on resonance transfers the atom's state, 
lA) = c1lg) + c21e), to the photon occupancy c1IO) + c211) of the cavity. Passing atom IB) through 
the Ramsey zones (R, R-1) and the cavity (off resonance) changes its state to the exclusive-OR 
(XOR) of the initial states IA)EEIIB). The original state lA) can now be transferred back to an 
atom initially in the ground state, lg), passing along beam A. More general output states can 
be obtained by adjusting the atom-cavity interactions and adding another Ramsey zone, R.(()) , 

which introduces a phase shift. (Adapted from refs. 4 and 15.) FIGURE 1. 

are intrinsically nonclassical, because they transform 
Boolean states into superpositions. 

The XOR operation illustrates why classical data 
can be cloned but quantum superpositions cannot. If 
the XOR is applied to Boolean data in which the second 
qubit is 0 and the first is 0 or 1, the first qubit is 
unchanged while the second becomes a copy of it: 
UxoRix, O) = lx, x) for x = 0 or 1. In terms of the standard 
polarizations, UxoRI -, - ) = 1-, - )and UxoRil, - )=I t, t ). 
One might naively suppose that the XOR operation could 
also be used to copy superpositions of the two Boolean 
states, such as 1/), so that UxoRI/, -) would yield 
I/, /), but this is not so. The unitarity of quantum 
evolution demands that a superposition of input states 
evolves to a corresponding superposition of outputs. Thus 
UxoRI/ , -)=(1-, -)+It, t )) /..f2, an entangled state in 
which neither output qubit by itself has definite polarization. 

More complicated quantum information processing 
can be analyzed into elementary steps using diagrams 
similar to those used in classical computer logic. These 
diagrams consist of logic blocks or gates, where the proc­
essing is performed, and wires, which carry information 
forward from one stage of processing to the next. In 
classical processing, the wires carry bits and the gates 
perform deterministic (or occasionally stochastic) Boolean 
operations on them. In quantum information processing, 
the wires carry qubits and the gates perform unitary 
operations. (It has recently been shown that one- and 
two-qubit gates are sufficient to generate all such opera­
tions.2-4) Our diagrams will also include measurement 
steps, which generate classical outputs from quantum 
inputs, and preparation steps, in which a classical input 
specifies which of several unitary transformations is to be 
applied. Despite the concrete-sounding names, these 
gates and wires are to be thought of abstractly, as repre­
senting whatever physical apparatus is used to bring the 
qubits into controlled interaction, and to store and trans­
port them between interactions. Figure 1 shows a physi­
cal realization of a two-qubit gate using high-finesse mi­
crowave cavities and two-state atoms. 

Quantum data compression 
Classical information theory characterizes the channel 
resources required for the transmission of classical data, 
asymptotically reliable transmission being possible if and 
only if the channel capacity exceeds the source entropy. 
There is also a well-developed theory of the optimum use 
of quantum channels to carry classical information. These 
notions have recently been further generalized by consid­
ering the classical and quantum channel resources needed 
to deliver quantum states accurately from a source to a 
receiver. In general, a quantum information source may 
be defined as a set of quantum states {1p;} emitted with 
respective probabilities {pi}. If the tf;1 are mutually or­
thogonal, no quantum channel resources are needed; all 
the information can be extracted by a measurement at 
the source, transmitted as classical information to the 
receiver, and used there to reconstruct the source state 
exactly. On the other hand, if the source states are 
nonorthogonal, for example 1-) and 1/), they cannot be 
measured without being disturbed, and whatever proce­
dure is used to transmit them faithfully to the receiver 
cannot also leave a faithful copy behind with the sender, 
because that would violate the no-cloning theorem. In­
deed, since nonorthogonal source states cannot be distin­
guished reliably even by the sender, one may wonder what 
it means to transmit them reliably. Benjamin Schu­
macher1·5 defined the fidelity of quantum transmission as 
the expectation of l(tf;;lt/;/)1 2 over channel inputs t/Ji and 
outputs tf;/. Fidelity is the expectation for the channel 
output to pass a test for being the same as the input, 
conducted by someone who knows what the input was. 

Because of the fragility of nonorthogonal states, it 
might appear that the only way to transmit them faithfully 
is not to interact with them at all, but merely to let them 
pass undisturbed from sender to receiver. In this case, 
no quantum data compression would be possible. Schu­
macher has shown,1·5 however, that quantum data-proc­
essing operations can be used to compress signals from 
any redundant quantum source and later regenerate them 
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QUANTUM DATA COMPRESSION. A unitary operation UN on N unknown qubits from a 
known nonorthogonal source ensemble (here photons of random [-) or [ /) polarization) 
concentrates most of the quantum information into some of the qubits, allowing others to be 
safely discarded. At the receiving end of the channel, the discarded qubits are replaced by 
standard ones (here, 22.5° polarized photons corresponding to the major eigenvector of the 
source's density matrix) and the unitary operation is undone, resulting in a very good, but 
slightly entangled, approximation to the original input state. (The blue tints indicate 
entanglement.) FIGURE 2 

from the compressed representation with asymptotically 
perfect fidelity. The means of doing so is shown schemati­
cally in figure 2, for the source S emitting [-) and [ / ) 
with equal probabilities. 

This source has a peculiarly quantum kind of redun­
dancy consisting not in unequal probabilities of its signals, 
nor in correlations between signals emitted at different 
times, but rather in the fact that the two signals are 
nonorthogonal, and thus not wholly distinct as physical 
states. The redundancy of this source is reflected in its 
density matrix, p = Yz ([-)(-[ + [/)(/[),which has two un­
equal eigenvalues, Amax = cos2('7T I 8) ~ 0.854, and A min= 
sin2(1rl8) ~ 0.146, with respective eigenvectors in the 22.5° 
and 112.5° polarization directions, giving the mixture a von 
Neumann entropy H(p) = -Tr(p log2 p) ~ 0.601 bits per pho­
ton, or about 0.399 bits per photon less than if the two 
signal states had been orthogonal. 'Ib exploit the source's 
redundancy, a block of N photons from the source is 
unitarily transformed (by UN) into a basis of products of 
eigenvectors of p, arranged in order of decreasing eigen­
value from A;';;ax to A~, and approximately [1 - H(p )]N of 
the highest order photons are discarded. These photons 
contain little information, being polarized in the 22.5° 
direction with high probability. By contrast, the low-order 
photons, which are retained, contain almost all the infor­
mation of the original state, and would appear almost 
entirely depolarized if examined individually. 

At the receiving end of the channel, the discarded 
photons are replaced by pure 22.5° photons, and the 
unitary transformation UN is undone, resulting in an 
almost pure output state that approximates the N-photon 
input state with fidelity approaching 1 in the limit of large 
N. The technique just described works for arbitary quan­
tum sources, efficiently compressing them to a number of 
qubits approaching their von Neumann entropy with fi­
delity approaching 1 in the limit of large N. Of course, 
faithful transmission of nonorthogonal states requires that 
the encoding and decoding be performed in a coherent 
quantum fashion, by an apparatus that retains no infor­
mation about which states have passed through. 

Teleportation and superdense coding 
Quantum data compression optimizes the use of one chan­
nel resource-transmitted qubits-but it is possible to 
transmit an unknown quantum state with perfect fidelity 
without sending any qubits at all, if the sender and 
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receiver have at their disposal two other resources: 
I> the ability to send classical messages, and 
I> entanglement, in the form of maximally entangled EPR 
pairs of particles previously shared between sender and 
receiver. 

In this process, known as quantum teleportation,6 

the sending of two classical message bits and the using 
up of the entanglement in one separated pair of EPR 
particles suffices to convey the state of an arbitary qubit 
from sender to receiver. (See figure 3.) In more detail, 
the sender (Alice) takes particle 1 whose unknown state 
g is to be teleported, and performs a joint measurement 
on it and particle 2, one member of the EPR pair. 
Particles 2 and 3 have been prepared beforehand in a 
maximally entangled EPR state, such as <1>23 = 
([-)zl-)3 + I I )2[ I )3) I --12. The measurement on particles 
1 and 2 projects them onto the so-called Bell basis, 
consisting of <l>y2 = ([-hi-)2 ± I I )1[ I )z) I --12 and 'l'yz = 
( [- ) 1[ 1)2 ± [I hi-)2) 1--12, four orthogonal maximally entan­
gled states. The Bell measurement generates two bits of 
classical data, and leaves particle 3, now held by Bob, in 
a residual state which can be unitarily transformed into 
a replica of the original quantum state g, which has been 
destroyed. Bob performs this transformation by subject­
ing particle 3 to one of four unitary operations (1, crz, crx 
or cry) according to which of the four outcomes (<J:>+, <t>-, 
'!'+ or'!'-) was obtained in the Bell measurement conducted 
by Alice. Teleportation may be said to split the complete 
information in particle 1 into a classical part, carried by 
the two-bit message, and a purely quantum part, carried 
by the prior entanglement between particles 2 and 3. It 
avoids both cloning (the state g is destroyed in particle 1 
by Alice before it is re-created in particle 3 by Bob) and 
faster-than-light communication (the two-bit classical mes­
sage must arrive at Bob before the replica can be created). 

A closely related effect is superdense coding, a scheme 
devised by Stephen Wiesner.7 (See figure 3.) Here, Bob 
encodes a two-bit classical message by performing one of 
four unitary operations on one member of a previously 
shared EPR pair, thereby placing the pair as a whole into 
a corresponding one of the four Bell states. The treated 
particle is returned to Alice, who by measuring it jointly 
with the untreated particle can recover both bits of the 
classical message. Thus the full classical information 
capacity of the two particles is made available, even 
though only one is directly handled by the sender. 



If the term "ebit" is introduced for the quantum 
resource consisting of a shared pair of maximally entan­
gled two-state particles, the following reductions among 
quantum and classical channel resources hold: 

1 bit ::; 1 qubit 

1 ebit ::; 1 qubit 

1 qubit ::; 1 ebit + 2 bits 
(1) 

2 bits ::; 1 ebit + 1 qubit 

The ::; signs mean that the resource on the left can be 
implemented by consuming the resource(s) on the right, 
but not necessarily vice versa. Thus, the first line of (1) 
means that a classical bit can be transmitted given the 
ability to transmit a qubit (for example, by restricting the 
qubit to two orthogonal states). The second line means 
that an ebit of shared entanglement can be created given 
the ability to send a qubit (for example, by having one 
observer prepare an EPR pair and send half of it to the 
other observer). The third and fourth lines represent the 
more complicated resource substitutions involved in tele­
portation and superdense coding. Note that ebits are an 
undirected resource, shared symmetrically between two 
remote parties, while qubits and bits have a definite 
direction, passing from a sender to a receiver. 

Fast quantum computation 
The most exciting development in quantum information 
processing has been Peter Shor's discovery8 of quantum 
algorithms-for integer factorization and the discrete loga­
rithm-that run exponentially faster than the best known 
classical algorithms. These algorithms take classical in­
puts (such as the number to be factored) and yield classical 
outputs (the factors), but obtain their speedup by using 
quantum interference among computation paths during 
the intermediate steps. 

The obvious, direct way of trying to apply quantum 
parallelism to factor a large number N (say, a 200-digit 
number with no small factors) would be to try in parallel 
to divide it by all numbers less than N. A quantum 
computer could indeed be programmed to do this, and one 
(or a few) of the paths of the superposition would indeed 
"solve" the problem immediately; but there is no known 
way to amplify this success, on an exponentially small 
fraction of the computation paths, into a non-negligible 
probability of success for the computation as a whole. 

X 

y 

(Loosely speaking, attempts to read off the answer by 
measuring the computer's state would almost certainly 
yield one of the unsuccessful paths and hence no infor­
mation about the factors.) Instead, Shor reduced the 
problem of factoring N to another problem-finding the 
period of a periodic function-and used quantum tech­
niques to solve this latter problem. Since this is the heart 
of the new quantum algorithms, we describe it here, 
omitting the details of how it in turn leads to a solution 
of the factoring problem. 

In brief, Shor's technique for finding the period of a 
periodic function consists of evaluating the function on a 
superposition of exponentially many arguments, comput­
ing a parallel Fourier transform on the superposition, then 
sampling the Fourier power spectrum to obtain the func­
tion's period. 

In more detail (see figure 4), the quantum computer 
is prepared with two quantum registers, X and Y, each 
consisting of a string of qubits initialized to the Boolean 
value zero. The X register is used to hold arguments of 
the function f whose unknown period r is sought, and the 
Y register is used to store values of the function. The 
width w of the X register is chosen so that its number of 
possible Boolean states, Q = 2w, is comfortably greater 
than the square of the anticipated period r. The Y register 
is made sufficiently wide to store any value of the function 
f. The initial state of the two quantum registers together 
is lx, y) = IO, 0). 

In the first stage of quantum computation, the X 
register is placed into a uniform superposition of all Q 
Boolean states. This can be done by performing a 45° 
rotation on each of its w qubits individually. The resulting 
superposed state, 

1 -m-L lx, 0) 
Q X 

is shown schematically in the figure as a horizontal band 
spread out over all possible x values but having a unique 
y value, y = 0. Next, a classical reversible computation is 
performed on all elements of the superposition in parallel, 
incrementing the Y register by f of the value in the X 
register. Although this computation is classical, it must 
be performed by a quantum computer, so that the above 
superposition of inputs is coherently transformed into the 
corresponding superposition of outputs. (For more on 
reversible computation, see the article by Rolf Landauer 

QUANTUM TELEPORTATION AND SUPERDENSE CODING. 
Quantum teleportation (top) uses a two-bit classical message 
(solid lines) and an entangled EPR pair of particles to 
disembody an unknown quantum state g from one particle 
and reincarnate it in another. Quantum superdense coding 
(bottom) reliably transmits two classical bits (x,y) through an 
entangled pair of particles, even though only one member of 
the pair is handled by the sender. FIGURE 3 
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SHOR'S SUPERFAST QUANTUM FOURIER SAMPLING uses 

quantum interference to measure the period r of a periodic 

function f The period may be exponentially greater than the 

number of qubits involved in the computation. a: The 

computer starts in the state lx, y) = IO, 0). b: The x·register is 

put into a superposition of all possible values from 1 to 

Q = 2w. c: The value /(x) is computed in they register 

simultaneously for all x values. d: A Fourier transform of the 

x register is performed. e: Measuring x yields a result k from 

which the period r can be deduced. FIGURE 4 

in PHYSICS TODAY, May 1991, page 23.) The resulting 

output state is 

1 
{Q I, ix, f(x)) 
Q X 

and the schematic xy plane contains a graph of the periodic 

function f. (In the case of factoring, the function will not 

be continuous like the function in the figure.) Since the 

unknown period r is less than .,JQ, the graph includes at 

least ..fQ complete periods. The graph ends with an 

incomplete period, except in the unlikely event that Q is 

exactly divisible by r. 
In the next stage, a discrete Fourier transform is 
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performed on the X register, resulting in the state 

~I, e2"ik x/ Q lk, f (x) ) 

x, k 

This superposition includes terms with various y values, 

but the x values are strongly concentrated near multiples 

of the fundamental frequency Ql r. Finally, a single sam­

ple point in this Fourier power spectrum is obtained by 

classically measuring the state in the X register. The 

result, k , is an integer very close to some multiple of the 

fundamental frequency Q I r, typically so close that the 

desired r can be found unambiguously as the numerator 

of the closest rational approximation to Q I k with a de­

nominator less than .JQ . 
Each of the steps before the final measurement is 

unitary, and each can be economically implemented as an 

appropriate sequence of one- and two-qubit quantum op­

erations of the kind considered earlier. In particular, the 

Fourier transform 

~ I, ik, y ) e2"ikx / Q (x, Yl 
x, k 

is a transformation between orthonormal bases, imple­

mentable9 by O(w2) XORs and rotations by angles of the 

form 7T, 7T I 2, 7T I4, 7T I8 . ... 
The use of Fourier sampling to find an unknown 

period is analogous to the use of x-ray or neutron diffrac­

tion to measure the lattice constant of a crystal. This 

suggests that factoring might be reduced to an experiment 

in classical wave optics, which in turn could be simulated 

on an ordinary nonquantum computer. The critical dif­

ference is that a crystal's periodicity exists in real space, 

and therefore cannot be exponentially larger than the 

interatomic spacing or the wavelength of radiation used 

to measure the period. In quantum factoring, the period 

can be found efficiently even though it is exponentially 

large and exists only in an abstract space. If translated 

into a diffraction problem in real space, the factoring of 

a 200-digit number would correspond to meas11ring a 

lattice constant _of about 10200 A by diffracting 1-A radia­

tion off a 10400-A-wide crystal, an experiment that can be 

neither performed nor simulated efficiently. 
So far, the only other natural problem for which a 

dramatic quantum speedup has been found is the discrete 

logarithm problem (given integers b, m andy, find x such 

that bx mod m = y ), a problem that, like factoring, can be 

reduced to period-finding. No fast quantum algorithms 

have been found for other famous search or optimization 

problems, such as the traveling salesman problem and the 

large class (called NP-complete) of problems equivalent to 

it. These problems, like the naive approach to factoring, 

can be cast as searches for a successful solution among 

exponentially many candidates; but unlike factoring, no 



DISTILLING GOOD EPR PAIRS from mostly 
good ones. Top: Corresponding members of 
two EPR pairs of the <I>+ type can be locally 

XORed together without disturbing the state of 
either pair. The symbol for the XOR gate 

indicates that for Boolean states (Os and l s) the 
upper particle's state is unaltered while the 

lower particle is output in the XOR (Ell) of the 
two input states. For superpositions the XOR 

can alter the state of both particles. 
Bottom: A "bad" (that is, random, non-EPR) 

pair contaminates the good pairs it interacts 
with, permitting bad pairs to be found 

efficiently without sacrificing all the good pairs. 
(For greater visual clarity, the qubits are denoted 

here by straight rather than wavy lines). 
FIGURE 5 
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way is known of transforming them into problems with a 
periodic structure amenable to detection by quantum 
interference. 

Error, decoherence and eavesdropping 
Both classical and quantum information are subject to 
errors during storage, transmission and processing. In a 
classical setting, techniques such as error-correcting codes 
and dissipative signal restoration (for example, circuits 
that restore distorted voltages toward their nominal digi­
tal values) have proved so effective at preventing or 
correcting errors that errors are no longer a major prob­
lem. The practical limits of classical digital computation 
are set by time and memory requirements, not by doubts 
about whether the results will be correct. 

In quantum computers, as with classical analog com­
puters, the space of legitimate states is continuous. 
There is thus no automatic way of detecting or correcting 
errors caused, for example, by slightly wrong initial con­
ditions or slightly wrong parameters of one of the unitary 
transformations. 

A far more serious and distinctively quantum kind of 
error is decoherence, the randomization of a quantum 
system's state that occurs when the system becomes en­
tangled with its environment. (See the article by Wojciech 
Zurek, PHYSICS TODAY, October 1991, page 36.) Such 
entanglement is inevitable whenever 
I> a quantum computer attempts to reliably store or 
process nonorthogonal states, and 
I> the interaction with the environment allows some in­
formation about the computer's state to leak out into the 
environment. 
If the environmental variables are then discarded or 
ignored, the computer's state will appear to have irre­
versibly decayed from its initial pure quantum superpo­
sition into a probabilistic classical mixture. Therefore, if 
quantum computations are to be performed in the labo-

ratory, one must find or build systems that decohere slowly 
compared to the time required to do the computation. 
This will not be easy, as decoherence occurs on a time 
scale corresponding to the time required for significant 
information, even one bit, about the original quantum 
state to leak out into the environment. Most macroscopic 
systems decohere so rapidly as to make quantum inter­
ference effects practically unobservable. 

The fragility of quantum information toward external 
interactions, which impedes the construction of quantum 
computers, is put to postive use in the art of quantum 
cryptography. The sender and receiver of a classical 
message as a rule cannot know whether it has been read 
en route by a third party. By contrast, with quantum 
information, eavesdropping and noise are not separate 
processes, but rather two consequences of entanglement 
between outside systems and the quantum data en route 
from sender to receiver. The technique of quantum cryp­
tographic key distribution, 10 now in use over fiber-optic 
channels several kilometers long, 11 depends on having the 
sender and receiver engage in a circumspect public dis­
cussion of quantum data sent through an insecure quan­
tum channel connecting them. The aim of the public 
discussion is to assess the noisiness of the quantum 
channel, infer from that an upper bound on the potential 
amount of eavesdropping, and, if this upper bound is not 
too great, use classical mathematical techniques to distill 
a body of certifiably secret shared classical data (a cryp­
tographic key) from the sent and received versions of the 
quantum transmission. In other words, the technique 
uses classical post-processing to distill good (and secret) 
classical data from slightly noisy (and therefore potentially 
slightly nonsecret) quantum data. (See PHYSICS TODAY, 

November 1992, page 21.) 
Similar techniques, 12 involving quantum post-process­

ing of the quantum data, can be used to distill good 
entanglement from slightly noisy entanglement. (See fig-
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ure 5. ) Note first that if the quantum XOR operation is 
applied to respective members of two perfectly entangled 
q>+ pairs, the output is again two perfect <P+ pairs. But 
if either of the input <P+ states is replaced by a random 
unentangled pair of particles, the other is partly random­
ized, so that neither output pair remains a perfect <P+. 
The bottom part of figure 5 suggests how repeated XORs 
could be used to test a large batch of good <P+ pairs for 
the presence of a few bad ones. One of the pairs (say, 
El) would be selected as target and the others successively 
XORed into it, the XORs as before being applied locally 
to corresponding members of each pair. If one of these 
pairs (say, E3) were bad, then El would have a significant 
chance of being spoiled. Therefore, if the two spins of the 
target pair were measured and found to exhibit correct 
<P+ correlations (say, giving identical outcomes for a 1- )­
vs-11) measurement), our confidence in the correctness of the 
remaining pairs E2, E3 and so on would be somewhat 
increased, even though the target pair El itself had been 
sacrificed. By repeated, systematic tests of this sort, a small 
yield of arbitrarily good EPR pairs could be distilled when 
as many as % the original pairs have been depolarized. 

An important achievement of classical information 
theory is the ability to transmit classical data reliably 
through a noisy channel. There is no evident direct way 
of doing the quantum analog of this, in other words of 
encoding an unknown quantum state so as to allow it to 
be recovered faithfully after transmission through a noisy 
quantum channel. (Schumacher's quantum data compres­
sion theorem, it will be recalled, deals with efficient 
quantum data transmission through a noiseless channel.) 
Nevertheless, the same goal can be achieved indirectly;12 

by combining teleportation with the entanglement purifi­
cation procedure sketched above. Suppose Alice has an 
unknown quantum state g that she wishes to send to Bob, 
but only a noisy quantum channel to send it through. 
Instead of sending g directly; she uses the noisy channel 
to share a number of EPR pairs with Bob, then purifies 
the resulting noisy EPR pairs to obtain a smaller number 
of good ones. Finally, she uses one of the good EPR pairs, 
along with a classical message, to teleport the unknown 
state to Bob. 

Experimental possibilities 
Except for quantum cryptography, the above feats of quan­
tum information processing require controlled, coherent 
interactions among quantum information carriers at some 
time between their initial preparation and final measure­
ment. Quantum factoring is particularly demanding, re­
quiring many thousands of coherent two-qubit operations 
to factor numbers that would not also be easy to factor 
by classical methods. The ability to perform long se­
quences of such operations, or even to store quantum data 
accurately, is, as noted above, threatened by errors, and 
especially by decoherence. William Unruh13 has calcu­
lated rates of decoherence due to interactions with a 
thermal radiation field, and has estimated that the joint 
state of n quantum particles decoheres n times faster than 
that of a single particle, even when the particles are 
merely being used to store quantum data without proc­
essing it. Landauer14 has noted some other obstacles to 
coherent quantum computation. Nevertheless, fairly com­
plex manipulations of quantum states are routinely per­
formed in experimental systems such as nuclear magnetic 
resonance and spectroscopy of atoms and ions, although 
not for explicit information processing purposes. 

Among the more promising systems proposed for an 
actual quantum computer are excited electronic states of 
neutral atoms interacting with high-finesse microwave15•4 

or optical16 cavities, nuclear spins2 and trapped ionsP 
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The goal in each case is to obtain a favorable ratio of 
decoherence time to switching time, that is, the time 
required to perform elementary unitary manipulations of 
the quantum data. In many of these systems, the ratio 
of decoherence time to switching time for a single infor­
mation carrier is quite respectable. For example, nuclear 
spins can be manipulated in milliseconds, yet retain their 
phase coherence for minutes under favorable conditions. 
Perhaps the most difficult challenge facing designers of 
quantum information processing experiments is to achieve 
a strong, controlled interaction between quantum infor­
mation carriers, for example between two nuclear spins 
brought into proximity by an atomic force microscope, or 
two atoms coupled through photon modes of a high-finesse 
cavity, while keeping these same carriers well enough 
isolated from their macroscopic environment to avoid rapid 
decoherence. 

Recent rapid progress in laser cooling and thermal 
isolation, reflected for example in the achievement of a 
gaseous Bose-Einstein condensate (see PHYSICS TODAY, 

August, page 17), suggests that it will indeed be feasible 
to maintain such isolation long enough to perform at least 
a few steps of coherent quantum processing on at least a 
few qubits of quantum information. Even if such mod­
est-sized quantum computations become feasible, it ap­
pears likely that error will remain a serious problem 
limiting the scale of computations that can be performed, 
not a problem that can be definitively solved for all 
practical purposes, as has been the case for classical 
computers. 

I thank Gilles Brassard, Rolf Landauer, Artur Ekert, Sandu 
Popescu, Benjamin Schumacher, John Smolin, and especially 
David DiVincenzo and William K. Wootters for exciting collabora­
tions, discussions of their own work and helpful advice. 
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