QUANTUM INFORMATION
AND COMPUTATION

F1heoretical computer sci-

. entists, like their coun-
terparts in physics, suffer
and benefit from a high level
of intellectual machismo.
They believe they have some
of the biggest brains around,
which they need to think
about some of the hardest
problems. Like mathemati-
cians, they prove theorems
and doubt the seriousness of
those who don’t. Lately,
however, theoretical com-
puter scientists have sought the help of physicists in
understanding quantum mechanics, a hard part of physics
which they now believe has great significance for their
own field.

Until recently, classical notions have sufficed. A con-
ventional digital computer operates with bits—the Boolean
states 0 and l—and after each computation step the
computer has a definite, exactly measurable state. Simi-
larly, classical information theory considers transmissions
conveying classical states, such as sequences of characters,
each character having its own frequency of occurrence in
a given context. In contrast to this, quantum information
processing involves quantum states. The state of a quan-
tum computer is described by a wavefunction or a state
in a Hilbert space, and quantum information theory con-
siders the transmission of quantum states from source to
receiver.

Fundamental properties of quantum systems now
seen to be relevant to information processing include:
> Superposition: A quantum computer can exist in an
arbitrary complex linear combination of classical Boolean
states, which evolve in parallel according to a unitary
transformation.
> Interference: Parallel computation paths in the super-
position, like paths of a particle through an interferometer,
can reinforce or cancel one another, depending on their
relative phase.
> Entanglement: Some definite states of 2 complete quan-
tum system do not correspond to definite states of its parts.
> Nonclonability and uncertainty: An unknown quantum
state cannot be accurately copied (cloned) nor can it be
observed without being disturbed.

Quantum information processing exhibits some star-
tling differences from the classical case. States can be
transmitted by “quantum teleportation,” a process that
disembodies the exact quantum state of a particle into
classical data and Einstein—Podolsky—Rosen (EPR) corre-
lations, and then uses these ingredients to reincarnate
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A new quantum theory of
communication and computation is
emerging, in which the stuff transmitted
or processed is not classical information,
but arbitrary superpositions of
quantum states.

Charles H. Bennett

the state in another particle
which has never been any-
where near the first particle.
Cryptographic keys can be
distributed by quantum
means, with near-perfect se-
curity against undetected
eavesdropping. Quantum
computers, meanwhile, are
theoretically capable of solv-
ing certain problems, such as
the factoring of large num-
bers, in dramatically fewer
steps than any known algo-
rithm on a classical computer. (Cryptography schemes in
use throughout the world depend on the difficulty of
factoring for their security.)

Qubits

To illustrate the new results, it is sufficient to consider
operations on and pairwise interactions between quantum
systems of the simplest sort: two-state systems or “qu-
bits.” Examples include the polarization of a photon or
a spin-% particle, the relative phase and intensity of a
single photon in two arms of an interferometer, or an
arbitrary superposition of two atomic states. The classical
Boolean states, 0 and 1, can be represented by a fixed
pair of orthogonal states of the qubit (say, |0)=][-),
|1) = |1)), but a qubit can also exist in superpositions such
as |y = (|0 + [1))/¥2 and |~) = (|0) - [1))/V2. Moreover, a
pair of qubits can exist in entangled states such as the
singlet state ¥~ = (|01) —[10))/V2, in which neither qubit
by itself has a definite state. More generally, a string of
n qubits can exist in any state of the form

11..1

V=Y el

x=00...0

where the c, are complex numbers and the index x ranges
over all 2" classical values of an n-bit string. Quantum
data processing consists of applying a sequence of unitary
transformations to the state vector V.

Some quantum logic operations are simply extensions
of classical Boolean operations to superpositions of input
states, for example NOT, represented by the unitary matrix

5 (01
7110
which flips the Boolean state of a single bit, and the
controlled-NOT or exclusive-OR (XOR), which flips the

second of two bits if and only if the first is 1. Others, such
as the unitary operation represented by the 2 x 2 matrix

1 (1-1
V2|11
which corresponds to a 45° rotation of the polarization,
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UNIVERSAL QUANTUM LOGIC GATE, as realized with high-finesse microwave cavities and
two-state atoms. All possible quantum computations can be built up with a network of such
gates. Passing atom |4) through the empty cavity on resonance transfers the atom’s state,

|4) = ¢;|g) + cyle), to the photon occupancy ¢;|0) + ¢|1) of the cavity. Passing atom |B) through
the Ramsey zones (R, R™?) and the cavity (off resonance) changes its state to the exclusive-OR
(XOR) of the initial states |4)®|B). The original state |4) can now be transferred back to an
atom initially in the ground state, |g), passing along beam A. More general output states can
be obtained by adjusting the atom-cavity interactions and adding another Ramsey zone, R,(6),
which introduces a phase shift. (Adapted from refs. 4 and 15.) FIGURE 1.

are intrinsically nonclassical, because they transform
Boolean states into superpositions.

The XOR operation illustrates why classical data
can be cloned but quantum superpositions cannot. If
the XOR is applied to Boolean data in which the second
qubit is 0 and the first is 0 or 1, the first qubit is
unchanged while the second becomes a copy of it:
Usxogl%, 0 =[x, x) for x=0 or 1. In terms of the standard
polarizations, UXOR|H? H) = 1‘_'7 H> and UXORII: H) = |1: I)
One might naively suppose that the XOR operation could
also be used to copy superpositions of the two Boolean
states, such as |7), so that Uxegl”, <) would yield
|~, ), but this is not so. The unitarity of quantum
evolution demands that a superposition of input states
evolves to a corresponding superposition of outputs. Thus
Uxorl<, <)==, =)+, 1))/¥2, an entangled state in
which neither output qubit by itself has definite polarization.

More complicated quantum information processing
can be analyzed into elementary steps using diagrams
similar to those used in classical computer logic. These
diagrams consist of logic blocks or gates, where the proc-
essing is performed, and wires, which carry information
forward from one stage of processing to the next. In
classical processing, the wires carry bits and the gates
perform deterministic (or occasionally stochastic) Boolean
operations on them. In quantum information processing,
the wires carry qubits and the gates perform unmitary
operations. (It has recently been shown that one- and
two-qubit gates are sufficient to generate all such opera-
tions.2#4) Our diagrams will also include measurement
steps, which generate classical outputs from quantum
inputs, and preparation steps, in which a classical input
specifies which of several unitary transformations is to be
applied. Despite the concrete-sounding names, these
gates and wires are to be thought of abstractly, as repre-
senting whatever physical apparatus is used to bring the
qubits into controlled interaction, and to store and trans-
port them between interactions. Figure 1 shows a physi-
cal realization of a two-qubit gate using high-finesse mi-
crowave cavities and two-state atoms.

Quantum data compression

Classical information theory characterizes the channel
resources required for the transmission of classical data,
asymptotically reliable transmission being possible if and
only if the channel capacity exceeds the source entropy.
There is also a well-developed theory of the optimum use
of quantum channels to carry classical information. These
notions have recently been further generalized by consid-
ering the classical and quantum channel resources needed
to deliver quantum states accurately from a source to a
receiver. In general, a quantum information source may
be defined as a set of quantum states {¢;} emitted with
respective probabilities {p,}. If the ¢; are mutually or-
thogonal, no quantum channel resources are needed; all
the information can be extracted by a measurement at
the source, transmitted as classical information to the
receiver, and used there to reconstruct the source state
exactly. On the other hand, if the source states are
nonorthogonal, for example |~) and |/), they cannot be
measured without being disturbed, and whatever proce-
dure is used to transmit them faithfully to the receiver
cannot also leave a faithful copy behind with the sender,
because that would violate the no-cloning theorem. In-
deed, since nonorthogonal source states cannot be distin-
guished reliably even by the sender, one may wonder what
it means to transmit them reliably. Benjamin Schu-
macher® defined the fidelity of quantum transmission as
the expectation of [(y;li;)|* over channel inputs i; and
outputs ;. Fidelity is the expectation for the channel
output to pass a test for being the same as the input,
conducted by someone who knows what the input was.
Because of the fragility of nonorthogonal states, it
might appear that the only way to transmit them faithfully
is not to interact with them at all, but merely to let them
pass undisturbed from sender to receiver. In this case,
no quantum data compression would be possible. Schu-
macher has shown,}® however, that quantum data-proc-
essing operations can be used to compress signals from
any redundant quantum source and later regenerate them
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QUANTUM DATA COMPRESSION. A unitary operation Uy on N unknown qubits from a
known nonorthogonal source ensemble (here photons of random |+<) or |#) polarization)
concentrates most of the quantum information into some of the qubits, allowing others to be
safely discarded. At the receiving end of the channel, the discarded qubits are replaced by
standard ones (here, 22.5° polarized photons corresponding to the major eigenvector of the
source’s density matrix) and the unitary operation is undone, resulting in a very good, but
slightly entangled, approximation to the original input state. (The blue tints indicate

entanglement.) FIGURE 2

from the compressed representation with asymptotically
perfect fidelity. The means of doing so is shown schemati-
cally in figure 2, for the source S emitting |<) and |/)
with equal probabilities.

This source has a peculiarly quantum kind of redun-
dancy consisting not in unequal probabilities of its signals,
nor in correlations between signals emitted at different
times, but rather in the fact that the two signals are
nonorthogonal, and thus not wholly distinct as physical
states. The redundancy of this source is reflected in its
density matrix, p = ¥% (|« )}«<| +|<)~|), which has two un-
equal eigenvalues, Ap,,=cos’(7w/8)=~0.854, and A,;, =
sin?(7r/8) = 0.146, with respective eigenvectors in the 22.5°
and 112.5° polarization directions, giving the mixture a von
Neumann entropy H(p) = —Tr(p logy p) = 0.601 bits per pho-
ton, or about 0.399 bits per photon less than if the two
signal states had been orthogonal. To exploit the source’s
redundancy, a block of N photons from the source is
unitarily transformed (by Uy) into a basis of products of
eigenvectors of p, arranged in order of decreasing eigen-
value from AY,. to AV, and approximately [1 — H(p)IN of
the highest order photons are discarded. These photons
contain little information, being polarized in the 22.5°
direction with high probability. By contrast, the low-order
photons, which are retained, contain almost all the infor-
mation of the original state, and would appear almost
entirely depolarized if examined individually.

At the receiving end of the channel, the discarded
photons are replaced by pure 22.5° photons, and the
unitary transformation Uy is undone, resulting in an
almost pure output state that approximates the N-photon
input state with fidelity approaching 1 in the limit of large
N. The technique just described works for arbitary quan-
tum sources, efficiently compressing them to a number of
qubits approaching their von Neumann entropy with fi-
delity approaching 1 in the limit of large N. Of course,
faithful transmission of nonorthogonal states requires that
the encoding and decoding be performed in a coherent
quantum fashion, by an apparatus that retains no infor-
mation about which states have passed through.

Teleportation and superdense coding

Quantum data compression optimizes the use of one chan-
nel resource—transmitted qubits—but it is possible to
transmit an unknown quantum state with perfect fidelity
without sending any qubits at all, if the sender and
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receiver have at their disposal two other resources:

D> the ability to send classical messages, and

D> entanglement, in the form of maximally entangled EPR
pairs of particles previously shared between sender and
receiver.

In this process, known as quantum teleportation,®
the sending of two classical message bits and the using
up of the entanglement in one separated pair of EPR
particles suffices to convey the state of an arbitary qubit
from sender to receiver. (See figure 3.) In more detail,
the sender (Alice) takes particle 1 whose unknown state
¢ is to be teleported, and performs a joint measurement
on it and particle 2, one member of the EPR pair.
Particles 2 and 3 have been prepared beforehand in a
maximally entangled EPR state, such as ®j;=
(I=)gl =)+ 11)9]1)3) /¥2. The measurement on particles
1 and 2 projects them onto the so-called Bell basis,
consisting of ®% = (|=)|<)et[)[1)e)/V2 and Wi, =
(I=nIt)g £ 18)1]=)q) /V2, four orthogonal maximally entan-
gled states. The Bell measurement generates two bits of
classical data, and leaves particle 3, now held by Bob, in
a residual state which can be unitarily transformed into
a replica of the original quantum state & which has been
destroyed. Bob performs this transformation by subject-
ing particle 3 to one of four unitary operations (1, o,, o,
or o,) according to which of the four outcomes (d*, @,
¥+ or ¥-) was obtained in the Bell measurement conducted
by Alice. Teleportation may be said to split the complete
information in particle 1 into a classical part, carried by
the two-bit message, and a purely quantum part, carried
by the prior entanglement between particles 2 and 3. It
avoids both cloning (the state ¢ is destroyed in particle 1
by Alice before it is re-created in particle 3 by Bob) and
faster-than-light communication (the two-bit classical mes-
sage must arrive at Bob before the replica can be created).

A closely related effect is superdense coding, a scheme
devised by Stephen Wiesner.” (See figure 3.) Here, Bob
encodes a two-bit classical message by performing one of
four unitary operations on one member of a previously
shared EPR pair, thereby placing the pair as a whole into
a corresponding one of the four Bell states. The treated
particle is returned to Alice, who by measuring it jointly
with the untreated particle can recover both bits of the
classical message. Thus the full classical information
capacity of the two particles is made available, even
though only one is directly handled by the sender.



If the term “ebit” is introduced for the quantum
resource consisting of a shared pair of maximally entan-
gled two-state particles, the following reductions among
quantum and classical channel resources hold:

1 bit < 1 qubit
1 ebit < 1 qubit
1 qubit < 1 ebit + 2 bits
2 bits < 1 ebit+ 1 qubit

The < signs mean that the resource on the left can be
implemented by consuming the resource(s) on the right,
but not necessarily vice versa. Thus, the first line of (1)
means that a classical bit can be transmitted given the
ability to transmit a qubit (for example, by restricting the
qubit to two orthogonal states). The second line means
that an ebit of shared entanglement can be created given
the ability to send a qubit (for example, by having one
observer prepare an EPR pair and send half of it to the
other observer). The third and fourth lines represent the
more complicated resource substitutions involved in tele-
portation and superdense coding. Note that ebits are an
undirected resource, shared symmetrically between two
remote parties, while qubits and bits have a definite
direction, passing from a sender to a receiver.
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Fast quantum computation

The most exciting development in quantum information
processing has been Peter Shor’s discovery® of quantum
algorithms—for integer factorization and the discrete loga-
rithm—that run exponentially faster than the best known
classical algorithms. These algorithms take classical in-
puts (such as the number to be factored) and yield classical
outputs (the factors), but obtain their speedup by using
quantum interference among computation paths during
the intermediate steps.

The obvious, direct way of trying to apply quantum
parallelism to factor a large number N (say, a 200-digit
number with no small factors) would be to try in parallel
to divide it by all numbers less than VN. A quantum
computer could indeed be programmed to do this, and one
(or a few) of the paths of the superposition would indeed
“solve” the problem immediately; but there is no known
way to amplify this success, on an exponentially small
fraction of the computation paths, into a non-negligible
probability of success for the computation as a whole.
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(Loosely speaking, attempts to read off the answer by
measuring the computer’s state would almost certainly
yield one of the unsuccessful paths and hence no infor-
mation about the factors.) Instead, Shor reduced the
problem of factoring N to another problem—finding the
period of a periodic function—and used quantum tech-
niques to solve this latter problem. Since this is the heart
of the new quantum algorithms, we describe it here,
omitting the details of how it in turn leads to a solution
of the factoring problem.

In brief, Shor’s technique for finding the period of a
periodic function consists of evaluating the function on a
superposition of exponentially many arguments, comput-
ing a parallel Fourier transform on the superposition, then
sampling the Fourier power spectrum to obtain the func-
tion’s period.

In more detail (see figure 4), the quantum computer
is prepared with two quantum registers, X and Y, each
consisting of a string of qubits initialized to the Boolean
value zero. The X register is used to hold arguments of
the function f whose unknown period r is sought, and the
Y register is used to store values of the function. The
width w of the X register is chosen so that its number of
possible Boolean states, @ = 2%, is comfortably greater
than the square of the anticipated period r. The Y register
is made sufficiently wide to store any value of the function
/. The initial state of the two quantum registers together
is |x, ) =10, 0).

In the first stage of quantum computation, the X
register is placed into a uniform superposition of all @
Boolean states. This can be done by performing a 45°
rotation on each of its w qubits individually. The resulting
superposed state,

1
\@%!x, 0)

is shown schematically in the figure as a horizontal band
spread out over all possible x values but having a unique
y value, y = 0. Next, a classical reversible computation is
performed on all elements of the superposition in parallel,
incrementing the Y register by f of the value in the X
register. Although this computation is classical, it must
be performed by a quantum computer, so that the above
superposition of inputs is coherently transformed into the
corresponding superposition of outputs. (For more on
reversible computation, see the article by Rolf Landauer

QUANTUM TELEPORTATION AND SUPERDENSE CODING.
Quantum teleportation (top) uses a two-bit classical message
(solid lines) and an entangled EPR pair of particles to
disembody an unknown quantum state ¢ from one particle
and reincarnate it in another. Quantum superdense coding
(bottom) reliably transmits two classical bits (x,y) through an
entangled pair of particles, even though only one member of
the pair is handled by the sender. FIGURE 3
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SHOR’S SUPERFAST QUANTUM FOURIER SAMPLING uses
quantum interference to measure the period 7 of a periodic
function £, The period may be exponentially greater than the
number of qubits involved in the computation. a: The
computer starts in the state Ix, ) =10, 0). b: The x-register is
put into a superposition of all possible values from 1 to
Q=2% ¢ The value flx) is computed in the y register
simultaneously for all x values. d: A Fourier transform of the
x register is performed. e: Measuring x yields a result & from
which the period 7 can be deduced. FIGURE 4

in PHYSICS TODAY, May 1991, page 23.) The resulting

output state is
%_Q T )

and the schematic xy plane contains a graph of the periodic
function £. (In the case of factoring, the function will not
be continuous like the function in the figure.) Since the
unknown period r is less than V@, the graph includes at
least V@ complete periods. The graph ends with an
incomplete period, except in the unlikely event that @ is
exactly divisible by r.

In the next stage, a discrete Fourier transform is
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performed on the X register, resulting in the state
1 .
g Z ek fla)
x, k

This superposition includes terms with various y values,
but the x values are strongly concentrated near multiples
of the fundamental frequency @/r. Finally, a single sam-
ple point in this Fourier power spectrum is obtained by
classically measuring the state in the X register. The
result, %, is an integer very close to some multiple of the
fundamental frequency Q/r, typically so close that the
desired r can be found unambiguously as the numerator
of the closest rational approximation to Q/k with a de-
nominator less than V@.

Each of the steps before the final measurement is
unitary, and each can be economically implemented as an
appropriate sequence of one- and two-qubit quantum op-
erations of the kind considered earlier. In particular, the
Fourier transform

1 .
I A ekax/Q x,
\fQ_Ek’l ) @, yl
X,
is a transformation between orthonormal bases, imple-
mentable? by Ow?) XORs and rotations by angles of the
form m, /2, w/4, w/8. ...

The use of Fourier sampling to find an unknown
period is analogous to the use of x-ray or neutron diffrac-
tion to measure the lattice constant of a crystal. This
suggests that factoring might be reduced to an experiment
in classical wave optics, which in turn could be simulated
on an ordinary nonquantum computer. The critical dif-
ference is that a crystal’s periodicity exists in real space,
and therefore cannot be exponentially larger than the
interatomic spacing or the wavelength of radiation used
to measure the period. In quantum factoring, the period
can be found efficiently even though it is exponentially
large and exists only in an abstract space. If translated
into a diffraction problem in real space, the factoring of
a 200-digit number would correspond to measuring a
lattice constant of about 10°° A by diffracting 1-A radia-
tion off a 104°_A.wide crystal, an experiment that can be
neither performed nor simulated efficiently.

So far, the only other natural problem for which a
dramatic quantum speedup has been found is the discrete
logarithm problem (given integers b, m and y, find x such
that b* mod m =y), a problem that, like factoring, can be
reduced to period-finding. No fast quantum algorithms
have been found for other famous search or optimization
problems, such as the traveling salesman problem and the
large class (called NP-complete) of problems equivalent to
it. These problems, like the naive approach to factoring,
can be cast as searches for a successful solution among
exponentially many candidates; but unlike factoring, no



DISTILLING GOOD EPR PAIRS from mostly
good ones. Top: Corresponding members of
two EPR pairs of the ®* type can be locally
XORed together without disturbing the state of
either pair. The symbol for the XOR gate
indicates that for Boolean states (Os and 1s) the E4
upper particle’s state is unaltered while the
lower particle is output in the XOR (®) of the Bad
two input states. For superpositions the XOR E2
can alter the state of both particles. o

Bottom: A “bad” (that is, random, non-EPR)
pair contaminates the good pairs it interacts
with, permitting bad pairs to be found
efficiently without sacrificing all the good pairs.
(For greater visual clarity, the qubits are denoted
here by straight rather than wavy lines).
FIGURE 5

ES

way is known of transforming them into problems with a
periodic structure amenable to detection by quantum
interference.

Error, decoherence and eavesdropping

Both classical and quantum information are subject to
errors during storage, transmission and processing. In a
classical setting, techniques such as error-correcting codes
and dissipative signal restoration (for example, circuits
that restore distorted voltages toward their nominal digi-
tal values) have proved so effective at preventing or
correcting errors that errors are no longer a major prob-
lem. The practical limits of classical digital computation
are set by time and memory requirements, not by doubts
about whether the results will be correct.

In quantum computers, as with classical analog com-
puters, the space of legitimate states is continuous.
There is thus no automatic way of detecting or correcting
errors caused, for example, by slightly wrong initial con-
ditions or slightly wrong parameters of one of the unitary
transformations.

A far more serious and distinctively quantum kind of
error is decoherence, the randomization of a quantum
system’s state that occurs when the system becomes en-
tangled with its environment. (See the article by Wojciech
Zurek, PHYSICS TODAY, October 1991, page 36.) Such
entanglement is inevitable whenever
> a quantum computer attempts to reliably store or
process nonorthogonal states, and
D> the interaction with the environment allows some in-
formation about the computer’s state to leak out into the
environment.

If the environmental variables are then discarded or
ignored, the computer’s state will appear to have irre-
versibly decayed from its initial pure quantum superpo-
sition into a probabilistic classical mixture. Therefore, if
quantum computations are to be performed in the labo-
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ratory, one must find or build systems that decohere slowly
compared to the time required to do the computation.
This will not be easy, as decoherence occurs on a time
scale corresponding to the time required for significant
information, even one bit, about the original quantum
state to leak out into the environment. Most macroscopic
systems decohere so rapidly as to make quantum inter-
ference effects practically unobservable.

The fragility of quantum information toward external
interactions, which impedes the construction of quantum
computers, is put to postive use in the art of quantum
cryptography. The sender and receiver of a classical
message as a rule cannot know whether it has been read
en route by a third party. By contrast, with quantum
information, eavesdropping and noise are not separate
processes, but rather two consequences of entanglement
between outside systems and the quantum data en route
from sender to receiver. The technique of quantum cryp-
tographic key distribution,'® now in use over fiber-optic
channels several kilometers long,'* depends on having the
sender and receiver engage in a circumspect public dis-
cussion of quantum data sent through an insecure quan-
tum channel connecting them. The aim of the public
discussion is to assess the noisiness of the quantum
channel, infer from that an upper bound on the potential
amount of eavesdropping, and, if this upper bound is not
too great, use classical mathematical techniques to distill
a body of certifiably secret shared classical data (a cryp-
tographic key) from the sent and received versions of the
quantum transmission. In other words, the technique
uses classical post-processing to distill good (and secret)
classical data from slightly noisy (and therefore potentially
slightly nonsecret) quantum data. (See PHYSICS TODAY,
November 1992, page 21.)

Similar techniques,'? involving quantum post-process-
ing of the quantum data, can be used to distill good
entanglement from slightly noisy entanglement. (See fig-
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ure 5.) Note first that if the quantum XOR operation is
applied to respective members of two perfectly entangled
®* pairs, the output is again two perfect ®* pairs. But
if either of the input ®* states is replaced by a random
unentangled pair of particles, the other is partly random-
ized, so that neither output pair remains a perfect ®*.
The bottom part of figure 5 suggests how repeated XORs
could be used to test a large batch of good ®* pairs for
the presence of a few bad ones. One of the pairs (say,
E1) would be selected as target and the others successively
XORed into it, the XORs as before being applied locally
to corresponding members of each pair. If one of these
pairs (say, E3) were bad, then E1 would have a significant
chance of being spoiled. Therefore, if the two spins of the
target pair were measured and found to exhibit correct
®* correlations (say, giving identical outcomes for a |«<)-
vs-|!) measurement), our confidence in the correctness of the
remaining pairs E2, E3 and so on would be somewhat
increased, even though the target pair E1 itself had been
sacrificed. By repeated, systematic tests of this sort, a small
yield of arbitrarily good EPR pairs could be distilled when
as many as % the original pairs have been depolarized.

An important achievement of classical information
theory is the ability to transmit classical data reliably
through a noisy channel. There is no evident direct way
of doing the quantum analog of this, in other words of
encoding an unknown quantum state so as to allow it to
be recovered faithfully after transmission through a noisy
quantum channel. (Schumacher’s quantum data compres-
sion theorem, it will be recalled, deals with efficient
quantum data transmission through a noiseless channel.)
Nevertheless, the same goal can be achieved indirectly,*?
by combining teleportation with the entanglement purifi-
cation procedure sketched above. Suppose Alice has an
unknown quantum state ¢ that she wishes to send to Bob,
but only a noisy quantum channel to send it through.
Instead of sending ¢ directly, she uses the noisy channel
to share a number of EPR pairs with Bob, then purifies
the resulting noisy EPR pairs to obtain a smaller number
of good ones. Finally, she uses one of the good EPR pairs,
along with a classical message, to teleport the unknown
state to Bob.

Experimental possibilities

Except for quantum cryptography, the above feats of quan-
tum information processing require controlled, coherent
interactions among quantum information carriers at some
time between their initial preparation and final measure-
ment. Quantum factoring is particularly demanding, re-
quiring many thousands of coherent two-qubit operations
to factor numbers that would not also be easy to factor
by classical methods. The ability to perform long se-
quences of such operations, or even to store quantum data
accurately, is, as noted above, threatened by errors, and
especially by decoherence. William Unruh®® has calcu-
lated rates of decoherence due to interactions with a
thermal radiation field, and has estimated that the joint
state of n quantum particles decoheres n times faster than
that of a single particle, even when the particles are
merely being used to store quantum data without proc-
essing it. Landauer!® has noted some other obstacles to
coherent quantum computation. Nevertheless, fairly com-
plex manipulations of quantum states are routinely per-
formed in experimental systems such as nuclear magnetic
resonance and spectroscopy of atoms and ions, although
not for explicit information processing purposes.

Among the more promising systems proposed for an
actual quantum computer are excited electronic states of
neutral atoms interacting with high-finesse microwave!®*
or optical' cavities, nuclear spins® and trapped ions."”
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The goal in each case is to obtain a favorable ratio of
decoherence time to switching time, that is, the time
required to perform elementary unitary manipulations of
the quantum data. In many of these systems, the ratio
of decoherence time to switching time for a single infor-
mation carrier is quite respectable. For example, nuclear
spins can be manipulated in milliseconds, yet retain their
phase coherence for minutes under favorable conditions.
Perhaps the most difficult challenge facing designers of
quantum information processing experiments is to achieve
a strong, controlled interaction between quantum infor-
mation carriers, for example between two nuclear spins
brought into proximity by an atomic force microscope, or
two atoms coupled through photon modes of a high-finesse
cavity, while keeping these same carriers well enough
isolated from their macroscopic environment to avoid rapid
decoherence.

Recent rapid progress in laser cooling and thermal
isolation, reflected for example in the achievement of a
gaseous Bose-Einstein condensate (see PHYSICS TODAY,
August, page 17), suggests that it will indeed be feasible
to maintain such isolation long enough to perform at least
a few steps of coherent quantum processing on at least a
few qubits of quantum information. Even if such mod-
est-sized quantum computations become feasible, it ap-
pears likely that error will remain a serious problem
limiting the scale of computations that can be performed,
not a problem that can be definitively solved for all
practical purposes, as has been the case for classical
computers.

I thank Gilles Brassard, Rolf Landauer, Artur Ekert, Sandu
Popescu, Benjamin Schumacher, John Smolin, and especially
David DiVincenzo and William K. Wootters for exciting collabora-
tions, discussions of their own work and helpful advice.
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