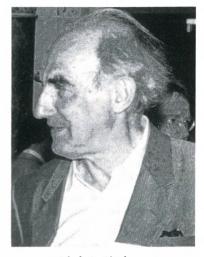

WE HEAR THAT

WOLF PRIZES GO TO GINZBURG, NAMBU AND MOSER

The Wolf Foundation has decided to split its 1994–95 Physics Prize, worth \$100 000, between **Vitaly L. Ginzburg** of the Lebedev Physical Institute in Moscow and **Yoichiro Nambu,** professor emeritus in the Enrico Fermi Institute at the University of Chicago. Although the common thread of symmetry breaking runs through the work of both men, one has made his biggest marks in condensed matter physics and astrophysics and the other in particle theory. The prize will be presented in late March.

Ginzburg is being honored for his "contributions to the theory of superconductivity and to the theory of highenergy processes in astrophysics." With Lev Landau, Ginzburg developed a widely influential phenomenological picture of superconductivity. Among other things, this picture led to the prediction by Abrikosov of two types of superconductors. As examples of Ginzburg's contributions to astrophysics the citation mentioned the ideas that galactic radio emission is synchrotron radiation, that cosmic rays are of galactic-halo origin and that neutron-star interiors are superfluid.

The foundation praises Nambu for his "contribution to elementary-particle theory, including recognition of the


Jurgen K. Moser

Yoichiro Nambu

role played by spontaneous symmetry breaking in analogy with superconductivity theory, and the discovery of color symmetry of the strong interactions." Nambu used symmetry breaking, the citation elaborates, to explain that the pion may have a low mass because it is the (nearly) massless excitation resulting from the breaking of chiral symmetry. The citation also mentions Nambu's introduction of the SU(3) symmetry of the color quantum number, which is basic to the stronginteraction theory, and his formulation of the action for a relativistic string.

The 1994-95 Wolf Prize in Mathe-

Vitaly L. Ginzburg

matics goes to Jurgen K. Moser of the Swiss Federal Institute of Technology in Zurich for "his fundamental work on stability in Hamiltonian mechanics and his profound and influential contributions to nonlinear differential equations." Moser is one of the trio who developed the Kolmogorov-Arnold-Moser theory, which describes the structure and stability of dynamical systems that are close to being completely integrable. The citation also noted his proof of the Harnack inequality in elliptic and parabolic differential equations and his work on complex, symplectic and differential geometry.

PRIZES GIVEN AT 128th MEETING OF ASA

At the fall meeting of the Acoustical Society of America, the society's 128th, held in Austin, Texas, in late November, six individuals were recognized for their contributions to acoustics.

The Silver Medal in Noise was presented to **Kenneth M. Eldred** for his "contributions to noise control and environmental acoustics and for leadership in the development of stand-

ards." Eldred runs a consulting firm, Ken Eldred Engineering, in East Boothbay, Maine.

Julian D. Maynard Jr received the Silver Medal in Physical Acoustics for his "contributions to the thermodynamics of helium II, to Anderson localization [and] to near-field acoustic holography and acoustic spectroscopy." Maynard is a Distinguished Professor in the physics department