LETTERS

way to Cambridge. Clearly, studying Greek and Latin did not qualify him to do this, but rather the trained ability and, in particular, the willingness to address societally relevant problems—a characteristic that is conspicuously missing in many of the scientifically trained graduates coming from today's research universities. ERNEST BAUER

4/94 Bethesda, Maryland

The Classical-Quantum Border: Laser Sharp?

The article by Eric J. Heller and Steven Tomsovic (July 1993, page 38) is an excellent summary of convincing results that illustrate the agreement between semiclassical approximations and quantum mechanics. However, in case this article creates the impression that there may now be a blurring of the boundaries between classical and quantum physics, it is worth noting that this is contrary to the experience of physics. The correspondence principle for the transition from classical to quantum physics still holds, as has been recently demonstrated—although perhaps not sufficiently emphasized through discussion—by experiments with high-intensity lasers.

For the interaction of electromagnetic radiation with electrons, a correspondence principle is obtained simply from the value of the radiation intensity that would cause a quiver motion of a free electron in the radiation field such that the product of the averaged elongation of the electron and the averaged momentum is h. This separation intensity is 0.5×10^4 W/cm² for neodymium glass lasers, a value that has been confirmed by experiment, as discussed below.

For laser intensities of less than this value (or multiples in the case of multiphoton processes), the emission of electrons is described completely by quantum processes, as can be seen from the observed multiple maxima of the electron emission spectra.2 For much larger intensities, classical behavior without the maxima is obtained. This classical behavior was first measured3 in 1979, but those results did not achieve a wide degree of acceptance at the time, because they were perceived to conflict with the multiple maxima observed in the quantum range. However, the exist-ence of a classical regime of behavior, without maxima, recently has been convincingly confirmed4 in experiments where the laser intensity far exceeds the value that separates the branches of the correspondence principle,1 and the existence of this regime is now well accepted.5

I present this argument only so that an otherwise most impressive article on postmodern quantum mechanics does not appear to violate the rather different two worlds of classical and quantum physics.

References

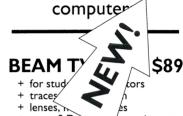
- 1. H. Hora, P. H. Handel, Adv. Electron. Electron Phys. 69, 55 (1987).
- P. Kruit, J. Kimman, H. G. Muller, M. J. van der Wiel, Phys. Rev. A 28, 248
- 3. B. W. Boreham, H. Hora, Phys. Rev. Lett. 42, 776 (1979). B. W. Boreham, B. Luther-Davies, J. Appl. Phys. 50, 253
- P. Monot, T. Auguste, L. A. Lompre, G. Mainfray, C. Manus, Phys. Rev. Lett. **70**, 1232 (1993).
- $5. \ \ J.\ H.\ Eberly, in \textit{Nonlinear Dynamics and}$ Quantum Phenomena in Optical Systems, R. Vileca, R. Corbalan, eds., Springer-Verlag, New York (1991), p. 77.

BRUCE W. BOREHAM University of Central Queensland Rockhampton, Queensland, Australia

9/93

Heller replies: The thrust of Bruce W. Boreham's interesting comment is to suggest that semiclassical methods may not apply in "real" laboratory situations unless some extreme classical limit is approached. We would not want to claim that every phenomenon is easily or correctly given by semiclassical means, but it would seem that Boreham's point misses an important lesson of research in this field: Highly quantum behavior (including oscillations of the type Boreham describes) can often be understood as superpositions of (perhaps many) amplitudes calculated from purely classical trajectories. classical behavior is reached only in certain limits and is not the target of semiclassical calculations.

ERIC HELLER Harvard University 5/94 Cambridge, Massachusetts


Gomory's 'Goals' Too Narrowly National

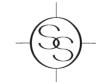
How can the US set priorities for the funding of basic and applied science? In "Goals for the Federal Role in Science and Technology" (May 1993, page 42) Ralph E. Gomory argues that the first step is to define the goals. I agree with Gomory that setting goals is a powerful basis for decision making; I do not agree with his choice of goals for basic and applied research.

Gomory advocates the following national goal for our basic research

OPTICAL RAY **TRACERS**

for PC and Macintosh

- exact 3-D m omatic trace
- 2-D on-screen layouts diagnostic ray plots
- least squares optimizer
- Monte Carlo ray generator


BEAM THREE S289

- for advanced applicationsall BEAM TWO functions, plus:
- 3-D optics placement
- tilts and decenters
- cylinders and torics polynomial surfaces
- 3-D layout views
- + glass tables

BEAM FOUR \$889

- + for professional applications
- all BEAM THREE functions, plus:
- big tables: 99 surfaces
- full CAD support: output to DXF, plotter, PostScript
- point spread function
- modulation transfer function
- wavefront display too

Every package includes versions for coprocessor and noncoprocessor machines also manual and sample files. Write, phone, or fax us for further information.

STELLAR SOFTWARE

P.O.BOX 10183 BERKELEY, CA 94709 USA PHONE (510) 845-8405 FAX (510) 845-2139

Circle number 14 on Reader Service Card

13