WHAT'S WRONG WITH
THIS TEMPTATION?

N. David Mermin

Once upon a time everybody knew
why measurements in quantum me-
chanics don’t reveal preexisting prop-
erties. It was because the act of ac-
quiring knowledge unavoidably
messes up the object being studied.
What you learn is not intrinsic to the
object, but a joint manifestation of the
object and how you probe it to get
your knowledge.

In 1935 this state of happy inno-
cence was forever dispelled by Ein-
stein, who with Boris Podolsky and
Nathan Rosen discovered how to
learn about an object by messing up
only some stuff it left behind in a
faraway place. They concluded that
knowledge acquired in this way was
indeed about preexisting properties of
the object, revealed—not created—by
the act of probing the stuff left behind.
Bohr, however, insisted their conclu-
sion was unjustified, and 30 years
later John Bell proved that no assign-
ment of such preexisting properties
could agree with the quantitative pre-
dictions of quantum mechanics.

A couple of years ago Lucien
Hardy' gave this tale an unexpected
twist, by finding a charming variation
of the Bell-EPR argument. Hardy’s
theorem is even simpler than the ar-
gument of Daniel Greenberger, Mi-
chael Horne and Anton Zeilinger that
I enthused about in this column four
years ago (June 1990, page 9). The
reason he was able to pull the the
trick off, and the reason, I suspect,
nobody had noticed so neat an argu-
ment for so long, is that Hardy’s
analysis applies to data that are not
correlated strongly enough to support
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the argument of EPR. But they do
give rise to an argument every bit as
seductive, which Hardy is then able
to demolish with surprising ease.
Parts of the formulation I give here
of Hardy’s gedankenexperiment are
similar to those of Henry Stapp? and
Sheldon Goldstein.? (Thomas F. Jor-
dan brought Hardy’s work vividly to
my attention in articles submitted to
Physical Review A and the American
Journal of Physics.)

We consider two particles that
originate from a common source and
fly apart to stations at the left and
right ends of a long laboratory. At
the left station we can experimentally
determine the answer to one of two
yes—no questions, A or B. There is a
choice of two other yes—no questions,
M or N, to be answered by experiment
on the right. Hardy provides ques-
tions A, B, M and N, and a two-par-
ticle state |¥) for which the answers
to the questions have the following
features:

(i) If the questions are B and N,
the answers are sometimes both yes.

(ii) If the questions are either B
and M or A and N, the answers are
never both yes.

(iii) If the questions are A and M,
the answers are never both no.

Though two correlated particles
subject to local probes in two faraway
places also appear in an EPR experi-
ment, Hardy’s experiment is interest-
ingly different. In an EPR experi-
ment correlations in the data make it
possible to predict the answer to
whichever question you ask at one
end of the laboratory by asking a
suitable question at the other end. In
Hardy’s experiment you cannot per-
form this trick. If, for example, you
want to learn the answer to A without
messing up the particle on the left,
you can try getting the answer to M
on the right. If that answer is no,
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then (iii) does indeed guarantee that
the answer to A will be yes. But if
the answer to M is yes, you cannot
predict the answer to A. If you try
instead to measure N on the right,
you run up against the same problem:
You can predict with certainty the
result of measuring A on the left in
only an unpredictable and uncon-
trollable fraction of the runs. Similar
difficulties arise if you try to learn the
answer to B from measurements on
the right or the answer to M or to N
from measurements on the left. We
have here what one might call a semi-
EPR situation.

But that semi-EPR situation leads
one into temptation just as irresistibly
as the full-blown variety. The temp-
tation emerges when you imagine a
series of runs in which one chooses
the question at each end of the labo-
ratory by tossing a coin at that end
after the particles have left their com-
mon source but before they arrive at
the ends to be tested.

We all agree—even Bohr might
agree—that something in the common
origin of the two particles must un-
derlie the correlations described in
(i)-(iii). Since the questions to be
asked are not picked until after the
particles have left their source, the
features of the particles responsible
for those correlations cannot depend
in any given run on what happens
when the coins are tossed. Further-
more, since each question probes only
one of the particles, the answer to a
question at one end of the laboratory
can be influenced only by features
residing in the particle at that end
and not by features residing in the
faraway particle at the other end.

If you accept those last two sen-
tences, then you are in trouble. Ac-
cording to (i), in some of those runs
in which the questions end up being
B and N, the answer to both is yes.
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In these particular runs the particle
on the left is indisputably of a type
that allows the answer yes to question
B, and the particle on the right is of
a type that allows the answer yes to
question N. But in any of those par-
ticular runs the tosses of the coins
could have resulted in questions B
and M being asked instead. Since the
particle on the left is of a type that
allows the answer yes to B, the par-
ticle on the right must be of a variety
that prohibits the answer yes to M.
Otherwise if the coins had come up
differently, it would be possible to get
answers yes to both questions B and
M, which (ii) forbids. By the same
token, since the tosses of the coin
could have resulted in A and N being
asked, and the particle on the right
allows the answer yes to N, the par-
ticle on the left must prohibit yes to
A. But the tosses of the coin in any
of those particular runs could also
have resulted in A and M being asked.
Since each particle in those runs is of
a type that prohibits the answer yes
to its question, such a run would have
to give the answer no to both A and
M. But that is precisely what (iii)
forbids.

People who find Bell-EPR pro-
foundly mysterious ought to find this
state of affairs equally bizarre. Those
immune to the charms of EPR will
have stopped reading after my second
paragraph. So since you, faithful
reader, are eager to know what un-
derlies this astonishing trick, let me
tell you one way to do it.

Take A and M to be any nontrivial
questions you like. Pick any four one-
particle states lying entirely in their
yes and no subspaces. Call them
|Ay), |An), |My)| and |[Mn). Take the
two-particle state |¥) to be a super-
position of products of these yes and
no eigenstates. We guarantee feature
(iii) of the data by requiring the no-no
state |An, Mn) to be absent from that
superposition:

(W) = alAy,Mn)+ 1)

BlAn, My) + y|Ay, My)

Take the question B to have a single
yes eigenstate |[By) that is a nontrivial
linear combination of |Ay) and |An),
and take N to have a single yes eigen-
state |[Ny) that is another such linear
combination of |[My) and |Mn). Fea-
ture (ii) requires |¥) to be orthogonal
to By, My),

0 =(By, My|¥) =

B(BylAn) + ¥(Byl|Ay), (2)
and orthogonal to |Ay, Ny),
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0= (Ay, Ny|¥) =
a(Ny|Mn) + y(Ny|My). (3)

Feature (i) requires |¥) not to be or-
thogonal to |By, Ny):

0 #p = |(By, Ny[w)[*

= |a(By|AyXNy|Mn)
+ B(By|An)(Ny|My)
+y(BylAy)NyMy)P?, (4
which (2) and (3) reduce to
0#p =y [(ByAy Ny My) . (5)

This tells us that the coefficient y
must be nonzero, and (2) and (3) then
tell us that B and « can’t be zero
either. So for any questions A and M
we can perform Hardy’s magic trick
in any two-particle state of the form
(1) with three nonzero coefficients.

How big can we make the prob-
ability p whose non-vanishing gets us
into all this trouble? It follows di-
rectly from (2) and (3) and
la2 + B +[y[>=1 that

_ pi(1 —pppr(1—pr) 6)
1-ppr

where p, = [(BylAy)? and
p, = (Ny|My)]2. Maximizing (6) gives
uniquely p,=p,= (5 -1)/2=1/r,
where 7—would you believe it?—is
the golden mean. This gives p, the
fraction of BN runs in which both
answers are yes, the maximum value
1/75=0.09017. Nine percent of the
time something happens that the cor-
relations described in (i1) and (iii)
would appear absolutely to prohibit.
Sensational!

Some experts might question my
enthusiasm, since constructing argu-
ments like Bell’s in the absence of per-
fect EPR correlations is old stuff, origi-
nally inspired by the inability of any
real experiment to demonstrate that
correlations are perfect. The semi-EPR
argument in the Hardy state, such ex-
perts might maintain, is merely an ex-
ample of a violation—and not a very
strong one—of an inequality* that,
though very plausible even in the ab-
sence of perfect correlations, has al-
ready been reported to be violated in
many earlier experiments:

p(By,Ny) < p(By, My) +
p(An, Mn) + p(Ay, Ny) (7

To understand what it might mean
to violate this inequality, imagine a
world in which each particle carried
information specifying its answer to
either question it might be asked. Call
a particle x if its answer for question
X is yes. The small side of the inequal-

ity is the fraction of particles that are
b and n. The first term on the large
side is at least as big as the fraction
that are b, n and m, while the third is
at least as big as the fraction that are
b, n and a. So we would have an upper
bound if we were to add in the fraction
that are b and n but neither a nor m.
Since p(An,Mn) is an upper bound for
this last fraction, the inequality, must
hold in such a world. It is violated,
however, in a Hardy state, with 0 on
the right and a probability as big as
0.09 on the left.

An experiment to confirm such a
violation in the optimal Hardy state
will require detectors accurate enough
to distinguish a 9% event rate from
a rate of 0%. Earlier tests for viola-
tions in states inspired by EPR had
an easier time of it, using questions
that made the probability on the left
Y4(2 +V2) = 85% and the sum of prob-
abilities on the right ¥%,(2 — V2) = 44%.
Hardy states will not lead to more
definitive experiments.

But to rest with that conclusion is
to fail to see what makes the Hardy
experiment so charming. My quick
explanation of the inequality (7) re-
quired each particle to carry informa-
tion specifying its answers to two in-
compatible questions. This is not
only grossly un-quantum mechanical
but, in the absence of an EPR argu-
ment, not even especially plausible.
Much thought has gone into relaxing
the assumptions underlying this in-
equality, and it can be made much
more compelling than I have bothered
to do here. But the refutation of even
those refined assumptions simply
doesn’t hit you with anything like the
impact of Bell’s old refutation of the
EPR argument or Hardy’s new semi-
EPR demolition job. So although
Hardy’s four questions provide a
rather weak basis for a laboratory
violation of the experimentally rele-
vant inequality, they reign supreme
in the gedanken realm. There they
achieve their effectiveness not by re-
futing the subtle assumptions behind
the inequality, but by leading you
down the garden path every bit as
enticingly as the full EPR argument
does and then turning around and
kicking you out of the garden with
unprecedented efficiency and force.

References

1. L. Hardy, Phys. Rev. Lett. 68, 2981
(1992); 71, 1665 (1993).

2. H. Stapp, Mind, Matter and Quantum
Mechanics, Springer-Verlag, New York
(1993), p. 5.

3. S. Goldstein, Phys. Rev. Lett. 72, 1951
(1994).

4. J.F. Clauser, M. A. Horne, A. Shimony,
R. A. Holt, Phys. Rev. Lett. 23, 880
(1969). ]

PHYSICS TODAY ~ JUNE 1994 11



