
WHAT MAKES A CURVE BALL CURVE?

The Physics of Sports

Edited by Angelo Armenti, Jr., Villanova University

Applying fundamental laws of physics, this armchair volume puts to rest a number of popular sports-related misconceptions and accounts for phenomena that, for many, have been a source of wonder since childhood. Why does a golf ball have dimples? How can a sailboat travel almost directly into the wind? The answers are eye-opening—for professionals, students, and teachers in the fields of *both* physics and sports.

1992, 260 pages, illustrated 0-88318-946-1, paper \$35.00 **Members \$28.00**

To order, call toll-free: 1-800-488-BOOK

Member prices are for members of AIP Member Societies (APS/OSA/ASA/SOR/AAPT/ACA/ AAS/AAPM/AVS/AGU/SPS). To order at member rates, please use the toll-free number. for spin-polarizing ³He nuclei and to the first polarized ³He target for nuclear scattering experiments. TI sponsored Laird's further studies at Rice University, where he obtained his PhD in physics in 1966.

In 1971 Laird left TI to become a professor of physics and chair of the physics department at the University of Missouri, Rolla. There he continued his pioneering work on optical pumping and atomic collision physics. He held visiting positions at the University of Wisconsin (1976) and the Joint Institute for Laboratory Astrophysics (1977–78) and was a program associate at the National Science Foundation (1979-81). In recent years Laird had become active in international collaborations. Michele Leduc at the Ecole Normale Supérieure in Paris, he helped develop the Nd:LNA laser, which improved ³He nuclear targets and facilitated new studies of spin-polarized ³He quantum fluids at low temperatures. In 1989 Laird worked in Ernst Otten's group in Mainz on a high-density polarized ³He target for measurements of the electric form factor of the neutron. In Orsay, France, he participated in the development, based on helium optical pumping, of a polarized electron beam suitable for use with accelerators.

Laird Schearer had broad talent, high standards and infectious enthusiasm. He was a direct, lucid, unsentimental teacher, both in the classroom and in the laboratory, and he was a caring, wise mentor. He was also a researcher with extraordinary laboratory skills and presence, whose insights and ideas were of critical importance to the success of numerous major physics experiments. Laird's untimely death is not only a loss to physics, but also to his many friends and collaborators.

TIMOTHY J. GAY
University of Nebraska, Lincoln
G. KING WALTERS
Rice University
Houston, Texas
FRANK LALOË
Ecole Normale Supérieure
Paris, France

Rolf G. Winter

On 21 December 1992 Rolf G. Winter, Chancellor Professor of Physics at the College of William and Mary in Virginia, died after a brief illness. His death leaves a large void among his colleagues, students and friends in the physics community, especially in the department to which he devoted 29 years of his career.

Rolf Winter was born on 30 June

1928 in Germany and grew up in Pittsburgh. After earning his bachelor's (1948), master's (1951) and doctoral (1952) degrees, all in physics, at the Carnegie Institute of Technology (now Carnegie Mellon University), he taught for three years at Case—Western Reserve University. His service on the faculties of Pennsylvania State University (1954–64) and William and Mary (since 1964) was interspersed with visiting appointments at Oxford and the Universities of Wisconsin, Saskatchewan and Zurich.

Rolf's many contributions to physics, primarily in experimental nuclear physics, displayed his meticulous craftsmanship and bore the marks of his original and independent mind. One of his early investigations, for example, showed that the spontaneous decay of a quantum mechanical system need not be exponential at both very early and very late times—an observation, now commonplace, that flew in the face of standard doctrine at the time. In recent years he collaborated with a William and Mary experimental group on problems at the interface of nuclear and particle physics. His graduate students knew him as a strict, demanding master, with a seemingly encyclopedic knowledge of physics. His undergraduate textbook, Quantum Physics (IPI Press, 1986, 1993), has earned a quiet but growing reputation.

Rolf's talent for administration left a permanent mark at William and Mary. As chair of the physics department and later as dean of graduate studies, he combined a tough, pragmatic style of leadership with a deep sense of fairness and democracy. Many of his changes have enriched the university, even though their origins are largely unknown. Rolf strictly adhered to one of his own aphorisms: "You can achieve anything you like, provided you don't demand credit for it."

His humorous way of speaking, laced with metaphors and aphorisms, contrasted sharply with his crisp writing style. Those who knew him well realized that behind his legendary wit Rolf was a wise, generous and profoundly humane man. The manner in which he bore his last illness was consistent with the way he conducted his life as a scientist, teacher, husband and father: His unwavering composure and dignity were an inspiration to all. He will be remembered for a long time.

ROY L. CHAMPION
MORTON ECKHAUSE
JOHN R. KANE
HANS CHRISTIAN VON BAEYER
ROBERT E. WELSH
College of William and Mary
Williamsburg, Virginia