

How Santa Cruz Faculty Built Itself Up

I would like to clear up a misunderstanding that occurred in connection with the report "Could a Silver Lining Lurk in Cloud of University of California Cuts?" (September 1993, page 59). A paragraph on our physics department states that "at Santa Cruz . . . the physics department is highly geared to its teaching responsibilities, drawing recruits largely from the ranks of its own graduates." While it is true that the Santa Cruz physics department built itself up largely by *promoting* young faculty from its own ranks, it is not true that it has *recruited* them primarily from the ranks of its graduate students. Only one of our former graduate students, Abe Seiden, is a faculty member in our department. Incidentally, the report mentions the recent appointment to the faculty of the University of California, San Diego, of one of our former graduate students, Kim Griest, but his last name was misspelled "Grieft."

While the statement that our physics department "is highly geared to its teaching responsibilities" is correct, Santa Cruz is also a strong research institution. For example, in a study¹ of the number of citations per published research paper in the physical sciences, UCSC ranked first in the US, followed immediately by Harvard and Princeton.

Reference

1. Science Watch, November 1990, p. 1.

MICHAEL NAUENBERG
University of California,
Santa Cruz
10/93

Teach Nonsense Majors 'Real World' Physics

In his Opinion column "Science Literacy at the College Level" (January 1993, page 69), F. Curtis Michel reiterates the obvious need for successful college science courses for nonscience majors and describes briefly his approach at Rice University. Although it is hard to judge from his short description of the course, I'm led to believe that it represents an approach so fundamentally different from my own textbook writing and college-level teaching (at small liberal arts colleges such as Wellesley and Swarthmore as well as large universities such as Stanford) that I'm compelled to present my alternative view.

Despite his recognition that some students may come to such courses

with "outright hostility," Michel spends some (perhaps much) of his course time trying to lead students to become interested in certain topics. I know of no nonscience students who come to class with an interest in "Bragg scattering" or whether "radioactivity itself produces more radioactivity" or "the natural abundances of radioactive isotopes" or "spectral lines of mercury" or any of the topics Michel describes as part of his course. Nonsense students (and even physics majors) typically have no intuition concerning these topics, since few of them are amenable to direct experience. Even some of the most "obvious" ones (obvious to trained physicists), such as seeing the spectral lines of mercury, require abstract visualizing of microscopic entities.

In my optics courses for nonscience majors, I concentrate on real-world phenomena with which the students are familiar and *already* have interest. I have found this quite successful. Students don't have to be persuaded to be interested in many questions surrounding rainbows, reflections in mirrors, color, movie projection, eyeglasses and so forth. They've all watched TV, played video games and used cameras.

Paradoxically, often *more* science is conveyed when describing such real-world phenomena than the more standard ones Michel describes, because the students can concentrate on the science and explanations rather than on the raw phenomena themselves. And make no mistake about it, one can give an explanation of these phenomena as deep as one wants.

Even the experiment Michel chooses to begin his course with—"how a metal rod can be made to ring with various pure tones"—is not one students are interested in or will ever see again (though it is admittedly one that can gain attention). This experiment is, moreover, more challenging than instructors steeped in science might imagine: The students cannot even see the vibration of the rod. Michel thus unwittingly reinforces the misperception by nonscience students that physics is something done in a lab, divorced from everyday life.

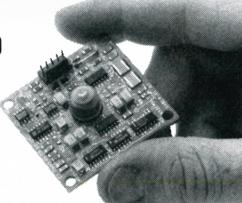
Why not instead take a Polaroid instant photograph in lecture, project it and ask simply, "How does that work?"

Some educators will ask, "How can we consider a student literate in physics who does not know the second law of thermodynamics, special relativity, wave-particle duality, quarks, quasars, the Big Bang, chaos, . . . ?" But as Michel admits, in his course he can succeed only in "giving the students

continued on page 95

TUNING FORK CHOPPERS

Devices, Sub-systems and custom systems with associated electronics


- *Fixed frequency: choose one from the range of 5Hz to 5kHz
- *Aperture: to 0.4" (10.2mm)
- *Low cost, quick delivery
- *Small size/lightweight
- *Withstands shock and vibration
- *Rugged, no wearing parts
- *No lube requirements, maintenance free
- *High reliability
- *Very low outgassing
- *Jitter free operation
- *Very high frequency stability (to 0.005%)
- *No electromagnetic interference (EMI)
- *Wide temp. range (cryo to 200°C)
- *Metal vanes, mirrors or lenses available
- *Single vane for alternate beam chopping
- *Low power drive electronics
- *Reference signal available
- *Variable amplitude output available

A broad line of Resonant Scanners

ELECTRO-OPTICAL PRODUCTS CORP.
P.O. Box 650441, Fresh Meadows, NY 11365
T: 718-776-4960 F: 718-776-4978
Circle number 17 on Reader Service Card

FIND ANGULAR POSITION WITH EASE AND PRECISION

GRAVITY REFERENCED
INSTALL ANYWHERE
UP TO $\pm 60^\circ$
OPERATING RANGE

Our precision tiltmeters give you new abilities to measure the angular movement and position of: • Antennae • Lasers • Telescopes • Foundations • Any machine or structure

Use to find level, measure static tilts or determine pitch and roll. Choose from our:

- 500 Series – nanoradian resolution
- 700 Series – microradian resolution
- 900 Series – 0.01 degree resolution

APPLIED GEOMECHANICS

1336 Brommer St., Santa Cruz, CA 95062 USA
Tel. (408) 462-2801 • Fax (408) 462-4418

Circle number 16 on Reader Service Card

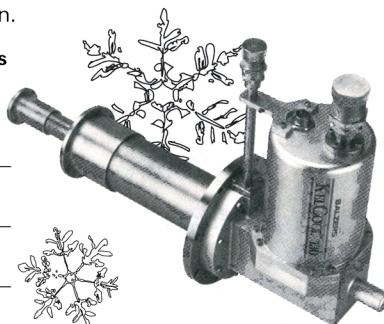
continued from page 15

just enough to understand" topics such as radioactivity. It is my experience that these knowledge tidbits fail to satisfy students past the final exam. Thus in my own nonscience optics courses, quantum phenomena are covered *last*—if at all!—and I feel no great loss if we don't get to them.

There is another benefit to my approach, one that addresses a problem Michel points out: keeping instructors interested in teaching courses for non-science majors. Because the type of course I promote covers a great deal of material not in standard courses, faculty learn throughout the course too. And because these courses are rarely prerequisites for subsequent science courses, instructors can be freer to explore real-world problems of their own particular interest.

DAVID G. STORK
2/93
Stanford, California

MICHEL REPLIES: I certainly agree with David Stork that it is important not to try to cover everything, and certainly if one can have success being "Mr. Science" and explaining everyday phenomena, that's great—although I'm not sure that 250 Wellesley students sign up for an optics course each year. In a large required course such as the one I was describing, there is the expectation that specific topics will be covered. The idea was to enable the students to take further science courses if they wished, so we did have certain constraints on the material. Indeed, the original version of the course was taught from a list of topics that non-science students should know, drawn up by a faculty committee; the over-ambitious result was described by students as like trying to drink from a fire hose.


In presenting the material we did not, of course, just give a standard first-year physics description. In the first lecture of the year I showed a rainbow colored backwards and sort of mused about whether that mistake was "important" or not. (That was *not* the whole lecture!) What I wanted to accomplish more than simply explaining this or that was to show where the explanations themselves come from. So the ringing rod was a paradigm for the scientific method: That you can't see the rod oscillate is part of the puzzle. How do you know it's oscillating, as opposed to, say, being "filled" with sounds like a tumber filled with fluid that is leaking out? If one realizes that there is a methodology for figuring out what's happening even when one can't see it happen, then later on

BALZERS KELCOOL™ 4.2GM... THE ONLY WAY TO 4.2K

The easy way to optimize your cooling applications with the only standard two-stage, Gifford-McMahon cryocooler that delivers 0.5W working capacity at 4.2 K. A simple design provides high refrigeration capacity *without* the high cost and complexity of a third stage. Ideal for cooling R&D samples, MRI, superconducting magnet shields, IR detectors, cryopumping and gas liquefaction.

Capacities at various temperatures
(temperature and capacity measured simultaneously)

Temperature (K)	Capacity (watts)
1st stage	77
2nd stage	115
1st stage	20
2nd stage	15
1st stage	45
2nd stage	50
1st stage	10
2nd stage	8
1st stage	35
2nd stage	20
1st stage	4.2
2nd stage	0.5

Call us today for all the cold facts!

Balzers
8 Sagamore Park Road
Hudson, NH 03051
TEL (603) 889-6888
FAX (603) 889-8573

balzers

Circle number 60 on Reader Service Card

THE LIFE AND TIMES OF + MODERN PHYSICS +

History of Physics II
Edited by Melba Phillips

This peerless collection of articles from *Physics Today* offers you an intimate view of the people and events shaping the evolution of modern science and society. It features profiles, personal memoirs, narratives of the development of key fields, and histories of important institutions and organizations. Authors include Murray Gell-Mann on Richard Feynman; Robert Hofstadter on Felix Bloch; Irving Langmuir on pathological science; Emilio Segré on the discovery of nuclear fission; Norman Ramsey on I.I. Rabi; Victor Weisskopf on Wolfgang Pauli; and Rudolph Peierls on Paul Dirac.

1993, 352 pages, illustrated, 0-88318-846-5

Hardcover, \$40.00 Member price \$32.00

For Member price, please indicate your AIP Member Society when ordering.

To order call 1-800-488-BOOK

In Vermont: 1-802-878-0315. Fax: 1-802-878-1102.

Or mail check, MO, or PO (include \$2.75 shipping & handling) to:

American Institute of Physics
c/o AIP, 64 Depot Road
Colchester, VT 05446

**AMERICAN
INSTITUTE
OF PHYSICS**

Bring the Conference to You

AIP Conference Proceedings are timely accounts of the important meetings in physics. To keep abreast of new developments, be sure to recommend AIP Conference Proceedings to your institution's library.

one can more readily grasp the basis for, say, atoms. Rather than just being told there are atoms, one can understand the *everyday* evidence: shapes of crystals, boiling of water and so forth.

Another paradigm was an inexpensive handheld electronic calculator that every student had. Suppose you painted over all the buttons; how could you figure out how it worked? That's essentially our relationship with nature: We're in this world without the handbook.

The lead-in to the discussion of radioactivity was a newspaper photograph of someone picketing a store selling irradiated strawberries. The lead-in to the age of the Earth was a newspaper survey showing that something like half of college graduates thought it was 6000 years. I pointed out that this date was estimated by no less than Newton and separately by Kepler, explained how they did their estimates, and of course presented evidence to the contrary. (I'm not sure such "insensitivity" to possible religious beliefs would be "tolerated" anymore, but I managed to get away with it somehow—actually for the second time, the "no handbook" remark being unintentionally the first. Don't try this at home.)

I hardly urge that everyone follow this approach. Attempting to intrigue students is one thing; succeeding is another. Indeed I had one colleague repeatedly dismiss the course as "Feynman for nonscientists," and you certainly can't find a suitable textbook along these lines, which is a very serious drawback. Still, I'm skeptical about Stork's claimed benefit of having the "faculty learn throughout the course too," having sat in the audience with the students and heard faculty (no longer at Rice University) put forward totally erroneous explanations, which were never retracted. Also, I happen to know why you can see yourself in a department store window despite its being transparent, but I'd hate to have that everyday phenomenon brought up as a starting point to explain optics.

F. CURTIS MICHEL
Rice University
Houston, Texas

3/94

Correction

August 1993, pages 66-67—The document referred to as the "Portland Baseline Science Essays" is correctly called the *African-American Baseline Essays* and includes only one essay on science. Hunter Adams III is the author of that essay, entitled "African and African-American Contributions to Science and Technology." ■

#252 Accelerator Instrumentation, 3rd Annual Workshop, Newport News, VA, October 1991 ■ Edited by W. Barry and P. Kloeppel, *CEBAF Accelerator Division* ■ April 1992, 304 pages, illustrated ■ ISBN 0-88318-934-8, cloth, \$90.00

#253 High-Brightness Beams for Advanced Accelerator Applications, College Park, MD, June 1991 ■ Edited by W.W. Destler and S.K. Guharay, *University of Maryland* ■ April 1992, 256 pages, illustrated ■ ISBN 0-88318-947-X, cloth, \$90.00

#254 Testing the AGN Paradigm, College Park, MD, October 1991 ■ Edited by S. Holt, S. Neff, *NASA/Goddard Space Flight Center*, and C. Urry, *Space Telescope Science Institute* ■ May 1992, 720 pages, illustrated ■ ISBN 1-56396-009-5, cloth, \$99.00

#255 Advanced Beam Dynamics Workshop on Effects of Errors in Accelerators, Their Diagnosis and Correction, Corpus Christi, TX, October 1991 ■ Edited by A.W. Chao, *Superconducting Super Collider Laboratory, Dallas, TX* ■ April 1992, 440 pages, illustrated ■ ISBN 1-56396-006-0, cloth, \$95.00

#256 Slow Dynamics in Condensed Matter, Fukuoka, Japan, November 1991 ■ Edited by K. Kawasaki, *Kyushu University, Japan*, M. Tokuyama, *Tohwa University, Japan* ■ May 1992, 624 pages, illustrated ■ ISBN 0-88318-938-0, cloth, \$110.00

#257 Atomic Processes in Plasmas, Portland, Maine, August 1991 ■ Edited by E.S. Marmar and J.L. Terry, *MIT* ■ June 1992, 320 pages, illustrated ■ ISBN 0-88318-939-9, cloth, \$90.00

#258 Synchrotron Radiation and Dynamic Phenomena, Grenoble, France, September 1991 ■ Edited by A. Beswick, *LURE & Université Paris-Sud, Orsay* ■ June 1992, 716 pages, illustrated ■ ISBN 1-56396-008-7, cloth, \$120.00

#259 Future Directions of Nuclear Physics with 4 Pi Gamma Detection Systems of the New Generation, Strasbourg, France, March 1991 ■ Edited by J. Dudek and B. Haas, *Université Louis Pasteur* ■ July 1992, 900 pages, illustrated ■ ISBN 0-88318-952-6, cloth, \$150.00

#260 Computational Quantum Physics, Nashville, TN, May 1991 ■ Edited by A.S. Umar and V.E. Oberacker, *Vanderbilt University*, and M.R. Strayer and C. Bottcher, *Oak Ridge National Laboratory* ■ July 1992, 332 pages, illustrated ■ ISBN 0-88318-933-X, cloth, \$95.00

#261 Exclusive B and K Decays and Novel Flavor Factories, Santa Monica, CA, February 1991 ■ Edited by D.B. Cline, *UCLA* ■ July 1992, 288 pages, illustrated ■ ISBN 1-56396-055-9, cloth, \$95.00

#262 Molecular Electronics—Science and Technology, St. Thomas, Virgin Islands, December 1991 ■ Edited by A. Aviram, *IBM/Watson Research Center* ■ August 1992, 344 pages, illustrated ■ ISBN 1-56396-041-9, cloth, \$95.00

#263 Stress Induced Phenomena in Metallization, Ithaca, NY, September 1991 ■ Edited by C-Y. Li, *Cornell University*, P. Totta, *IBM*, and P.S. Ho, *University of Texas Austin* ■ July 1992, 288 pages, illustrated ■ ISBN 1-56396-082-6, cloth, \$95.00

#264 Particle Acceleration in Cosmic Plasmas, Newark, DE, December 1991 ■ Edited by G.P. Zank and T.K. Gaisser, *University of Delaware* ■ October 1992, 512 pages, illustrated ■ ISBN 0-88318-948-8, cloth, \$99.00

#265 Gamma-Ray Bursts, Huntsville, AL, October 1991 ■ Edited by W. Paciesas, *University of Alabama-Huntsville*, and G. Fishman, *NASA/Marshall Space Flight Center* ■ September 1992, 500 pages, illustrated ■ ISBN 1-56396-018-4, cloth, \$115.00

#266 Group Theory in Physics, Cocoyoc, Morales, Mexico, June 1991 ■ Edited by A. Frank, T.H. Seligman, and K.B. Wolf, *Universidad Nacional Autónoma de México* ■ October 1992, 268 pages, illustrated ■ ISBN 1-56396-101-6, cloth, \$110.00

#267 Electromechanical Coupling of the Solar Atmosphere, Capri, Italy, May 1991 ■ Edited by D.S. Spicer, *NASA*, and P. MacNeice, *Hughes STX* ■ October 1992, 184 pages, illustrated ■ ISBN 1-56396-110-5, cloth, \$90.00

#268 Photovoltaic Advanced Research and Development, Denver, CO, May 1992 ■ Edited by R. Noufi, *National Renewable Energy Laboratory, Golden, CO* ■ January 1993, 576 pages, illustrated ■ ISBN 1-56396-056-7, cloth, \$125.00

#269 CEBAF 1992 Summer Workshop, Newport News, VA, June 1992 ■ Edited by F. Gross and R. Holt, *Argonne National Laboratory* ■ February 1993, 624 pages, illustrated ■ ISBN 1-56396-067-2, cloth, \$150.00

#270 Time Reversal—Arthur Rich Memorial Symposium, Ann Arbor, October 1991 ■ Edited by M. Skalsey, P.H. Bucksbaum, R.S. Conti, and D.W. Gidley, *University of Michigan, Ann Arbor* ■ February 1993, 216 pages, illustrated ■ ISBN 1-56396-105-9, cloth, \$90.00 (tent.)

#271 Space Nuclear Power and Propulsion, Albuquerque, NM, January 1993 ■ Edited by M.S. El-Genk, *University of New Mexico*, and M.D. Hoover, *Inhalation Toxicology Institute* ■ January 1993, 1752 pages (3 vols.), illustrated ■ ISBN 1-56396-137-7, cloth, \$275.00

To order call toll-free 1-800-BOOK

Members of AIP Member Societies are entitled to a 20% discount on books purchased for personal use. To order at member rates, please use the toll-free number.