
NEURONS, DYNAMICS 
AND COMPUTATION 

Brains hove long been regarded as biological computers. 
But how do these collections of neurons perform computations? 

John J. Hopfield 

The question "How does it work?" is the motivation of 
many physicists. Condensed matter physics, chemical 
physics and nuclear physics can all be thought of as 
descriptions of the relation between structure and prop­
erties. The components of a biological system have func­
tional properties that are particularly relevant to the 
operation of the system. Thus it is especially important 
in biology to understand the relation between structure 
and function. Such understanding can be sought at the 
level of the molecule, the cell, the organ, the organism 
or the social group. 

The function of a nervous system is to do computa­
tions. Recognizing a friend, walking and understanding 
a spoken sentence all involve computations. The analysis 
of the nervous system presented here relates the biophys­
ics of nerve cells, statistical physics and dynamical sys­
tems to the way a biological "machine" computes. 

I use the word "compute" here only in the very fuzzy 
sense of performing a useful task of a kind that a digital 
computer can also perform. For example, one can pro­
gram a digital machine to compare a present image with 
a set of images generated from a three-dimensional rep­
resentation of the head of a friend, and thus in principle 
the problem of recognizing a friend can be solved by a 
computation. Similarly, the question of how to drive the 
actuators on a robot given the present posture of the 
robot and the desired state of dynamic balance is funda­
mentally a problem in classical mechanics, which can be 
solved on a digital computer. While we may not know 
how to write efficient algorithms for these tasks, such 
examples do illustrate that one may usefully describe 
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what the nervous system does as computation. However, 
that one can use a digital computer to model the outcomes 
of experiments done on a nervous system does not ipso 
facto mean that the brain is a computer, since digital 
computers can be used to model most physical systems. 

For the purposes of this article, we view a computer 
as an input-output device, with the input and output 
signals in the same general medium or format. Thus in 
a very simple digital computer, the input is a string of 
bits (in time), and the output is another string of bits . 
The computer produces a transformation on the inputs 
to generate the outputs. Within this view, the brain is 
a computer. For example, a million axons carry electro­
chemical pulses from the eyes to the brain. Similar 
signaling pulses drive the muscles of the vocal tract. 
When we enter a room, look around and say, "Hello, 
Jessica," our brain is producing a very complicated trans­
formation from one parallel input pulse sequence coming 
from the eyes to another parallel output pulse sequence 
that results in sound waves being generated. 

The idea of composition is very important in this 
view of a computer. The output of one computer can be 
used as the input for another computer of the same 
general type, since both signals are in the same medium. 
Within this view, a digital chip is a computer, and large 
computers are built as composites of smaller ones. Simi­
larly, each neuron (see figure 1) is a simple computer, 
and the brain is a large composite computer made of 
neurons. 

Computers as dynamical systems 
A real, physical digital computer is a dynamical system 
and computes by following a path in its space of physical 
states. 1 (See figure 2.) Its operation is most simply 
illustrated for batch-mode computation, in which all the 
inputs are supplied at the start of the computation (unlike 
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interactive computation, in which inputs may continue 
to arrive during the computation). The computer has N 
storage registers, each storing a single binary digit. A 
binary vector of N bits, such as 10010110000 ... , specifies 
the logical state of the machine at a particular time. This 
binary state changes into a new state each clock cycle. 
The transition map describing which state follows which 
is implicitly built into the machine by its design. Thus 
one can describe the machine as a dynamical system that 
changes its discrete state in discrete time. 

The user of the machine has no control over the 
dynamics, which is determined by the state transition 
map. The user's program and data and a standard 
initialization procedure prescribe the starting state of the 
machine. The motion of the dynamical system carries 
out the computation. In a batch-mode computation, the 
answer is found when a stable point of the discrete 
dynamical system-a state from which there are no tran­
sitions-is reached. A particular subset of the state bits 

Neurons are simple computers. Each neuron rece ives 
inputs at synapses and computes an output that is 
transmitted along its axon to as many as 1000 other 
neurons. The brain may be regarded as a composite 
computer made up of a network of neurons. (Adapted 
from ref. 2 .) Figure 1 

(for example, the contents of a particular machine regis­
ter) will then describe the desired answer. 

Batch-mode analog computation can be similarly de­
scribed with continuous time and state-space variables. 
The idea of computation as a process carried out by a 
dynamical system in moving from an initial state to a 
final state is the same as in the discrete case. In the 
analog case, one can think of the motion in state space 
as describing a flow field, and computation is done by 
moving with this flow from start to finish. (See figure 
3.) The final state is typically a point attractor-a loca­
tion in the state space to which all nearby states will 
evolve. (Of course real "digital" machines contain only 
analog components. The digital description is only a 
compact representation in fewer variables that contains 
the essence of the continuous dynamics.) 

One of the most important resources for intelligent 
behavior is powerful associative memory, in which partial 
and perhaps somewhat erroneous knowledge of a memory 
can nevertheless give access to the complete memory. A 
system whose dynamics in a high-dimensional state space 
is dominated by a substantial number of point attractors 
can be regarded as an associative memory: The location 
of a particular point attractor can be obtained from partial 
information (an inexact description of the attractor loca­
tion) by merely initializing the system in accord with the 
partial information and allowing the dynamics to evolve 
the state to the nearest attractor. For such a system to 
be useful and biological it must be possible to insert 
memories (new attractors) into the system by a biologi­
cally plausible algorithm. We will consider this in greater 
detail below. Error-correction codes, used with data 
transmission, can also be construed as attractors. 

Computations more complicated than the recovery of 
memories can also be directly formulated in terms of the 
fixed points of dynamical systems. For example, when 
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Program and data 

Answer 

State of a digital computer follows a path 
through its space of discrete states. In 
batch-mode computation the path goes from 
an initial state representing the program and 
the data to a final stable state representing the 
answer. Figure 2 

a problem can be posed as an optimization, its solution 
can also often be posed on a dynamical system for which 
the stable (fixed) points are minima of the desired vari­
able. The location of the solution is found by following 
a trajectory of motion to its end. 

A simple dynamical model of neurobiology 
Figure 1 depicts the anatomy of a "typical" neuron in a 
mammalian brain.2 In gross terms, it has three regions: 
dendrites, a cell body and an axon. Each neuron is 
connected to approximately 1000 other neurons by struc­
tures called synapses. A nerve cell functions as an 
input-output device. Inputs to a cell are made at syn­
apses on its dendrites or on the cell body. The cell 
produces outputs that drive other cells lying at synapses 
at the terminals of its axon. When considering a par­
ticular synapse, we call the cell producing the output the 
presynaptic cell while the one receiving the input is 
postsynaptic. 

42 

The interior of each cell is surrounded by a mem-

An analog computational system has a 
continuous space of states. The state-space 
flow field must be focused onto paths to 
negate the effects of errors but is otherwise 
similar to that of a digital system (see figure 
2). Figure 3 
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brane of high resistivity and is filled with a conducting 
ionic solution. Ion-specific pumps transport ions such as 
K+ and Na+ across the membrane, maintaining an elec­
trical potential difference between the inside and the 
outside of the cell. A cell carries out computations by 
dynamic changes in the conductivity of particular species 
of ions at synapses and elsewhere in the cell membrane. 

A simple modeP captures in mathematical terms 
much of the essence of what a compact nerve cell does. 
Figure 4 shows the voltage difference u between the 
inside and the outside of a simple neuron functioning in 
a brain. The electrical potential is generally slowly 
changing, but occasionally it changes very rapidly, pro­
ducing a stereotypical voltage spike of about 2 millisec­
onds duration. Such a spike is produced every time the 
cell's interior potential rises above a threshold Uthresh of 
about -50 millivolts . After the spike the voltage resets 
to a lower value Ureset of about -70 millivolts. This "action 
potential" spike is caused by a paroxysm of voltage-de­
pendent ion flows across the neuron membrane. 

Except for the action potentials, the membrane con­
ductivity away from the synapses is approximately con­
stant. (We will return to the synapses shortly.) The 
membrane is only about 75 A thick, so there is appreciable 
capacitance C between the inside and the outside of the 
cell. If an electrical current i(t) is injected into the cell, 
the interior potential (except for the action potentials) 
obeys 

C du = - (u - uo) + i(t) 
dt R 

(1) 

where R is the resistance of the cell membrane and u0 
is the resting potential to which the cell would drift in 
the absence of an external current. For a typical neuron, 
u0 < uthresh • so u will decay to u0 when the injected current 
vanishes. If i(t) is a large constant current ic, the cell 
potential will change in an almost linear fashion between 
u0 and Uthresh· An action potential will be generated each 
time Uthresh is reached, resetting u to ureset. Neurons that 
behave in this fashion are known as "integrate and fire" 
neurons. The spiking shown in figure 4 is an experimental 
example of the behavior of an integrate-and-fire neuron. 

The time P between the equally spaced action poten­
tials is then roughly 

p = C Uthresh .- Ureset 

Lc 
(2) 

For small currents the leakage current through the re­
sistance R is important, and for small enough constant 
currents the leakage current will prevent the cell from 
firing at all. The black curve in figure 5 shows the firing 
rate liP as a function of current i c for a realistic cell. 

We will take action potentials to be delta functions , 
lasting a negligible time. They propagate at constant 
velocity along an axon. The transmission is nonlinear, 
but the shapes of the pulses are actively maintained. 
When an action potential arrives at a synaptic terminal 
of an axon, the terminal releases a neurotransmitter 
(such as acetylcholine or glutamate), which in turn acti­
vates specific ionic conductivity channels in the postsyn­
aptic dendrite. For reasons including diffusion and 
chemical inactivation, this conductivity pulse u(t) is not 
a delta function but has nonzero duration. It can be 
modeled as 

u(t) = { ~e-<t - to) /T (3) 

where s is the maximum conductivity of the postsynaptic 
membrane in response to the action potential, and T is 



the time constant of the pulse. Each synapse from cell 
j to cell k has its own particular maximum conductivity 
skJ· The conductivity is ion specific, and the current that 
flows depends on the chemical potential difference v ion 

between the inside and the outside for that ion. Thus 
for a synapse from cell j to cell k, an action potential 
arriving on cell j's axon at time t0 causes a current 

(4) 

to flow into cell k. The parameter skj = vionSkj can have 
either sign, depending on the sign of the free energy 
difference driving the selected ion type. If skj is positive, 
the synapse is "excitatory" because it tends to excite the 
neuron k to fire. Similarly, a negative SkJ corresponds 
to an "inhibitory" synapse. 

An equation of motion can be obtained as follows: 
For any neuron k , which fires action potentials at times 
t~ (n = 1, 2, 3, ... ), define the instantaneous firing rate to 
be 

(5) 
n 

In classical electrical circuit theory, the current flowing 
into a capacitor as a function of time is a similar sum of 
delta functions because of the discreteness of electrons. 
The integral of fk(t) over a time interval yields the number 
of action potentials occurring within the time interval, 
and in this sense fk(t) is the instantaneous rate. 

Differentiating equation 4 with respect to time yields 

di i 
dt=-7+Sk1o(t- t0) (6) 

Similarly, for the total current ik into cell k one has 

dik ik "' -d = - -;;: + L... S k1tj(t) + sensory term 
t . 

(7) 

J 

where the "sensory term" is an additional term present 
only for sensory cells. This equation, though exact, is 
awkward to deal with because the times at which the 
action potentials occur are given only implicitly through 
equation 1. 

Synapse evolution algorithms 
The synaptic strengths S kJ can also change with time, 
both during the development of an immature nervous 
system and as part of the learning and adaptation that 
go on in a mature one. While several such changes are 
seen in neurobiology, the most interesting variety is one 
in which the synapse strength Ski changes as a result of 
the roughly simultaneous activity of cells k and j. This 
kind of change is needed if a nervous system is to "learn" 
the association between two events. A synapse whose 
change algorithm involves only the simultaneous activity 
of the pre- and postsynaptic neurons and no other detailed 
information (other than perhaps when to learn) is called 
a Hebbian synapse.4 

A simple version of such dynamics might be written 

dSk 
--" = aid,(t) - decay terms 

dt J 
(8) 

where a is a positive parameter. The "decay terms," 
perhaps involving ik and fj, are essential if the system is 
to forget old information. A nonlinearity or control proc­
ess is important to keep synapse strength from increasing 
without bound. Also, the parameter a might be varied 
by neuromodulator molecules that control the overall 
learning process. The details of the neurobiology are not 

CELLI 
POTENTIAL 

200 milliseconds 
TIME-

Action potentials, spikes in the electrical 
potential of the inside of a neuron, are 
generated when the cell potential reaches a 
threshold (-53 mV in this example), 
d ischarging the cell. After discharging, the 
cell resets to about -70 mV. When a constant 
current is injected into the cell , action 
potentials are generated at a regular rate. 
(Adapted from data provided courtesy of 
james Schwaber, Du Pont Experimenta l 
Station, Wilmington, Delaware.) Figure 4 

yet thoroughly understood, and equation 8 is only a 
placeholder for a more adequate expression. Slightly 
more complex synapse change rules of a Hebbian type 
reproduce results of a variety of experiments on the 
development of eye dominance and orientation selectivity 
of cells in the visual cortex of the cat.5 

The synapse evolution algorithm, whatever its form, 
is one of the dynamical equations of the neural system. 
The tacit view is that learning and development involve 
synapse changes, whereas the dynamics of neural activity 
is what performs a computation. This need not be the 
case, however, and synapse modification should not be 
ignored as a means of doing some kinds of computation. 

A synapse change algorithm underlies the most 
widespread application of artificial neural networks. A 
feedforward network (one without closed-loop pathways) 
is a trivial dynamical system, but such a network, with 
an appropriate set of connections, can solve nontrivial 
pattern classification problems.6 The computational 
power in this case is embodied in finding the correct set 
of connections, a process most often done by a highly 
artificial synapse change dynamics that is quite unrelated 
to biology. Even so, it is the dynamical method of 
determining the connection strengths that results in a 
useful feedforward network. 

Classical neurodynamics 
Neural network dynamics can be described in two ex­
treme limits. In one description, the "classical approxi­
mation," individual action potentials have little effect and 
their precise timing is unimportant for coding informa­
tion. We can then adopt the point of view that deals 
only with large numbers of action potentials in a statis­
tical fashion. This paradigm has been used in much of 
neurobiology and neuromathematics . In an alternative 
paradigm the precise relative timing of action potentials 
arriving along different axons is very important, and the 
detailed time intervals between action potentials on a 
single axon are used to code significant information. I 
will describe this paradigm later. 

The classical approximation makes use of the fact 
that there will be many contributions to the sum on the 
right-hand side of equation 7 during a reasonable time 
interval as a result of the high connectivity. (The sum 
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over j typically includes thousands of cells that may make 
nonzero contributions.) In that case, it should be per­
missible to ignore the spiky nature of tj(t) and replace it 
with a convolution of fj(t) and a smoothing function. In 
addition, fj is presumed to be a function of i0 denoted 
V(ic), when ic is slowly varying in time. What results is 
like equation 7, but with ~(t) now a smooth function of 
time, fj(t) = V(i/f)). Thus7• 

(9) 

The main effect of the approximation is to neglect fluc­
tuation noise and to assume there are no strong correla­
tions between spike events. (A similar description could 
be given in electrical circuits of the passage from consid­
ering discrete electrons to regarding charge as a continu­
ous variable.) 

In many regions of the brain, the dominant connec­
tivity is quite short range, and signal propagation delays 
are negligible. While propagation delays can easily be 
introduced into equation 9, the mathematics of equations 
with delays is rather more complicated. 

Computation with fixed connections 
With one set of parameters, equation 9 describes a Vax. 
With another, it can mimic the electronics in a television 
receiver. The set of all equations represented by equation 
9 is far too general to have simple universal properties. 
If computation is to be done by a convergence to point 
attractors in the space of analog variables, one way of 
achieving that end is to consider a restricted set of 
networks that can be shown to converge to fixed points. 
We will therefore examine networks whose motion can 
be understood as the state's moving generally downhill 
on an "energy function" (or Lyapunov function) that may 
have a complicated landscape with many minima. 

The simplest case that is sufficiently flexible to be 
of interest is a symmetric network,8 defined by sij = sji· 
The function 

E = - L. skj vk Vf 
k,j 

f, 

+ ~ L. f v -1
({) df- L. Ik vk 

k 0 k 

(10) 

where v-1 is the inverse of the function V , Vj = V(i) and 
the current Ik in the third term on the right comes from 
external or sensory inputs, can be shown to always decrease 
under the equations of motion unless all variables have 
stopped changing. Since E is bounded below, this implies 
that the state will converge to the location of one of the 
minima of this function. The dynamics is understood 
through the minimum-seeking nature of equation 9. 

While symmetric connections are not the usual case 
in neurobiology (for example, an excitatory neuron can 
receive inputs of either sign but can make only positive 
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Average firing rate of a neuron depends on the input 
current. The approximation of "integrate and fire" without 
leakage or saturation would give the blue straight line. 
Leakage due to the cell's resistance results in the red curve, 
while noise fluctuations smooth out the sharp break in the 
curve at zero firing rate, producing the black curve . 
Saturation effects in the mechanism that generates action 
potentials set an upper limit on the rate. Figure 5 

connections to other neurons), there are various circum­
stances in which more complex and biological networks 
are equivalent to symmetric networks . Even feedforward 
networks can, by an appropriate transformation, be made 
equivalent to symmetrically coupled networks. 

The behavior of a symmetric system is easiest to 
understand in the limit of high gain, where the sigmoid 
response of the neurons (figure 5) approximates a step. 
Then, under most circumstances, every stable state must 
have each neuron either at maximal activity or zero 
activity, and each such state lies at one of the comers of 
a 2N-dimensional hypercube, where N is the number of 
neurons. The stable-state problem is then isomorphic 
with an Ising spin problem, but with each spin having 
the possible values 0 and 1 (instead of the more usual 
-1 and 1) and with the Ski serving as the exchange 
interactions in the Ising Hamiltonian. This connection 
with spin systems, and in a limiting case to a spin glass, 
has permitted extensive analysis of the stable states.9 

(See the article by Haim Sompolinsky in PHYSICS TODAY, 
December 1988, page 70.) 

An associative memory can be constructed as follows. 
If a "1" is defined to be a neuron firing at maximal rate, 
and a "0" as a neuron not firing, in the high-gain limit 
a memory is simply a state vector such as V mem = 
1,0,0,1,0,0,0,0,1, . . . . The synapse change 

f1Skj IX (2Yihem- 1) (2Vfnem- 1) (11) 

will make V mem a new fixed point of the dynamics, that 
is, a new memory. This synapse change is of the Hebbian 
type. Networks of a more biological flavor, having fixed 
patterns of inhibitory connections and low mean activity 
rates and carrying memory information only in excitatory 
connections, also function as associative memories. 

One can design symmetric networks to find solutions 
to many complex tasks that can be posed as minimiza­
tions. 1° For example, such networks have found solutions 
to the classical traveling salesman problem (in which a 
salesman wishes to visit each member of a set of cities 
once with the minimum amount of traveling) and to some 
practical problems of circuit-board layout. Researchers 
study such synthetic problems in part to learn about the 
computational power that can be obtained from a single 
convergence to a fixed point of a symmetric network. We 
expect the highly fed-back neural circuitry of all complex 
nervous systems to exhibit this computational power. We 
might think of the single convergence to a fixed point as 
the fundamental computing step of a brain, just as the 
single clock cycle is the fundamental computing step of 
a conventional digital machine. However, the high con­
nectivity of the neural system and the analog nature of 
its convergence allow the performance of quite complex 
tasks in a single step. 

If we abandon the restriction of symmetry, the next 
simplest system is the excitatory-inhibitory network. 
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Binaural localization of sound by an owl 
depends on the t iming of individual action 
potentials. Sequences of _sp ikes from the two 
ears, representing the sound detected, travel 
along antiparal lel axons. The two streams of 
spikes w ill tend to co incide and exc ite 
neurons at a location (red) whose position 
corresponds to the time delay between the 
sounds detected at each ear. Figure 6 

The neurons in such a network fall into two classes: One 
has only excitatory outputs; the other has only inhibitory 
outputs. Such networks can oscillate or even exhibit 
chaos11 (in computer modeling), and it has been difficult 
to gain enough mathematical control of them to see how 
to use them for powerful computation. Oscillatory sys­
tems are now being intensely investigated, however, be­
cause oscillatory behaviors are commonly found in the 
brain, for example, in the olfactory bulb and the neo­
cortex. 

Action potential synchronization 
The foregoing analysis was based on the idea that indi­
vidual action potentials are insignificant and that the 
precise information about when particular action poten­
tials occur is generally not relevant. Information is 
implicitly encoded in the short-time average of the num­
ber of action potentials generated by each cell. This 
paradigm lies behind most of the studies of the response 
of individual neurons in mammals. For example, a neu­
ron is called strongly responsive to a stimulus generated 
by a moving bar of light if the neuron generates action 
potentials at a high rate only during the presentation of 
that stimulus. Detailed information about the relative 
timing of different action potentials is ignored. 

In some situations, however, the timing of action 
potentials is very important to biological function. For 
example, the arrival of a synchronized set of action 
potentials on the many axons of the vagus nerve triggers 
the contraction of the heart. The timing of this pulse is 
essential to heart rhythm and blood pressure control. 
Action potential timing also matters in the binaural 
localization of a sound source by an owl. Each ear hears 
a sound of the same form, but one sound is delayed with 
respect to the other, and that delay determines the 
azimuthal location of a sound source. The brain meas­
ures the time delay with an array of neurons that detect 
coincidences between action potentials propagating with 

finite velocity along antiparallel axons from the two ears. 
(See figure 6.) 

In addition, visual object perception involves a set of 
specific computational problems that must be somehow 
solved in the brain. One of these is related to how we 
piece together the different parts of particular objects in 
the visual field, so that an object is seen separated from 
the background of other objects. The idea that what 
moves together is a single object is one of the important 
criteria that the brain seems to use. (If you have ever 
wondered why the door edge behind the subject's head 
is so plain in the snapshot yet was so invisible in the 
viewfinder when you were taking the picture, the parallax 
caused by your minor motions is a key element of the 
answer.) Coherent oscillations or synchronized action 
potentials may occur in neurons responsive to separated 
but comoving edge elements of a single object. Ideas12 

and experiments13 in this direction give impetus to theo­
retical work on the synchronization of action potentials 
in integrate-and-fire neurons . 

Most of the theoretical work has been done to try to 
understand the range of phenomena occurring in si~ple 
systems and has not yet focused on how such systems 
can do useful computation. In the simplest case a group 
of excitatory integrate-and-fire neurons are all connected 
to one another ("all-to-all coupling"), and each coupling 
is excitatory and of the same strength. When the exter­
nal or intrinsic current into each cell is the same (which 
would result in equal firing rates of all the cells if there 
were no connections between them) and the synaptic 
current due to an action potential at t0 has the form 

I (t) = { Io -<t - t )/T 
0e o 

(12) 

then the coupling synchronizes the action potentials of 
all the cells. 14 If the system begins in an arbitrary state 
of activity, it will evolve to a state of synchronized firing, 
a cyclic attractor for the system. If the neurons have a 
range of firing rates in the absence of connections, or if 
the connections themselves are not uniform, a broader 
class of behaviors occurs, including phase transitions to 
the synchronous state and the breakup of the cells into 
two classes, one group synchronized and one not. 

In neurobiology, chemical events and molecular con­
figuration changes take place between the occurrence of 
a presynaptic action potential and the ultimate current 
injection into the postsynaptic cell. Therefore the meas­
ured synaptic currents do not rise as a step but increase 
smoothly from zero. For this more realistic synaptic 
model, in the presence of noise, but with equivalent firing 
rates and equal all-to-all connections, there is a synchro­
nization-desynchronization phase transition as a function 
of noise amplitude. 15 The less realistic model of equation 
12 retains a synchronized phase for all noise amplitudes. 
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Spring-block model of earthquakes is 
somewhat analogous to models of sheets of 
neurons that account for individual neuron 
spikes. Springs connect ing the blocks 
correspond to synaptic connections between 
neurons, while the sli pping of a block 
corresponds to the f iring of a neuron. 
Consequently the types of complex behavior 
seen in the earthquake models can be 
expected to recur in neurobiology. (Adapted 
from ref. 1 7 .) Figure 7 

In an elementary short-time view of neural compu­
tation, the computation is performed by a convergence to 
a point attractor of a dynamical system. The synchroni­
zation of spiking neurons is a special case of a more 
general dynamical system whose motion converges to a 
cyclic attractor. Richer dynamics with more complex 
attractors should allow attractor networks to solve more 
complicated problems than can be solved with simple 
point attractors. 

The phenomena displayed by coupled integrate-and­
fire neurons will be richer when the synaptic connection 
patterns are more complex. Even the replacement of the 
equal all-to-all coupling by a fixed near-neighbor synaptic 
coupling in two dimensions (to represent aspects of a 
sheet of cells such as occurs in the neocortex) greatly 
changes the kinds of behavior that are found. This 
problem, which does not seem to have been studied in 
neurobiology, has in a limiting case a very close parallel 
with the Burridge-Knopoff modeJ16 of earthquake gen­
eration at a junction between tectonic plates. (This point 
was jointly understood in discussions last spring between 
Andreas Herz, John Rundle and me.) In the Burridge­
Knopoff model, the junction is represented by a set of 
slider "blocks" that are connected to a moving upper plate 
by springs and are dragged along the lower plate. (See 
figure 7. ) The motion of each slider is described by 
stick-slip friction. Each slider is also connected by other 
springs to its nearest neighbors. An earthquake is initi­
ated when one slider slips and triggers the motion of 
other blocks. A "slip" event corresponds to an action 
potential, the spring from plate to slider corresponds to 
an external current from elsewhere into each cell, and 
the springs between sliders correspond to synaptic con­
nections. The slipping is "self-organized"17•18 and pro­
duces a power-law distribution of earthquake magni­
tudes. While there is no exact correspondence with real 
neurobiology in this limiting case, it does extend our ideas 
of the kind of phenomena that can emerge from retaining 
action potential timing in neurodynamical equations. 

Simplicity and complexity 
Digital machines and brains both carry out computation 
by being dynamical systems. A very simple repre­
sentation of highly complicated neurobiology leads to a 
description in terms of coupled nonlinear differential 
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equations. The equations presented here are a drastic 
simplification of real biological neurons. Many features 
could be added, including propagation delays, a position­
dependent intracellular potential and the use of intracel­
lular Ca2+ concentrations as dynamical variables. How 
important are such omitted features? 

Physics has often made use of huge simplifications 
to get to the heart of issues. For example, conventional 
models of magnetism usually omit many details of mul­
tispin interactions, magnetoelastic coupling and longer­
range interactions, and yet they capture much of the 
essence of magnetic phenomena. Physicists are therefore 
accustomed to ignoring inconvenient details. 

Biology, being an evolutionary science, is different. 
If some quirky detail of neurobiology is useful in an 
important but special computation, that detail can be 
selected for and improved by evolution. As a result, in 
specific parts of the brain, particular details that are 
generally negligible elsewhere can be of utmost impor­
tance. The highly simplified model dynamics described 
in this article is thus far too impoverished to describe 
how a brain operates. 

Nevertheless, network computation with high connec­
tivity between analog elements is the means by which 
large brains gain an intelligence lacking in small nervous 
systems. The attractor behavior of equation 9 has proved 
to be robust to noise and to changes such as the addition 
of delays and action potentials. Even though the ele­
ments we have used are oversimplified abstractions, this 
robustness gives us reason to believe that we are making 
progress in understanding how networks of neurons and 
synapses can carry out complex computations. 
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