WE HEAR THAT

AAPM PRESENTS AWARDS IN ANAHEIM

During the July meeting of the American Association of Physicists in Medicine, in Anaheim, California, several individuals were recognized for their contributions to medical physics.

The William D. Coolidge Award, AAPM's highest honor, went to **Frank Herbert Attix**, an emeritus professor of radiology in the University of Wisconsin's department of medical physics. Attix was cited for his research in dosimetry and his contributions to the basic literature of medical physics through articles, lectures, books and reports.

The Farrington Daniels Award, given to the authors of the best paper on radiation dosimetry published in Medical Physics during the previous year, was presented to Jeffrey F. Williamson, Harold Perera and Zuofeng Li for their paper "Comparison and Measured Heterogeneity Correction Factors of 125I, 137Cs and 192Ir Brachytherapy Sources near Localized Heterogeneities." Williamson is an associate professor in the Mallinckrodt Institute of Radiology at the Washington University School of Medicine, and Li is a medical physics resident there. Perera is an assistant professor in the department of radiation oncology physics at Hahnemann University in Philadelphia.

AAPM presented the Sylvia Sorkin Greenfield Award to Thomas P. Fuerst and Michael S. Van Lysel for their paper "Measurement of Absolute Blood Iodine Concentration During Digital Subtraction Ventriculography." The award recognizes the best overall paper in Medical Physics during the previous year. Fuerst is an adjunct clinical assistant professor in the department of radiology at the University of California, San Francisco. Van Lysel is an associate professor of medicine and medical physics at the University of Wisconsin.

Hy Glasser of Nuclear Associates in Carle Place, New York, received a Distinguished Service Award from

Frank Herbert Attix

AAPM for "participation on AAPM's radiation protection, nuclear medicine and diagnostic radiology committees, his support of medical physics practitioners and his responsiveness to the needs of the medical physicist."

IN BRIEF

In August Brendan Godfrey became director of the Armstrong Laboratory, in San Antonio, Texas. Godfrey had been acting director of advanced weapons and survivability at the Air Force's Phillips Laboratory, in Albuquerque, New Mexico.

OBITUARIES Lee DuBridge

Lee Alvin DuBridge died of pneumonia in Duarte, California, on 23 January 1994, at the age of 92. After making notable contributions in his early career to research in atomic and nuclear physics, he directed the first laboratory that could be described as "big science" by present-day standards. He went on to bring a university of science and technology into the modern era and completed his professional career by serving in the most senior government position

that has responsibility for science and technology.

Lee was born in Terre Haute, Indiana, on 21 September 1901. He was attracted to physics as an undergraduate at Cornell College in Mount Vernon, Iowa, and went on to the University of Wisconsin to receive his PhD in physics in 1926. The subject of his thesis, the photoelectric effect, continued to be at the center of his interests both when he was a National Research Council fellow at Caltech with Robert A. Millikan and subsequently when he was on the faculty of Washington University in Saint Louis. His book Photoelectric Phenomena (McGraw-Hill), written with Arthur Hughes in 1932, was the canonical text on the subject for many vears. In 1934 he moved to the University of Rochester as a full professor of physics and chairman of the department; there he led the building of the most powerful (8 MeV) cyclotron in the United States at that time.

In the fall of 1940 Lee was appointed the founding director of the Radiation Laboratory of MIT. The appointment was made at the suggestion of Alfred Loomis and of Ernest Lawrence on the basis of Lee's demonstrated technical and administra-

Lee DuBridge

Spend More Time Doing Science and **Less Time Programming**

is the only software that allows you to program four to ten times faster* than FORTRAN or C. It seamlessly integrates all of your scientific computing needs in a single package - breathtaking 2D, & 3D graphics, powerful number crunching, flexible data 1/0 and more. It even includes a complete GUI toolkit for creating point and click applications. And, because IDL runs on PCs, Macs, Unix and VMS workstations you won't have to rewrite your code every time you change machines.

Join the elite group of more than 20,000 scientists around the world who are saving

time and money by using IDL.

Call us for a free demo.

303-786-9900 FAX 303-786-9909

Circle number 56 on Reader Service Card

tive ability.

At the time of Lee's appointment the importance of radar to military capability had already been demonstrated by the Battle of Britain. The Radiation Laboratory was responsible for the development and manufacture of most of the Allied powers' radar capability through the end of World War II. Radar became a decisive factor in the war. Under Lee the Radiation Laboratory's population grew to 4000. It carried out the necessary research in electromagnetic-wave generation and propagation, developed power sources and antennas, established the necessary manufacturing techniques, supplied forces around the globe, supervised the testing and operation of radar in combat and fed the resulting lessons back into the process of development, manufacturing and installation. DuBridge's strengths as a leader, manager and administrator made the Radiation Laboratory a model for subsequent enterprises aimed at applying science and technology to meet national goals.

After the war Lee returned to Rochester, but he soon concluded that the passage of time argued against his being able to catch up with what had happened in nuclear physics during the war years and that his demonstrated talents for leading technical activities had opened up a new career. Thus he was persuaded by Max Mason, a Caltech trustee, to become president of the California Institute of Technology in 1946. He succeeded Millikan, who had been one of Lee's mentors 20 years earlier, but whose official title was Chairman of the Executive Committee.

Lee DuBridge proceeded to lead Caltech through its transition to the postwar era, which was characterized by heavy Federal support for science and engineering and by the large projects that accompanied that support. Lee's strong leadership had many results. Caltech's Jet Propulsion Laboratory, spawned by World War II and originally directed at military rocketry, was converted to the premier center for unmanned exploration of the solar system that it is today. The 200-inch telescope at Mount Palomar provided a new window on the universe. Theoretical physics flourished at Caltech with the presence of Nobel Prize winners Richard Feynman and Murray Gell-Mann. Through the work of such scholars as Max Delbruck and Roger Sperry, molecular and behavioral biology were added to Caltech's existing expertise in genetics. Structural chemistry and chemical dynamics, engineering and aeronautics, geophysics and planetary science—Lee DuBridge dealt soundly and effectively with all of these areas. Along with his former Radiation Lab colleague Robert Bacher-who joined Caltech as chairman of physics, mathematics and astronomy and subsequently became provost—he was able to attract leaders in many fields to carry out research and to teach at the undergraduate, graduate and postdoctoral levels. In the humanities and social sciences, Lee's tenure produced genuine scholarship and even a few undergraduate majors.

As Lee's retirement after 22 years at Caltech approached, the opportunity arose for him to render a final national service. He was called to Washington as science adviser to the newly elected President Nixon. Undoubtedly Nixon remembered that Lee, who had been appointed in 1951 by President Truman to the then newly created Presidential Science Advisory Committee, had been made chairman of that committee by President Eisenhower—a position that Lee held until 1958. Lee was no doubt somewhat out of place among the hardball political operatives of the Nixon Administration, whose activities have since been so thoroughly chronicled. He did not always have the access to or influence over people that the scientific community believes, sometimes correctly and sometimes incorrectly, was enjoyed by some of his predecessors in earlier Administrations. But he did have a constructive effect. During Lee's 18month tenure and thereafter, the Nixon Administration supported increases in funding for basic research and for development, on the civilian side as well as in the military.

Lee DuBridge retired to Southern California in 1970. He remained active in civic and educational affairs, notably at Caltech, until his death. His pleasant personality, calm and rational approach to issues and concern for all individuals with whom he dealt, combined with his intellectual qualities, made him effective not only as a leader in science and technology (Time magazine in 1955 characterized him as "the senior statesman of science") but as an active participant in the Southern California community and an eloquent national and international spokesman for science, technology and education.

HAROLD BROWN Center for Strategic and International Studies Washington, DC JOHN D. ROBERTS California Institute of Technology Pasadena, California