BOOKS

terial in too little space. On the other hand, the book is very thoroughly referenced; an interested reader can easily find the relevant literature.

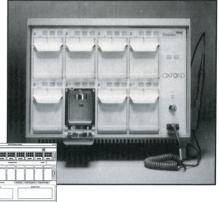
In summary, I found this to be a well-written book that would be highly valuable to anyone working in laboratory or space plasmas. book should not be considered a standard textbook, like the classical Principles of Plasma Physics (McGraw-Hill, 1973) by Nicholas Krall and Alvin Trivelpiece. For example, there are no problems in Biskamp's book. In spirit it is more like Eugene Parker's Cosmical Magnetic Fields (Clarendon, 1979), because it presents a clear description of current areas of research, with the emphasis always on the physics of the phenomenon.

SPIRO K. ANTIOCHOS
Naval Research Laboratory
Washington, DC

Principles of Symmetry, Dynamics and Spectroscopy

William G. Harter Wiley, New York, 1993. 846 pp. \$125.00 hc ISBN 0-471-05020-2

Group theory has come into its own. In contrast to the situation in the 1930s, when it was regarded by many as an unnecessarily complicated and almost perverse tool of theoretical physics, group theory is now seen as an essential component of graduate and even undergraduate education. Nothing could demonstrate this change of heart better than William Harter's Principles of Symmetry, Dynamics and Spectroscopy. In it, European esoterica have been supplanted by American practicalities.


Harter senses that most physicists would be happy working under the hood of a car, and he has brought the vision of an intellectual auto mechanic to group theory. The formal theory that both senior undergraduates and graduate students can profitably absorb is interspersed with mechanical analogs. As someone who has tackled the vibrating fullerenes, Harter is particularly strong on normal modes. This topic leads into the calculus of angular momentum, level splittings (particularly for SF₆, where Harter himself has made major contributions), spherical tensors and the Wigner-Eckart theorem for finite symmetries and SO(3). The emphasis is on the representations of groups rather than the abstract groups them-

OasisTM

The Most Advanced Alpha Spectroscopy System Ever Designed!

Walk away from your alpha spectroscopy system and never give it a second thought!

All hardware and software operations are completely controlled and monitored by a personal computer. Just set up application parameters, start the program... and the OASIS system takes over.

When you need to change samples, OASIS automatically controls the vacuum to "active" chambers, stores all information to disk and, if you wish, even prints the results. Load, start, and walk away. It's that easy.

FFATURES:

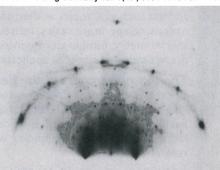
- Ultra-low background
- Sample database
- management
 ROI, Library and Peak search analyzers
- "Smart" Systems Check
- Bar Code Reader
 Much, much more!
- For the complete list of

OASIS features and options, call Toll Free: 1-800-769-3673

Oxford Instruments Inc Nuclear Measurements Group

601 Oak Ridge Turnpike, Oak Ridge, TN 37831-2560 Telephone (615) 483-8405 • Fax (615) 483-5891 Toll Free 1-800-769-3673

Circle number 37 on Reader Service Card



S T A I B INSTRUMENTE

Obere Hauptstraße 45 85354 Freising Germany Tel. +(49) 8161-7740 Fax -7709

RHEED SYSTEMS 35 keV, 20 keV, 12 keV

RHEED VISION

Precision RHEED SYSTEMS

- * energy from 1 to 35 keV
- high beam current and stability
- * lowest divergence
- * remote controls
- * Beam Blanking
- * Beam Rocking
- differential pumping
- * computer interface
- diagnostic port logic for fast technical customer support by Fax

RHEED VISION

- high speed CCD camera acquisition systems
- * RHEED oscillations on several spots simultaneously
- * dynamic multiple line scans
- * dynamic multiple spot profiling
- * 8 and 16 bits image processing
- comfortable data transfer and networking

selves. Lie groups and algebras do not go beyond O(4) and U(3). There are no applications to particle physics.

The large number of diagrams gives a flavor of the amazingly rich and varied course of lectures that must have formed the nucleus of the book. The wit one has come to expect from Harter's many articles finds its outlet in such items as the "clocktane molecule" (modestly not indexed), the mnemonic wheels for octahedral spin algebra with half-integral angular

momenta, and the many nomograms. Axes often have crank handles attached to aid the visualization of rotation and to encourage reader participation. Readers whose ocular decoupling has been honed by Philip Morse and Herman Feshbach's classic Methods of Theoretical Physics (McGraw-Hill, 1953) can exercise their skill on the stereograms for generalized Lissajous trajectories.

The abundance of examples and illustrations comes at a price: The

book is long. In 1932 B. L. Van der Waerden was able to derive a general expression for an SO(3) Clebsch–Gordan coefficient in a couple of pages. Harter takes more than 100 pages to work his way through the dihedral and octahedral groups before moving on to some special cases of SO(3) and ultimately to the general result.

The book's modern writing style, characteristic of today's ever fatter textbooks, is a reflection of the classroom, where the teacher explains while the audience passively listens. Harter has rethought and reworked his material, often in a brilliantly inventive way, but there is a risk that weak-willed readers may lose their sense of direction and be left dazed and groggy rather than inspired.

BRIAN R. JUDD

The Johns Hopkins University

Baltimore, Maryland

A once-in-a-decade event, recorded in two notable volumes!

Temperature

Its Measurement and Control in Science and Industry

Volume Six

Editor-in-Chief,

James F. Schooley

The thermometry and temperature control event of the decade

This two-volume record of the historic Seventh International Temperature Symposium, held April 28 to May 1, 1992, gives you hundreds of papers detailing international research results and techniques.

A huge collection of up-to-date research papers In addition to a wealth of information on the new ITS-90, papers address such vital topics as thermodynamic temperature determinations, temperature scales, resistance thermometry, radiation thermometry, temperature control, calibration methods, and thermometry for special applications.

The top researchers in the field

Contributors such as C.A. Swenson, J.F. Schooley, Terry Quinn, Hugh Preston-Thomas, Ralph Hudson, B.W. Mangum, G.T. Furukawa, Richard Rusby, and Franco Pavese bring you the latest findings. This outstanding work is a must for your reference library.

1993, 500 pages (2 vols.), 1-56396-093-1 Cloth, \$245.00 **Member price** \$196.00

To receive Member price, please indicate your AIP Member Society when ordering.

To order call I-800-488-BOOK

In Vermont: I-802-878-0315. Fax: I-802-878-1102.
Or mail check, MO, or PO (include \$2.75 shipping & handling) to:

American Institute of Physics c/o AIDC • P.O. Box 20 Williston, VT 05495

Topics in Ergodic Theory

Ya. G. Sinai Princeton U. P., Princeton,

New Jersey, 1994. 216 pp. \$39.50 hc ISBN 0-691-03277-7

The first sentence of Yasha Sinai's Topics in Ergodic Theory states that "ergodic theory studies statistical properties of deterministic dynamical systems." The 18 lectures in this book cover that area in the broadest sense. Sinai, now at Princeton University, is the acknowledged leader in the field. His work on K systems began 35 years ago, and he continues to make important contributions. This is a mathematics book rather than a physics book, but because of its obvious relevance to the area called chaos science, it will interest many theoretical physicists.

On the whole, the author avoids abstruse mathematics, so the book will be accessible to physicists. However, the use without comment of basic tools from mathematical probability theory (such as the Borel Cantelli lemma and Doob's theorem) will require many physicist readers to do some background work or else accept a fair amount on faith. The book is filled with clear and nontrivial examples that will be of use even to those who don't hold with the theorem—proof style of much of the book.

The book is divided into five parts. The first, which focuses on John von-Neumann's celebrated theorem classifying ergodic systems having purepoint spectrum, will be of limited interest to physicists, because such spectra correspond to systems that