Photorefractive Nonlinear Optics, Pochi Yeh has drawn on his many years of contributions to the field to provide a well-organized, advanced textbook intended for a course in modern optics for electrical engineering and applied physics students. A general knowledge of electromagnetism, solid state physics and differential equations is assumed. The book should also find immediate acceptance with researchers entering the field of photorefractivity, because it treats in detail many of the most fascinating and most subtle beam-coupling properties that arise from the nonlocal phase shift of photorefractive holograms.

Yeh successfully builds a foundation for many applications in several introductory chapters that review electromagnetism in crystals, the coupled-mode theory in periodic media and the physical mechanisms that lead to photorefractivity. Such topics often require entire books for a full exposition (for example, *Optical Waves in Crystals* by Amnon Yariv and Yeh; Wiley, New York, 1984), but the presentation here is still lucid and reasonably complete.

To describe the variety of applications resulting from beam-coupling effects and nonreciprocality, Yeh begins with explanations of how oscillation can occur in photorefractive resonators, paying particular attention to the role of the photorefractive phase shift and the oscillation conditions. To make the strange effects that can occur with self-pumped and multiple-pumped phase conjugators physically reasonable, Yeh effectively presents three theoretical explanations based on four-wave mixing, resonator theory and hologram sharing, respectively. The storage capacity of volume holograms is calculated as the number of "uncertainty volumes" that can be placed in the wavevector phase space of a given material. This discussion could have included an example of the application of uncertainty volume to specific storage architecture.

The book pays particular attention to the nonreciprocal nature of optical elements formed from photorefractive materials. Yeh correctly realizes that to understand what is different about photorefractives used in interferometric applications, the reader must first understand the Stokes relationships for a normal lossless beam splitter. This background greatly helps the reader appreciate the subsequent descriptions of ring cavities and Michelson interferometers containing photorefractive materials, as well as the optical computing applications based on amplitude subtraction and addition, reconfigurable optical interconnection, and dynamic neural networks.

Only a few small enhancements would have improved this already excellent text. The general introduction briefly describes the early days of photorefractive nonlinear optics, but no references are listed for the early measurements until the later chapters. A list of variables and nomenclature would have assisted the researcher in translating specific results to other naming conventions. On the whole, however, this book is an important contribution to the field, worthy of the attention of anyone serious about understanding the novel properties of photorefractive materials.

W. E. MOERNER IBM Almaden Research Center San Jose, California

Quantum Measurement

Vladimir B. Braginsky and Farid Ya. Khalili (Edited by Kip S. Thorne) Cambridge U. P., New York, 1992. 191 pp. \$39.95 hc ISBN 0-521-41928-X

Even before humans were human, we learned to predict, with only a quick glance at a moving animal, where it would be a few seconds later. Now, not so long afterward, a small group of experimental physicists has sharpened this skill by a factor of 10^{16} —to catch not rabbits but gravitational waves.

When a gravitational wave shines on an aluminum bar or a pair of interferometer mirrors, a differential force stretches or compresses the bar or the separation between the mirrors by a fraction of an atomic diameter. One makes two or more measurements of position and then predicts the future position in the absence of the wave. If a subsequent measurement differs from the prediction, the apparatus has caught a gravitational wave.

The gravitational wave—containing frequencies below a few kilohertz and a large number of coherent quanta—can be described classically. Its interaction with the bar or interferometer is also classical, as is the subsequent motion. Only the position measurements are quantum mechanical.

The problem of measuring the position of a particle in the absence or presence of a very small force is simple, general and elegant. Although the bar or interferometer with which gravitational measurements are done is really

a harmonic oscillator, for small amplitude changes the position of one end of the bar or of one mirror can be approximately described as a free particle. At a time t seconds after the initial position and velocity have been measured, the uncertainty in the predicted new position is the root mean square sum of Δx_0 and $\Delta p_0 t/m$.

Because Δp_0 is related to Δx_0 by $\Delta p_0 = \hbar/2\Delta x_0$, Δx_0 can be chosen to minimize the uncertainty of the new position. The resulting minimum uncertainty in the predicted position, the standard quantum limit, is $(\hbar t/2m)^{1/2}$. Thermal fluctuations make measurements at the SQL hard to achieve, but Vladimir Braginsky has built a tiny system that works at the SQL even at room temperature.

Although a real detector of small forces, such as a bar or pair of mirrors, is not a free particle but a harmonic oscillator, the SQL of a real detector is, within a factor of 2π , that of a free particle with the time t replaced by the oscillator period.

The surprise is that, for classical forces, the standard quantum limit can be beaten. One can get far below the SQL by measuring a combination of position and momentum that responds to the force while leaving the quantum state of the oscillator unchanged. This quantum non-demolition measurement extracts information but does not destroy the original state. One candidate for a quantum nondemolition measurement is the oscillator energy. This measurement gives no information about the oscillator phase. Another candidate is one of the oscillator's two quadrature amplitudes. This measurement, similarly, gives no information about the other quadrature am-In each case, the cost of measuring one variable more and more accurately is that the measuring apparatus must throw more and more energy into the conjugate variable to increase its uncertainty. The oscillator is put into a state in which the measured variable with the small uncertainty is squeezed, while its conjugate variable is inflated. The limit is eventually set by the amount of energy available, or the robustness of the oscillator.

A more accurate title for this book, by Braginsky and Farid Khalili of Moscow State University, might have been *Quantum Measurement of Classical Forces*. The book applies all the tools of classical and quantum measurement to the measurement of small forces. The tools include time evolution operators, eigenstates, density matrices, correlation functions, noise spectral densities and heteroand homodyne detection. By focus-

BOOKS

ing on this practical but previously little-studied aspect of quantum measurement, the authors show a simple way to understand the limits that quantum mechanics places on classical measurements of force, energy, displacement and velocity. As in Braginsky's previous book, Systems with Small Dissipation (U. of Chicago P., Chicago, 1985), the ideas, all subtle, fundamental and useful, are the original work of the authors. The material is accessible to graduate students and can be interpreted for undergraduates. Quantum Measurement will provide easy-to-understand examples for the quantum mechanics texts of the future, and it will influence the direction of research in quantum measurements.

> DONALD SCARL Polytechnic University Farmingdale, New York

Theory of Quanta

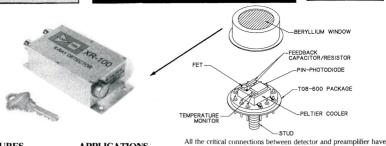
Iwo Bialvnicki-Birula, Marek Cieplak and Jerzy Kaminski

Oxford U. P., New York, 1992. 494 pp. \$49.95 hc ISBN 0-19-5-7157-3

Topics in Advanced Quantum Mechanics

Barry R. Holstein

Addison-Wesley, Redwood City, Calif., 1992. 436 pp. \$48.50 hc ISBN 0-201-50820-6


Some time ago, quantum mechanics found its way into elementary physics at the college level. It is nonetheless common for advanced undergraduates or beginning graduate students to take a "serious" quantum mechanics course—two semesters, sometimes three, in length—that surveys the subject from the beginning. What should such a concentrated introductory course in quantum mechanics include, and what should be presented at the next level? To these problems the books under review-Theory of Quanta, by Iwo Bialynicki-Birula, Marek Cieplak and Jerzy Kaminski of the Polish Academy of Sciences and Warsaw University, and Topics in Advanced Quantum Mechanics, by Barry R. Holstein of the University of Massachusetts, Amherst—offer thoughtful resolutions.

It is to the beginning audience that Theory of Quanta is directed. In this volume the authors restrict themselves to Schrödinger's wave mechanics, promising extensions to matrix mechanics in a sequel. This self-

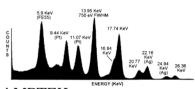
AMP TEK

X-RAY DETECTOR WITH 750 eV RESOLUTION

XR-100

FEATURES

- · Si-PIN Photodiode
- Peltier Cooler · Cooled FET
- · Amptek A250 Preamp
- · Temperature Monitor
- Beryllium Window
- · Hermetic Package (TO-8)


APPLICATIONS

- X-Ray Fluorescence
- Portable X-Ray Instruments
- · X-Ray Research
- Mossbauer Spectrometers

- Medical X-Ray Detectors
- X-Ray Lithography

- · X-Ray Space and Astronomy

Model XR-100 is a new high performance A-Ray Detector, Preamplifier, and Cooler System using a Si-PIN Photodiode as an X-Ray detector mounted on a thermoelectric cooler. On the cooler are also mounted the input FET + RC feedback components to the Amptek A250 charge sensitive preamp, and a temperature monitor. The hermetic TO-8 package of the detector has a light tight, vacuum tight 10 mils (0.25 mm) Beryllium window to permit soft X-Ray detection.

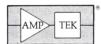
been made internally to the XR-100 to ensure quick, first-time operation by the user. The cooler maintains the internal components

at -30°C in order to minimize the leakage current of the detector

and input FET. The output of the XR-100 can either connect to the

Amptek A275 post amplifier/shapers or to a standard NIM shaping

amplifier before connecting to a Multichannel Analyzer (MCA). The


XR-100 is provided complete with BNC connectors and power cable.

for the 5.9 keV (Fe55) is 710 eV FWHM, and for the 14.4 keV (Co57) is

AM²⁴¹ and Fe⁵⁵ Spectra with the XR-100

The system resolution for the 13.95 keV (Am241) is 750 eV FWHM,

WORLD-WIDE SALES DIRECT FROM THE FACTORY

AMPTEK INC.

6 DE ANGELO DRIVE, BEDFORD, MA 01730 U.S.A. TEL: 617-275-2242 FAX: 617-275-3470

680 eV FWHM.

Circle number 26 on Reader Service Card

A tunable HeNe laser from 200nm to 2 microns?

Although a continuously tunable HeNe laser is not yet possible, PTI's L-1 illumination system can fill the gap! The L-1 can produce 2mW or more of monochromatic light. depending on the bandwidth. The spectral range can be from 200nm to 2 microns.

The L-1 consists of a xenon compact arc lamp in a sealed housing (no venting or cooling required) and a 0.2-meter monochromator. The L-1 can be computer- controlled to scan wavelengths. A fiber optic delivery system is also available.

Call or fax PTI today for more details!

