THE FLUID PHYSICS OF
PARACHUTE INFLATION

Cloth packed to the density of oak emerges from its container

in a second, changes its shape from cylindrical log to ‘cloth streamers’
to hemispherical cup in another 2 seconds, and decelerates

a one-ton payload from the speed of sound to highway speed limits.

Carl W. Peterson

Parachutes have a fascinating history and a promising
future. They were born long before airplanes, in ancient
China. Leonardo da Vinci made sketches of a parachute-
like device at the end of the 15th century, and Fauste
Veranzio parachuted from a Venetian tower in 1617. By
the time airplanes arrived on the scene, parachutes were
older than Methuselah.

Today, parachutes are busier than ever. They have
become even more essential as people and their precious
cargo spend more and more time in the air and in space.
Because they are by far the lightest, least expensive
method for decelerating objects in the atmosphere, para-
chutes are used extensively for recovering valuable air-
borne objects, enabling crew escape and rescue, and
delivering military weapons and payloads.

Examples of payloads recovered using parachutes
already include expensive atmospheric research instru-
mentation and the 175 000-pound solid-fuel rocket boost-
ers that help launch the space shuttle. Future soft-land-
ing and payload recovery missions include landing
instrumentation on Mars and returning materials manu-
factured in space to the parking lot of the laboratory
where they will be processed.

Rescue missions today include escape from high-per-
formance aircraft and in a few years will include return
of injured astronauts from spacecraft. The US Army
would like to deliver 60 000-lb tanks behind enemy lines
from cargo aircraft flying only 300 feet above the ground
to escape detection during covert operations. Simultane-
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ously, parachutes will be used to deliver the squadrons
of troops to drive the tanks and participate in the mission.
Each of these uses demands parachutes that are as
technically complex as the vehicles that lifted them into
the air in the first place.

This article describes the physics of the motion of
the parachute and the surrounding air as the para-
chute emerges from the payload, inflates, and decel-
erates the payload. Such a physical understanding is
a prerequisite for developing computational tools for
designing parachutes. The design tools must be predi-
cated upon analytical and numerical models of the
unsteady motion of the air coupled to the equations
of motion of the parachute.

Precise calculation of parachute deployment, infla-
tion and payload deceleration requires solution of the
nonlinear, time-dependent equations of motion for turbu-
lent, separated airflow around and through the parachute
coupled to the equations of motion of the parachute.
Because of the difficulty of this problem, it is not sur-
prising that parachute designers have for many years
relied on empirical methods rather than on analysis.
Once I show what physical phenomena are involved, I
will describe attempts to model the important events
numerically so that parachutes can someday be designed
on computers instead of by trial-and-error flight tests.

Parachute aerodynamics

Parachute deployment and inflation is arguably the most
complex physical event in aerodynamics. One source of
complexity is the requirement that the parachute provide
drag only after the payload has been allowed to fly by

~ itself while accomplishing its mission. Before the para-

chute is needed, the payload must retain its own aero-
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Deployment of a parachute. After the payload is released from the aircraft, a cluster of three pilot parachutes
pulls the deployment bag away from the payload. The suspension lines are pulled out of the bag first, and then
the main parachute canopy. The plane, an Air Force B-1B bomber, dropped the 2400-Ib instrumentation
package at a speed of about 500 miles per hour. Figure 1

dynamic characteristics, not those of the parachute. This
means that the parachute must be stored out of the
airstream. Space limitations on the payload invariably
dictate that the parachute’s stored shape be much differ-
ent from its inflated shape. When it is time for the
parachute to be used, it must be transformed into its
high-drag shape as quickly as possible; this is why para-
chutes are made of cloth. The unfolding and aerodynamic
loading of the cloth contribute to the complexity of para-
chute deployment and inflation.

Figure 1 shows the deployment from a 2200-1b, 1.5-
ft-diameter payload of a 46.3-ft-diameter “ribbon” main
parachute. (The canopy—the part of the chute that
creates drag—is not solid cloth as one might expect, but
is constructed of strips of material, called ribbons, which
are laid out with gaps between them.) A cluster of three
3.8-ft-diameter ribbon pilot parachutes was developed at
Sandia to pull the main parachute deployment bag out
of the payload and then pull the main parachute out of
its deployment bag. The main parachute is positioned
in the deployment bag so that the suspension lines of the
parachute are pulled out of the bag first as the deploy-
ment bag is pulled away from the payload. After all the
suspension lines are out of the bag, the parachute canopy
emerges. It must be pulled completely out of the bag,
without damage, before it inflates and decelerates the
payload.

The sequence of events that occurs during deploy-

ment of the 46.3-ft-diameter parachute from its four-
panel bag includes the cutting or breaking of the cloth
“ties” that secure the parachute suspension lines and
canopy to the panels of the bag. Successful deployment
requires obtaining enough drag from the pilot parachute
to pull the main parachute out of its bag, as well as
careful selection and location of line and canopy ties,
cutting knives, the canopy’s retainer and other parts of
the deployment bag. The entire sequence of events, from
ejection of the pilot parachutes to stretching out all 65
feet of the main parachute behind the payload, takes
place in less than 2 action-packed seconds. The physics
of the deployment process involves the dynamics of the
payload (which is coupled to the dynamics of the cloth
structures), the aerodynamics of these strange shapes
and the response of the textile materials to the loads
imposed upon them.

Inflation of the canopy begins as soon as the para-
chute is pulled free from the deployment bag. Figure 2
illustrates the inflation process, and figure 3 shows the
structural elements of the parachute canopy. Air flows
into the canopy through the inlet opening at the bottom
of the canopy (the skirt) and out through the porous
canopy fabric, the vent and the gaps between ribbons.
The porosity of the canopy material and configuration is
designed so that air is retained in the canopy. This
“captured” air causes the pressure inside the canopy to
increase above the pressure outside of the canopy. The
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Inflation and descent of a parachute. With
the parachute completely out of the bag (at
lower left of top photo), the canopy inflates,
slows the payload and allows it to descend to
the ground. Figure 2

radial component of force generated by the pressure
differential across the canopy accelerates the canopy
outward and causes it to inflate. Inflation continues as
long as the integrated outward radial pressure forces
remain greater than the integrated radial tension and so
long as the canopy encounters no structural constraints
such as circumferential reefing (which limits the diameter
of the canopy skirt).

No other aerodynamic structure undergoes such an
enormous change in shape during the course of perform-
ing its aerodynamic mission. And the motion of no other
aerodynamic structure is coupled as strongly to the mo-
tion of the air: The shape of the parachute depends on
the aerodynamic forces acting on the canopy, but the
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airflow that generates the aerodynamic forces in turn
depends on the shape of the parachute canopy.

As the parachute decelerates the payload, the oncom-
ing airflow velocity (relative to the parachute) decreases.
For many high-performance parachutes, the oncoming
airflow velocity can change significantly during the time
required for the parachute to inflate, in which case the
process of parachute inflation is intrinsically time de-
pendent. In addition to the dependence of inflation pa-
rameters on nonsteady flow parameters, one observes
other time-dependent aerodynamic events during the op-
eration of high-performance parachutes. An example is
wake recontact, sometimes called “canopy collapse.” This
phenomenon occurs when the parachute decelerates the
payload so rapidly that the air behind the parachute
catches up to the canopy, causing it to deform, or “col-
lapse,” and lose drag.

Eventually the parachute and its payload descend
vertically at a speed determined by the weight of the
payload, the density of the air and the size and shape of
the parachute. Terminal descent is the only “steady
state” (time independent) process that we encounter dur-
ing the operation of a parachute.

Some of the complexity of parachute aerodynamics
is a direct consequence of the mission that parachutes
are designed to accomplish. They are required to decel-
erate payloads that have insufficient drag to decelerate
quickly enough on their own. Hence parachutes must
have much more drag than the objects that they decel-
erate. Whereas most of the aerodynamics community is
concerned with optimization of the aerodynamic efficiency
of streamlined, low-drag shapes, parachute designers
seek to create the maximum amount of disturbance to
the oncoming airflow—that is, the maximum drag.

As a result, parachute aerodynamics is irrevocably
associated with the airflow around blunt-ended, or “bluff,”
bodies, which encompasses several of the yet unsolved
problems in fluid dynamics. For example, the air flowing
around the parachute separates from a location on the
canopy that is @ priori unknown. The shedding of vor-
tices from the bluff canopy shape may affect canopy
stability and cause a periodic motion of the parachute
and payload.

These bluff-body aerodynamic phenomena are fur-
ther complicated by the presence of the payload just
ahead of the parachute. The turbulent wake generated
by the payload flows into the parachute, reducing the
parachute’s drag and causing instabilities in the para-
chute’s inflated shape. This means that the performance
of the parachute may depend on the payload’s physical
characteristics as well as on the parachute’s own charac-
teristics.

Parachute deployment simulation

Now that we have some physical feel for what happens
during the flight of a parachute, I shall review how
aerodynamicists have approximated the relevant physics
in numerical models of parachute inflation, beginning
with parachute deployment. James Purvis of Sandia
National Laboratories has developed a computer code
called Linesail® to provide guidance for the design of the



pilot parachute and deployment system for parachutes
like the 46.3-ft-diameter parachute in figures 1 and 2.
Because different parts of the parachute exhibit inde-
pendent motions during inflation, one must model the
parachute suspension lines and canopy as a collection of
flexible distributed-mass structures connected to a finite-
mass forebody. The payload, suspension lines, canopy,
pilot parachute and deployment bag for the main para-
chute are each modeled as a series of elastically connected
mass nodes, as shown in figure 4. The motion of each
mass node is determined by the tensile and aerodynamic
forces acting on it. The forebody and the pilot parachute
and deployment bag are separate special nodes; all un-
deployed suspension line and canopy mass nodes are
lumped in the pilot parachute and deployment bag node.
The forebody node includes forebody drag, and the de-
ployment bag node includes pilot parachute drag.

At time ¢ = 0, the deployment process begins and the
drag of the pilot parachute begins to pull suspension line
nodes out of the bag, one at a time. The equations of
motion for the ith deployed mass node are

m;x;=T;cos0,—T;_;cos0;_,+X,
in the direction of flight (x) and
m;7;=T;sin0,-T,_,sind;_; +R;

in the direction perpendicular to the flight path ().

These equations are solved at successive times until
the main parachute has been pulled completely free from
its deployment bag. The distribution of mass is specified
from the payload through the apex of the canopy. The
factor m; is the mass of the ith node; x; and r; are the
accelerations of the ith mass nodes in the x and r
directions, respectively. 7; is the tension between nodes
i and i + 1. The tension is modeled as a combination of
a linear stress—strain rate for the actual textile material
being used and a semiempirical damping term. The
terms X; and R; are the axial and radial components of
the aerodynamic forces acting on the segment of suspen-
sion line or canopy; they are based on familiar formula-
tions for the cross flow and drag of a cylinder.

Figure 5 shows the severe “line sail”—the premature
removal of the suspension lines from the deployment bag
by the oncoming wind blast—that was observed during
deployment of the 46.3-ft-diameter parachute using a
single 5-ft-diameter pilot parachute while the payload
was traveling at Mach 1.28 after release from an F-111
aircraft. The 5-ft-diameter ribbon pilot parachute was
not able to remain inflated in the flow field of the wake
behind the payload and in the shock waves created by
the F-111. The collapsed pilot parachute could not pro-
vide enough drag to avoid severe suspension line sail,
which resulted in unacceptable damage to the canopy.

Purvis used the Linesail code to guide the redesign
of the deployment system for the 46.3-ft-diameter para-
chute to overcome the line sail problems shown in figure
5. - Simple engineering approximations were used to
model breakage of the line ties, bag friction and other
details of deployment. The dynamics equations and en-
gineering approximations were verified with data from a
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static parachute deployment test—ground test with no
airflow—and from the flight of other parachute systems.
Purvis then reproduced the line sail shown in figure 5
with Linesail code calculations. His calculations agreed
well with flight test observations throughout deployment.
Subsequent numerical results indicated that practical
changes in line tie strengths would not control the line
sail, but that increasing the pilot parachute drag would
be a very effective method of controlling it. The pilot
parachute drag area was increased from about 10 ft2
to 17 ft? by replacing the 5-ft-diameter parachute with
the cluster of three 3.8-ft-diameter parachutes shown in
figure 1.

Canopy inflation models

Numerical methods and computational hardware have
matured to the point where it is feasible to solve more
of the fluid dynamics of parachute inflation directly on
a computer and to rely less on empirical studies. Such
an approach was not realistic ten years ago. Even
today, numerical simulations of parachute inflation
should not be construed as being ready for use in the
design of actual parachute systems. They are “compu-
tational experiments” to determine which numerical
and fluid dynamic approximations to the full equations
of motion have the potential to become parachute de-
sign tools. These computational fluid dynamics infla-
tion models still contain approximations to the real
physics of inflation; they are not “exact” even though
their models incorporate no empirical data. The ap-
proximations used in computational fluid dynamics
simulations lie in the choice of the equations used to
describe the fluid motion, in the representation of the
canopy (its dimensionality, shape and degrees of free-
dom) and in the numerical methods used to solve the
equations.

The inflation of a parachute like the 46.3-ft-diameter
canopy sets in motion all of the molecules in a “tube” of
air nearly a mile long and hundreds of feet in diameter.
Computer technology is still many, many years away from
permitting us to track each molecule as it interacts with
the parachute or other molecules. Instead, the air is
treated as a continuum of molecules with properties such
as viscosity, temperature, pressure and density. The
resulting equations of motion for the air as it interacts
with any body passing through it are called the Navier—
Stokes equations, named after two of the people who
derived them between 1823 and 1845. They are non-
linear, coupled equations for the conservation of mass,
momentum and energy. The Navier-Stokes equations
are written in many different forms, depending on the
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Experimental test and computational
simulation of parachute deployment. Shock
waves from the F-111 aircraft caused the
small pilot parachute to collapse and produce
insufficient drag. As a result, the supersonic
airstream pulled the suspension lines out of
the bag prematurely, causing the lines to
“sail.” The computer simulation, shown here
0.3 seconds after parachute deployment,
reproduced the scenario. Figure 5

coordinate system and the particular class of flow prob-
lems one wishes to solve. I will write them in words,
rather than in mathematical symbols, so that you can
see the balances among the diverse physical phenomena
that must be taken into account.

Conservation of mass: The time-dependent variation
of the density of air at any location in the flow field must
be balanced by the convection of density into and out of
the same location. :

Conservation of momentum (one equation for each of
the three spatial directions): The time-dependent vari-
ation of the momentum of the fluid at any location must
be balanced by the combined forces imposed by pressure
gradients, convection of momentum, viscosity (friction
forces) and any body forces acting on the fluid at the
same location.

Conservation of energy (needed when considering
high-speed flows): The time-dependent variation of total
energy (thermal plus kinetic) of the fluid must be bal-
anced by changes in energy due to convection, viscous
dissipation, conduction and work done on the fluid.

To complete the set, one needs an equation that
describes the relationship between the pressure, density
and temperature of the fluid. For parachute inflation
problems, the ideal-gas law will suffice:

p=pRT

Here p is the pressure, p is the air density, T is the
temperature and R is a constant.

Computational fluid dynamicists are experimenting
with a variety of algorithms for solving the Navier—Stokes
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Computed pressures and flow velocities for an inflating, decelerating parachute. The left side of each frame
shows-the pressure field; the right side, the velocity field. a: Prediction for early in the inflation process, 0.2
seconds after the start of inflation. b: Approaching fully inflated diameter; t = 0.8 sec. c: Canopy “collapse”;
t=1.4 sec. d:Recovery to steady descent; t= 2.0 sec. Figure 6

equations and gridding schemes for representing the
parachute shape and surrounding volume. Figure 6
shows the results of Navier—Stokes computations made
by researchers at the US Army Research, Development
and Engineering Center that predict the pressure and
velocity fields around a parachute canopy during infla-
tion.? Their time-dependent axisymmetric Navier—Stokes
fluid code is coupled to a mass—spring—damper parachute-
structure code to enable the parachute shape to “inflate”
in response to the computed pressure distribution around
the canopy.

The left side of each frame in figure 6 shows the
pressure levels inside and outside the canopy. Blue
denotes pressures below ambient (atmospheric) pressure;
red denotes pressures above ambient. The canopy is
located where the pressure (color) changes discontinu-
ously. The right side of each frame shows the corre-
sponding fluid velocities as viewed from a reference point
on the payload. The location of the parachute canopy in
the right side of each frame can be inferred from its
location on the left; it is simply a mirror image.

Figure 6a shows the parachute shaped like a light

bulb; the canopy is just beginning to inflate. Pressures
are building where the canopy stops the inflowing air.
The velocities behind the canopy are very low. In Figure
6b, pressure inside the canopy has increased, causing the
diameter to grow. Air flows into the canopy to support
this growth. The highest velocities are just outside the
location of the canopy’s maximum diameter. Air has
started to approach the canopy from behind. By 1.4
seconds after the start of inflation (figure 6c), the payload
has slowed down. Pressures inside the canopy are lower.
The air behind the canopy has caught up to it, causing
it to deform, or collapse. The canopy recovers in figure
6d and descends to Earth.

Navier—Stokes computations reproduce the flow-field
features observed in experiments, such as a recircula-
tion region with free vortices behind the parachute,
but the quantitative accuracy of the computer results
has not yet been established. This work stresses that
much remains to be learned about the effects of surface
and flow-field grid methodology, computational ap-
proximations and techniques used to perform Navier—
Stokes calculations for parachutes, in addition to what
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You can learn a great deal about parachute aerodynamics
by doing experiments that you can conduct in an open
field using small parachutes that you can make at home.
The experiment described below compares the flight
characteristics of identically sized parachutes whose
canopies have different configurations of slots or holes.
Varying the porosity changes the airflow patterns in and
around the parachute, which in turn alter the parachute’s
flight characteristics.

From an old bedsheet, cut out four circles of material
approximately 30 inches in diameter. Use a fine marker
to segment each circle into eight equal “pie slices”; these
are the “gores” of the parachute. Just inside the circum-
ference of the circle of material, punch a small hole along
each radial line that divides the canopy into gores. In
parachute terminology, the hole is on the canopy “radial”
near the “skirt” of the canopy. These holes will anchor
the suspension lines, which you will attach after you
design the porosity—slices or holes—into each canopy.

The first canopy will have no geometric porosity. This
configuration, called a flat circular canopy, is one of the
earliest parachute designs. It is depicted in the first sketch
above.

In one gore of the second parachute, cut five “slices”
as shown in the second sketch. Choose any spacing
between the slices that you wish in the first gore, and then
duplicate that slice pattern in each of the remaining seven
gores. (The sketch shows what my daughter used in her
science project.)

In one gore of the third parachute, cut out three
triangles as shown in the third sketch. Each triangle
should have a height of about 3 inches and a base of about
2 inches. Repeat the pattern of triangular cutouts in the
remaining seven gores.

Use the same pattern of triangles in the fourth para-
chute, but put them only in three adjacent gores, as shown
in the fourth sketch; leave the other five gores with no
holes or slots in them.

After preparing each canopy, tie light string through the

Do-It-Yourself Parachute Aerodynamics

Skirt Triangles

Holes in canopy

Asymmetric porosity

Gores with
porosity

eight holes in each canopy. Tie the strings together in a
knot approximately 35 inches from the skirt of the canopy,
and trim off the excess string. The eight strings are the
suspension lines that connect the canopy to the payload.
The payload can be any robust object weighing roughly
5 ounces that can be easily attached to the knot of the
suspension lines. My daughter and | used an empty plastic
shampoo dispenser, with stones added to bring the weight
up to 5 ounces, and looped a string through the pour spout
and over the suspension line knot. The same payload can
be used with each parachute.

Now comes the flight test phase. Launch the para-
chutes as high above the ground as possible to maximize
the flight time and your opportunity to observe how they
fly. Please observe “range safety” rules, however; hanging
out of upper-story windows or launching from the top rung
of a ladder is not worth the altitude gained! Bundle the
parachute with the payload and throw, then observe how
each parachute flies. Compare the flight dynamic attrib-
utes-among the parachutes and see if you can deduce the
aerodynamic causes for what you observe. Some ques-
tions to ask your research team:
> How does each of the parachutes move with respect -
to the payload during descent? Do you observe any
dynamic motion of the canopy?
> Are the trajectories the same for each payload—para-
chute combination?
> Do you observe any differences in the time for inflation
among the parachutes?
> Do some parachutes descend more rapidly than
others?

Graduate study: Invent your own canopy configura-
tions to optimize the flight characteristics you think would
be important for payloads you envision. Make them glide,
spin, descend more slowly and so on as you see fit.
Perhaps you will invent a new type of parachute that will
better suit the applications described at the beginning of
this article!

must be learned about the fluid dynamics. But the work
also provides strong encouragement that Navier—Stokes
calculations of parachute inflation will become the engi-
neering design tools for future high-performance para-
chutes. The parachute technical community must give
high priorty to developing Navier—Stokes methods for
predicting parachute inflation and to conducting experi-
ments to validate those methods.

More approximate approaches. While research
on modeling parachute inflation with the Navier—Stokes
equations continues, aerodynamicists are pursuing a va-
riety of more approximate numerical approaches. James
Strickland of Sandia includes the time-dependent aspects
of parachute inflation by taking the curl of the Navier—
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Stokes equations and assuming that the air density and
viscosity are both constant.? The resulting vorticity
transport equation is further simplified by neglecting the
viscous terms and recasting the scalar vorticity in terms
of the circulation I' associated with a group of air “par-
ticles” called vortices. The equation describing the time-
dependent change of circulation in a velocity field u is
Kelvin’s theorem:

ar
—t@-V)I'=0
ot

Strickland uses Kelvin’s theorem to solve for the time-
dependent motion of vortices generated by a parachute



Vorticity generated by an inflating, decelerating parachute,
computed using the VPARA code. The dots mark the locations
of vortices originally shed from a hemispherical “parachute”
(color) with a large vent hole. As the computations continue,
the movement of each vortex is calculated under the
influence of all the other vortices, and new vortices are shed
from the surface. Figure 7

decelerating a payload. At the start of his computations,
there are no free vortices in the flow. To satisfy boundary
conditions on the parachute canopy, vortices are placed
along the inner and outer surfaces. The circulation
strength T of these vortices is calculated so as to satisfy
the boundary conditions on the solid or porous surfaces.
Next, the flow solution is advanced by one time step. During
this time step, the body surfaces move to a new position in
some prescribed manner. Vortices on the surface are al-
lowed to move off the surface into the flow field. The
vortices are convected to new positions in the flow at the
local fluid velocity, which is calculated from the previous
positions and strengths of the vortices. Then a new set of
vortices is introduced at the surface. The circulation
strengths are again calculated so as to satisfy the surface
boundary conditions in conjunction with the set of vortices
that were shed previously. This process is repeated for the
desired number of time steps. Pressure distributions along
the surface are calculated at each time step based on the
strengths of the new surface vortices.

Output from Strickland’s VPARA code (vortex
method for parachutes in axisymmetric flow), which
performs these calculations, is shown in figure 7 for
a hemispherical shell with a vent radius R; equal to
40% of the skirt radius R,, each measured along the
surface from the axis of symmetry. The hemisphere
is started impulsively from rest and in figure 7 has
moved 20 radii R, to the bottom along the axis of
symmetry. Periodic structures are shed from the
vented hemispherical shell. The instantaneous pres-
sure coefficient C,, a measure of the difference be-
tween the pressures inside and outside the canopy,
changes constantly due to the unsteady wake. The
drag coefficient Cp, also shows pronounced periodicity.
Calculations for vented hemispheres in general show
good agreement with experimental results. Compari-
sons of VPARA drag history predictions with data on a
2-ft-diameter hemispherical shell towed in a water
tank with a prescribed velocity history also show very
good agreement.

The complexity of the parachute inflation problem,
the magnitude of the research that must be done and the
small size of the parachute community all suggest that
the development of parachute inflation technology will
not be completed soon. Obtaining high priority for this
work is itself a challenge, because until recently the
parachute community has treated parachute design as
an art rather than a science. No single laboratory has
either the resources or the mix of talent to solve all of
the critical parachute technology problems by itself. The
problems may not be solved at all unless the work is
pursued as a national or international collaborative effort

by scientists and engineers.

If we can indeed understand and describe the fluid
physics of parachute inflation on a computer, then future
operational parachutes will likely feature “electronic
canopies” with sensors and controls to measure flight
conditions and on-board computers that use the inflation
models to tailor the inflation process to meet performance
requirements within system constraints. Electronic cano-
pies will be essential for planetary exploration because
of the a priori uncertainty in atmospheric conditions and
landing terrain, and because the round-trip transit time
of control signals to and from Earth is longer than the
time required for inflation and landing. Parachutes will
continue to find extensive use, if not top billing, on even
more exotic flight vehicles. Leonardo would be pleased.

* kX
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