
THE FLUID PHYSICS OF 
PARACHUTE INFLATION 

Cloth pocked to the density of oak emerges from its container 
in a second, changes its shape from cylindrical log to 'cloth streamers' 
to hemispherical cup in another 2 seconds, and decelerates 
a one-ton payload from the speed of sound to highway speed limits. 

Carl W. Peterson 

Parachutes have a fascinating history and a promising 
future. They were born long before airplanes, in ancient 
China. Leonardo da Vinci made sketches of a parachute­
like device at the end of the 15th century, and Fauste 
Veranzio parachuted from a Venetian tower in 1617. By 
the time airplanes arrived on the scene, parachutes were 
older than Methuselah. 

Today, parachutes are busier than ever. They have 
become even more essential as people and their precious 
cargo spend more and more time in the air and in space. 
Because they are by far the lightest, least expensive 
method for decelerating objects in the atmosphere, para­
chutes are used extensively for recovering valuable air­
borne objects, enabling crew escape and rescue, and 
delivering military weapons and payloads. 

Examples of payloads recovered using parachutes 
already include expensive atmospheric research instru­
mentation and the 175 000-pound solid-fuel rocket boost­
ers that help launch the space shuttle. Future soft-land­
ing and payload recovery missions include landing 
instrumentation on Mars and returning materials manu­
factured in space to the parking lot of the laboratory 
where they will be processed. 

Rescue missions today include escape from high-per­
formance aircraft and in a few years will include return 
of injured astronauts from spacecraft. The US Army 
would like to deliver 60 000-lb tanks behind enemy lines 
from cargo aircraft flying only 300 feet above the ground 
to escape detection during covert operations. Simultane-
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ously, parachutes will be used to deliver the squadrons 
of troops to drive the tanks and participate in the mission. 
Each of these uses demands parachutes that are as 
technically complex as the vehicles that lifted them into 
the air in the first place. 

This article describes the physics of the motion of 
the parachute and the surrounding air as the para­
chute emerges from the payload, inflates, and decel­
erates the payload. Such a physical understanding is 
a prerequisite for developing computational tools for 
designing parachutes. The design tools must be predi­
cated upon analytical and numerical models of the 
unsteady motion of the air coupled to the equations 
of motion of the parachute. 

Precise calculation of parachute deployment, infla­
tion and payload deceleration requires solution of the 
nonlinear, time-dependent equations of motion for turbu­
lent, separated airflow around and through the parachute 
coupled to the equations of motion of the parachute. 
Because of the difficulty of this problem, it is not sur­
prising that parachute designers have for many years 
relied on empirical methods rather than on analysis. 
Once I show what physical phenomena are involved, I 
will describe attempts to model the important events 
numerically so that parachutes can someday be designed 
on computers instead of by trial-and-error flight tests. 

Parachute aerodynamics 
Parachute deployment and inflation is arguably the most 
complex physical event in aerodynamics. One source of 
complexity is the requirement that the parachute provide 
drag only after the payload has been allowed to fly by 
itself while accomplishing its mission. Before the para­
chute is needed, the payload must retain its own aero-
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Deployment of a parachute. After the payload is released from the aircraft, a cluster of three pilot parachutes 
pulls the deployment bag away from the payload. The suspension lines are pulled out of the bag first, and then 
the main parachute canopy. The plane, an Air Force B-1 B bomber, dropped the 2400-lb instrumentation 
package at a speed of about 500 miles per hour. Figure 1 

dynamic characteristics, not those of the parachute. This 
means that the parachute must be stored out of the 
airstream. Space limitations on the payload invariably 
dictate that the parachute's stored shape be much differ­
ent from its inflated shape. When it is time for the 
parachute to be used, it must be transformed into its 
high-drag shape as quickly as possible; this is why para­
chutes are made of cloth. The unfolding and aerodynamic 
loading of the cloth contribute to the complexity of para­
chute deployment and inflation. 

Figure 1 shows the deployment from a 2200-lb, 1.5-
ft-diameter payload of a 46.3-ft-diameter "ribbon" main 
parachute. (The canopy-the part of the chute that 
creates drag-is not solid cloth as one might expect, but 
is constructed of strips of material, called ribbons, which 
are laid out with gaps between them.) A cluster of three 
3.8-ft-diameter ribbon pilot parachutes was developed at 
Sandia to pull the main parachute deployment bag out 
of the payload and then pull the main parachute out of 
its deployment bag. The main parachute is positioned 
in the deployment bag so that the suspension lines of the 
parachute are pulled out of the bag first as the deploy­
ment bag is pulled away from the payload. After all the 
suspension lines are out of the bag, the parachute canopy 
emerges. It must be pulled completely out of the bag, 
without damage, before it inflates and decelerates the 
payload. 

The sequence of events that occurs during deploy-

ment of the 46.3-ft-diameter parachute from its four­
panel bag includes the cutting or breaking of the cloth 
"ties" that secure the parachute suspension lines and 
canopy to the panels of the bag. Successful deployment 
requires obtaining enough drag from the pilot parachute 
to pull the main parachute out of its bag, as well as 
careful selection and location of line and canopy ties, 
cutting knives, the canopy's retainer and other parts of 
the deployment bag. The entire sequence of events, from 
ejection of the pilot parachutes to stretching out all 65 
feet of the main parachute behind the payload, takes 
place in less than 2 action-packed seconds. The physics 
of the deployment process involves the dynamics of the 
payload (which is coupled to the dynamics of the cloth 
structures), the aerodynamics of these strange shapes 
and the response of the textile materials to the loads 
imposed upon them. 

Inflation of the canopy begins as soon as the para­
chute is pulled free from the deployment bag. Figure 2 
illustrates the inflation process, and figure 3 shows the 
structural elements of the parachute canopy. Air flows 
into the canopy through the inlet opening at the bottom 
of the canopy (the skirt) and out through the porous 
canopy fabric, the vent and the gaps between ribbons. 
The porosity of the canopy material and configuration is 
designed so that air is retained in the canopy. This 
"captured" air causes the pressure inside the canopy to 
increase above the pressure outside of the canopy. The 
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Inflation and descent of a parachute. With 
the parachute completely out of the bag (at 
lower left of top photo), the canopy inflates, 
slows the payload and allows it to descend to 
the ground. Figure 2 

radial component of force generated by the pressure 
differential across the canopy accelerates the canopy 
outward and causes it to inflate. Inflation continues as 
long as the integrated outward radial pressure forces 
remain greater than the integrated radial tension and so 
long as the canopy encounters no structural constraints 
such as circumferential reefing (which limits the diameter 
of the canopy skirt). 

No other aerodynamic structure undergoes such an 
enormous change in shape during the course of perform­
ing its aerodynamic mission. And the motion of no other 
aerodynamic structure is coupled as strongly to the mo­
tion of the air: The shape of the parachute depends on 
the aerodynamic forces acting on the canopy, but the 
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airflow that generates the aerodynamic forces in turn 
depends on the shape of the parachute canopy. 

As the parachute decelerates the payload, the oncom­
ing airflow velocity (relative to the parachute) decreases. 
For many high-performance parachutes, the oncoming 
airflow velocity can change significantly during the time 
required for the parachute to inflate, in which case the 
process of parachute inflation is intrinsically time de­
pendent. In addition to the dependence of inflation pa­
rameters on nonsteady flow parameters, one observes 
other time-dependent aerodynamic events during the op­
eration of high-performance parachutes. An example is 
wake recontact, sometimes called "canopy collapse." This 
phenomenon occurs when the parachute decelerates the 
payload so rapidly that the air behind the parachute 
catches up to the canopy, causing it to deform, or "col­
lapse," and lose drag. 

Eventually the parachute and its payload descend 
vertically at a speed determined by the weight of the 
payload, the density of the air and the size and shape of 
the parachute. Terminal descent is the only "steady 
state" (time independent) process that we encounter dur­
ing the operation of a parachute. 

Some of the complexity of parachute aerodynamics 
is a direct consequence of the mission that parachutes 
are designed to accomplish. They are required to decel­
erate payloads that have insufficient drag to decelerate 
quickly enough on their own. Hence parachutes must 
have much more drag than the objects that they decel­
erate. Whereas most of the aerodynamics community is 
concerned with optimization of the aerodynamic efficiency 
of streamlined, low-drag shapes, parachute designers 
seek to create the maximum amount of disturbance to 
the oncoming airflow-that is, the maximum drag. 

As a result, parachute aerodynamics is irrevocably 
associated with the airflow around blunt-ended, or "bluff," 
bodies, which encompasses several of the yet unsolved 
problems in fluid dynamics. For example, the air flowing 
around the parachute separates from a location on the 
canopy that is a priori unknown. The shedding of vor­
tices from the bluff canopy shape may affect canopy 
stability and cause a periodic motion of the parachute 
and payload. 

These bluff-body aerodynamic phenomena are fur­
ther complicated by the presence of the payload just 
ahead of the parachute. The turbulent wake generated 
by the payload flows into the parachute, reducing the 
parachute's drag and causing instabilities in the para­
chute's inflated shape. This means that the performance 
of the parachute may depend on the payload's physical 
characteristics as well as on the parachute's own charac­
teristics. 

Parachute deployment simulation 
Now that we have some physical feel for what happens 
during the flight of a parachute, I shall review how 
aerodynamicists have approximated the relevant physics 
in numerical models of parachute inflation, beginning 
with parachute deployment. James Purvis of Sandia 
National Laboratories has developed a computer code 
called Linesail1 to provide guidance for the design of the 



pilot parachute and deployment system for parachutes 
like the 46.3-ft-diameter parachute in figures 1 and 2. 
Because different parts of the parachute exhibit inde­
pendent motions during inflation, one must model the 
parachute suspension lines and canopy as a collection of 
flexible distributed-mass structures connected to a finite­
mass forebody. The payload, suspension lines, canopy, 
pilot parachute and deployment bag for the main para­
chute are each modeled as a series of elastically connected 
mass nodes, as shown in figure 4. The motion of each 
mass node is determined by the tensile and aerodynamic 
forces acting on it. The forebody and the pilot parachute 
and deployment bag are separate special nodes; all un­
deployed suspension line and canopy mass nodes are 
lumped in the pilot parachute and deployment bag node. 
The forebody node includes forebody drag, and the de­
ployment bag node includes pilot parachute drag. 

At time t = 0, the deployment process begins and the 
drag of the pilot parachute begins to pull suspension line 
nodes out of the bag, one at a time. The equations of 
motion for the ith deployed mass node are 

in the direction of flight (x) and 

in the direction perpendicular to the flight path (r). 
These equations are solved at successive times until 

the main parachute has been pulled completely free from 
its deployment bag. The distribution of mass is specified 
from the payload through the apex of the canopy. The 
factor mi is the mass of the ith node; xi and ;:i are the 
accelerations of the ith mass nodes in the x and r 
directions, respectively. Ti is the tension between nodes 
i and i + 1. The tension is modeled as a combination of 
a linear stress-strain rate for the actual textile material 
being used and a semiempirical damping term. The 
terms Xi and Ri are the axial and radial components of 
the aerodynamic forces acting on the segment of suspen­
sion line or canopy; they are based on familiar formula­
tions for the cross flow and drag of a cylinder. 

Figure 6 shows the severe "line sail"-the premature 
removal of the suspension lines from the deployment bag 
by the oncoming wind blast-that was observed during 
deployment of the 46.3-ft-diameter parachute using a 
single 6-ft-diameter pilot parachute while the payload 
was traveling at Mach 1.28 after release from an F-111 
aircraft. The 6-ft-diameter ribbon pilot parachute was 
not able to remain inflated in the flow field of the wake 
behind the payload and in the shock waves created by 
the F-111. The collapsed pilot parachute could not pro­
vide enough drag to avoid severe suspension line sail, 
which resulted in unacceptable damage to the canopy. 

Purvis used the Linesail code to guide the redesign 
of the deployment system for the 46.3-ft-diameter para­
chute to overcome the line sail problems shown in figure 
6. Simple engineering approximations were used to 
model breakage of the line ties, bag friction and other 
details of deployment. The dynamics equations and en­
gineering approximations were verified with data from a 
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Computer model of a parachute system 
during deployment. Top: Physical system. 
Middle: Mass-node model. Bottom : 
Mass-node geometric parameters. Figure 4 
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static parachute deployment test-ground test with no 
airflow-and from the flight of other parachute systems. 
Purvis then reproduced the line sail shown in figure 5 
with Linesail code calculations. His calculations agreed 
well with flight test observations throughout deployment. 
Subsequent numerical results indicated that practical 
changes in line tie strengths would not control the line 
sail, but that increasing the pilot parachute drag would 
be a very effective method of controlling it. The pilot 
parachute drag area was increased from about 10 ft2 

to 17 ft2 by replacing the 5-ft-diameter parachute with 
the cluster of three 3.8-ft-diameter parachutes shown in 
figure 1. 

Canopy inflation models 
Numerical methods and computational hardware have 
matured to the point where it is feasible to solve more 
of the fluid dynamics of parachute inflation directly on 
a computer and to rely less on empirical studies. Such 
an approach was not realistic ten years ago. Even 
today, numerical simulations of parachute inflation 
should not be construed as being ready for use in the 
design of actual parachute systems. They are "compu­
tational experiments" to determine which numerical 
and fluid dynamic approximations to the full equations 
of motion have the potential to become parachute de­
sign tools. These computational fluid dynamics infla­
tion models still contain approximations to the real 
physics of inflation; they are not "exact" even though 
their models incorporate no empirical data. The ap­
proximations used in computational fluid dynamics 
simulations lie in the choice of the equations used to 
describe the fluid motion, in the representation of the 
canopy (its dimensionality, shape and degrees of free­
dom) and in the numerical methods used to solve the 
equations. 

The inflation of a parachute like the 46.3-ft-diameter 
canopy sets in motion all of the molecules in a "tube" of 
air nearly a mile long and hundreds of feet in diameter. 
Computer technology is still many, many years away from 
permitting us to track each molecule as it interacts with 
the parachute or other molecules. Instead, the air is 
treated as a continuum of molecules with properties such 
as viscosity, temperature, pressure and density. The 
resulting equations of motion for the air as it interacts 
with any body passing through it are called the Navier­
Stokes equations, named after two of the people who 
derived them between 1823 and 1845. They are non­
linear, coupled equations for the conservation of mass, 
momentum and energy. The Navier-Stokes equations 
are written in many different forms, depending on the 
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Experimental test and computational 
simulation of parachute deployment. Shock 
waves from the F-111 aircraft caused the 
small pilot parachute to collapse and produce 
insufficient drag. As a result, the supersonic 
airstream pulled the suspension lines out of 
the bag prematurely, causing the lines to 
·"sail. " The computer simulation, shown here 
0.3 seconds after parachute deployment, 
reproduced the scenario. Figure 5 

coordinate system and the particular class of flow prob-
. lems one wishes to solve. I will write them in words, 

rather than in mathematical symbols, so that you can 
see the balances among the diverse physical phenomena 
that must be taken into account. 

Conservation of mass: The time-dependent variation 
of the density of air at any location in the flow field must 
be balanced by the convection of density into and out of 
the same location. 

Conservation of momentum (one equation for each of 
the three spatial directions): The time-dependent vari­
ation of the momentum of the fluid at any location must 
be balanced by the combined forces imposed by pressure 
gradients, convection of momentum, viscosity (friction 
forces) and any body forces acting on the fluid at the 
same location. 

Conservation of energy (needed when considering 
high-speed flows): The time-dependent variation of total 
energy (thermal plus kinetic) of the fluid must be bal­
anced by changes in energy due to convection, viscous 
dissipation, conduction and work done on the fluid. 

To complete the set, one needs an equation that 
describes the relationship between the pressure, density 
and temperature of the fluid. For parachute inflation 
problems, the ideal-gas law will suffice: 

p=pRT 

Here p is the pressure, p is the air density, T is the 
temperature and R is a constant. 

Computational fluid dynamicists are experimenting 
with a variety of algorithms for solving the Navier-Stokes 



b 

c d 

Computed pressures and flow velocities for an inflating, decelerating parachute. The left side of each frame 
showsthe pressure field; the right side, the velocity field. a: Prediction for early in the inflation process, 0.2 
seconds after the start of inflation . b: Approaching fully inflated diameter; t = 0.8 sec. c: Canopy "collapse" ; 
t = 1 .4 sec. d: Recovery to steady descent; t = 2.0 sec. Figure 6 

equations and gridding schemes for representing the 
parachute shape and surrounding volume. Figure 6 
shows the results of Navier-Stokes computations made 
by researchers at the US Army Research, Development 
and Engineering Center that predict the pressure and 
velocity fields around a parachute canopy during infla­
tion.2 Their time-dependent axisymmetric Navier-Stokes 
fluid code is coupled to a mass-spring-damper parachute­
structure code to enable the parachute shape to "inflate" 
in response to the computed pressure distribution around 
the canopy. 

The left side of each frame in figure 6 shows the 
pressure levels inside and outside the canopy. Blue 
denotes pressures below ambient (atmospheric) pressure; 
red denotes pressures above ambient. The canopy is 
located where the pressure (color) changes discontinu­
ously. The right side of each frame shows the corre­
sponding fluid velocities as viewed from a reference point 
on the payload. The location of the parachute canopy in 
the right side of each frame can be inferred from its 
location on the left; it is simply a mirror image. 

Figure 6a shows the parachute shaped like a light 

bulb; the canopy is just beginning to inflate. Pressures 
are building where the canopy stops the inflowing air. 
The velocities behind the canopy are very low. In Figure 
6b, pressure inside the canopy has increased, causing the 
diameter to grow. Air flows into the canopy to support 
this growth. The highest velocities are just outside the 
location of the canopy's maximum diameter. Air has 
started to approach the canopy from behind. By 1.4 
seconds after the start of inflation (figure 6c), the payload 
has slowed down. Pressures inside the canopy are lower. 
The air behind the canopy has caught up to it, causing 
it to deform, or collapse. The canopy recovers in figure 
6d and descends to Earth. 

Navier-Stokes computations reproduce the flow-field 
features observed in experiments, such as a recircula­
tion region with free vortices behind the parachute, 
but the quantitative accuracy of the computer results 
has not yet been established. This work stresses that 
much remains to be learned about the effects of surface 
and flow-field grid methodology, computational ap­
proximations and techniques used to perform Navier­
Stokes calculations for parachutes, in addition to what 
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Do-lt-Yourself Parachute Aerodynamics 
Solid canopy 

You can learn a great deal about parachute aerodynamics 
by doing experiments that you can conduct in an open 
field using small parachutes that you can make at home. 
The experiment described below compares the flight 
characteri stics of identicall y sized parachutes whose 
canopies have different configurations of slots or ho les. 
Varying the porosity changes the airflow patterns in and 
around the parachute, which in turn alter the parachute's 
fli ght characteristi cs. 

From an o ld bedsheet, cut out four circles of material 
approximately 30 inches in diameter. Use a fine marker 
to segment each c ircle into eight equal "pie slices" ; these 
are the "gores" of the parachute. just inside the circum­
ference of the c ircle of materi al, punch a small ho le along 
each radial line that divides the canopy into gores . In 
parachute terminology, the hole is on the canopy " radial " 
near the "ski rt" of the canopy. These holes w ill anchor 
the suspension lines, w hich you w ill attach after you 
design the porosity-slices or ho les-into each canopy. 

The first canopy w ill have no geometric poros ity. This 
configuration, called a fl at circular canopy, is one of the 
earliest parachute designs. It is depicted in the first sketch 
above. 

In one gore of the second parachute, cut fi ve "s lices" 
as shown in the second sketch. Choose any spac ing 
between the slices that you w ish in the first gore, and then 
duplicate that slice pattern in each of the remaining seven 
gores. (The sketch shows what my daughter used in her 
science project. ) 

In one gore of the third parachute, cut out three 
triangles as shown in the third sketch. Each tri angle 
should have a height of about 3 inches and a base of about 
2 inches. Repeat the pattern of triangular cutouts in the 
remaining seven gores. 

Use the same pattern of tri angles in the fourth para­
chute, but put them only in three adjacent gores, as shown 
in the fourth sketch; leave the other five gores w ith no 
holes o r slots in them. 

After preparing each canopy, tie light string th rough the 

must be learned about the fluid dynamics. But the work 
also provides strong encouragement that Navier-Stokes 
calculations of parachute inflation will become the engi­
neering design tools for future high-performance para­
chutes. The parachute technical community must give 
high priorty to developing N a vier-Stokes methods for 
predicting parachute inflation and to conducting experi­
ments to validate those methods. 

More approximate approaches. While research 
on modeling parachute inflation with the Navier-Stokes 
equations continues, aerodynamicists are pursuing a va­
riety of more approximate numerical approaches. James 
Strickland of Sandia includes the time-dependent aspects 
of parachute inflation by taking the ctirl of the Navier-
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eight holes in each canopy. Ti e the strings together in a 
knot approximately 35 inches from the skirt of the canopy, 
and trim .off the excess string. The eight strings are the 
suspension lines th at connect the canopy to the payload . 
The payload can be any robust object weighing roughly 
5 ounces that can be easily attached to the knot of the 
suspension lines. My daughter and I used an empty plastic 
shampoo dispenser, with stones added to bring the we ight 
up to 5 ounces, and looped a string through the pour spout 
and over the suspension line knot. The same payload can 
be used w ith each parachute. 

Now comes the flight test phase. Launch the para­
chutes as high above the ground as possible to maximize 
the flight time and your opportunity to observe how they. 
fl y. Please observe " range safety" rules, however; hanging 
out of upper-story w indows or launching from the top rung 
of a ladder is not worth the alti tude ga ined! Bundle the 
parachute w ith the payload and throw, then observe how 
each parachute fli es. Compare the fli ght dynamic attrib­
utes ·among the parachutes and see if you can deduce the 
aerodynamic causes for what you observe. Some ques­
tions to ask your research team: 
C> How does each of the parachutes move w ith respect . 
to the payload during descent? Do you observe any 
dynamic motion of the canopy? 
C> Are the trajectories the same for each payload- para­
chute combination? 
C> Do you observe any differences in the time for inflation 
among the parachutes? 
C> Do some parachutes descend more rapidl y than 
others? 

Graduate study: Invent your own canopy configura­
tions to optimize the fli ght characteristi cs you think would 
be important for payloads you envision. Make them glide, 
spin, descend more slow ly and so on as you see fit. 
Perhaps you w ill invent a new type of parachute that w ill 
better suit the applications 'described at the beginning of 
this article! 

Stokes equations and assuming that the air density and 
viscosity are both constant.3 The resulting vorticity 
transport equation is further simplified by neglecting the 
viscous terms and recasting the scalar vorticity in terms 
of the circulation r associated with a group of air "par­
ticles" called vortices. The equation describing the time­
dependent change of circulation in a velocity field u is 
Kelvin's theorem: 

ar 
- + (u · V')r = 0 at 

Strickland uses Kelvin's theorem to solve for the time­
dependent motion of vortices generated by a parachute 



Vorticity generated by an inflating, decelerating parachute, 
computed using the VPARA code. The dots mark the locations 
of vortices originally shed from a hemispherical " parachute" 

(color) with a large vent hole. As the computations continue, 
the movement of each vortex is cal culated under the 

influence of all the other vortices, and new vortices are shed 
from the surface. Figure 7 

decelerating a payload. At the start of his computations, 
there are no free vortices in the flow. To satisfY boundary 
conditions on the parachute canopy, vortices are placed 
along the inner and outer surfaces. The circulation 
strength r of these vortices is calculated so as to satisfY 
the boundary conditions on the solid or porous surfaces. 
Next, the flow solution is advanced by one time step. During 
this time step, the body surfaces move to a new position in 
some prescribed manner. Vortices on the surface are al­
lowed to move off the surface into the flow field. The 
vortices are convected to new positions in the flow at the 
local fluid velocity, which is calculated from the previous 
positions and strengths of the vortices. Then a new set of 
vortices is introduced at the surface. The circulation 
strengths are again calculated so as to satisfY the surface 
boundary conditions in conjunction with the set of vortices 
that were shed previously. This process is repeated for the 
desired number of time steps. Pressure distributions along 
the surface are calculated at each time step based on the 
strengths of the new surface vortices. 

Output from Strickland's VPARA code (vortex 
method for parachutes in axisymmetric flow) , which 
performs these calculations, is shown in figure 7 for 
a hemispherical shell with a vent radius R; equal to 
40% of the skirt radius R 0 , each measured along the 
surface from the axis of symmetry. The hemisphere 
is started impulsively from rest and in figure 7 has 
moved 20 radii R0 to the bottom along the axis of 
symmetry. Periodic structures are shed from the 
vented hemispherical shell. The instantaneous pres­
sure coefficient CP, a measure of the difference be­
tween the pressures inside and outside the canopy, 
changes constantly due to the unsteady wake. The 
drag coefficient Cn also shows pronounced periodicity. 
Calculations for vented hemispheres in general show 
good agreement with experimental results. Compari­
sons of VPARA drag history predictions with data on a 
2-ft-diameter hemispherical shell towed in a water 
tank with a prescribed velocity history also show very 
good agreement. 

The complexity of the parachute inflation problem, 
the magnitude of the research that must be done and the 
small size of the parachute community all suggest that 
the development of parachute inflation technology will 
not be completed soon. Obtaining high priority for this 
work is itself a challenge, because until recently the 
parachute community has treated parachute design as 
an art rather than a science. No single laboratory has 
either the resources or the mix of talent to solve all of 
the critical parachute technology problems by itself. The 
problems may not be solved at all unless the work is 
pursued as a national or international collaborative effort 

by scientists and engineers. 
If we can indeed understand and describe the fluid 

physics of parachute inflation on a computer, then future 
operational parachutes will likely feature "electronic 
canopies" with sensors and controls to measure flight 
conditions and on-board computers that use the inflation 
models to tailor the inflation process to meet performance 
requirements within system constraints. Electronic cano­
pies will be essential for planetary exploration because 
of the a priori uncertainty in atmospheric conditions and 
landing terrain, and because the round-trip transit time 
of control signals to and from Earth is longer than the 
time required for inflation and landing. Parachutes will 
continue to find extensive use, if not top billing, on even 
more exotic flight vehicles. Leonardo would be pleased. 

* * * 
The work performed at Sandia National Laboratories is supported 
by the US Department of Energy. 

References 
1. J. W. Purvis, J. Aircraft 20, 940 (November 1983); "Improved 

Prediction of Parachute Line Sail During Lines-First Deploy­
ment," pub. AIAA 84-0786, Am. Inst. of Aeronautics and Astro­
nautics, Washington, D. C. (April1984). 

2. K. R. Stein, R. J. Benney, E. C. Steeves, "A Computational 
Model That Couples Aerodynamic and Structural Dynamic 
Behavior ofParachutes During the Opening Process," tech. rep. 
Natick/TR-93/029, US Army Natick Research, Development 
and Engineering Center, Natick, Mass. (April1993). 

3. J. H. Strickland, "Axisymmetric Bluff-Body Flow: A Vortex 
Solver for Thin Shells," rep. SAND91-2760, Sandia Nat!. Labs., 
Albuquerque, N. M. (May 1992). • 

PHYSICS TODAY AUGUST 1993 39 




