POSTMODERN

QUANTUM MECHANICS

Recent progress in semiclassical theory has overcome barriers posed
by classical chaos and cast light on the correspondence principle.
Semiclassical ideas have also become central to new experiments
in atomic, molecular, microwave and mesoscopic physics.

Eric J. Heller and Steven Tomsovic

Postmodern movements are well known in the arts. After
a major artistic revolution, and after the “modern” inno-
vations have been assimilated, the threads of premodern
thought are always reconsidered. Much of value may be
rediscovered and put to new use. The modern context
casts new light on premodern thought, which in turn
shades perspectives on modernism.

Robert Harris at the University of California at
Berkeley coined the term “postmodern quantum mechan-
ics” to describe the keen new interest in semiclassical
approximations. These approximations have their roots
in the premodern old quantum theory. Semiclassical
methods have occupied a niche in the modern era, but
lately their evolution has taken a dramatic turn with the
confrontation of their nemesis: classical chaos.

It is not widely understood that classical chaos has
prevented the broad application of semiclassical ideas
and techniques. Semiclassical methods are built on clas-
sical trajectories; if these are extremely complex, the
semiclassical approximations may become inaccurate, dif-
ficult to compute or even ill defined. Chaos kept Bohr,
Kramers, Heisenberg and Born from quantizing the he-
lium atom, although they were not aware that chaos was
to blame. Among physicists, only Einstein knew that
what he called “type B” (chaotic) classical motion would
not yield to the old quantization methods. He published
a paper pointing this out in 1917, but it was ignored.!
In the last 10 to 15 years it has been recognized that
most classical dynamical systems, including helium, can
behave chaotically. What good is a semiclassical theory
that cannot handle chaos?

The issue of semiclassical approximations to chaos
was confronted for the first time when Martin Gutzwiller?
derived his semiclassical “trace formula” for the eigen-
values of a chaotic system in 1970. His result reopened
the premodern agenda and marked the beginning of the
postmodern era.

Theory and experiment interact strongly in the post-
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modern investigations. The mesoscopic world, caught
between classical and quantum behavior, is the focus of
much research. Here semiclassical ideas are a necessity.
Many new experiments with excited atomic and molecular
systems directly probe the realm of high quantum num-
bers or classically chaotic motion.

The quantum and classical realms are related by the
connections that exist between wave phenomena and
geometric ray paths. These connections are common to
many fields, and essentially identical problems exist in
quantum mechanics, optics, acoustics, seismology, ocean-
ography, plasma physics and microwave physics. Some
of these fields (for example, optics) far surpass quantum
mechanics in the use of geometrical paths as the backbone
for understanding. In many areas of wave physics, the
geometrical limit has always been regarded simply as a
useful approximation to the true wave behavior.

In quantum mechanics, nothing is quite so simple.
Controversy surrounds the semiclassical limit. Mathe-
matical questions of wave-ray asymptotics are inter-
twined with questions of quantum measurement theory,
the Copenhagen interpretation, the correspondence prin-
ciple and even the completeness of quantum mechanics.
These issues sharpen the debate but often obscure the
technical question of the semiclassical limit to quantum
mechanics. Much of the recent controversy is sparked
by issues of chaos: Can quantum mechanics give classical
chaos as a limiting behavior? Can classical chaos be
successfully semiclassically quantized? Are the two ques-
tions different? What is “quantum chaos,” or does it even
exist?® In this article we will sidestep the philosophical
debate and focus on the issues of useful approximations
and physical insight.

When presented with the results of a large quantum
calculation, Eugene P. Wigner once said: “It is nice to
know that the computer understands the problem. But
I would like to understand it, too.”* It is extremely
difficult to visualize or to calculate the movement of a
quantum wave in six dimensions, but easy to imagine or
calculate trajectories for two electrons moving around a
helium nucleus. Unavoidably, we think classically about
systems of more than a couple of particles. It would be
splendid if most of the physics of such problems could be
calculated with classical mechanics and a few rules. That
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goal seems much closer now. With the chaos barrier
coming down, semiclassical ideas are better able to sup-
port or suggest new experiments and to lend physical
insight into quantum mechanics. Beyond this, semiclas-
sical methods can be the basis of calculations that are
computationally out of reach to full quantum approaches.

Eigenvalues and the trace formula

After much effort, the pioneers (Bohr, Kramers, Born and
Heisenberg) failed in their attempt to quantize atomic
helium. Their problems were fundamental: They neither
understood chaos nor had the means to find chaotic
trajectories. Helium is chaotic; worse, under classical
dynamics it “illegally” ejects an electron (autoionization)
for a large fraction of initial conditions. One electron
falls closer to the nucleus and to a lower energy than is
quantum mechanically allowed, ejecting the other elec-
tron. In 1970 Gutzwiller finally did what the pioneers
needed to do, namely express the eigenvalues in terms
of the periodic orbits.2 The periodic orbits are the natural
extension of the Bohr orbits of the hydrogen atom. For
a chaotic system, the periodic orbits are rare, unstable
trajectories that return exactly upon themselves. They
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The ‘lemon’ billiard system, a particle in a
lemon-shaped box, is a typical mixed
dynamical system, having both chaotic
motion (top two images) and quasiperiodic
motion (bottom six images). All four distinct
types of motion seen in the lemon are shown,
in the form of numerically obtained quantum
eigenstates (green; lyl? is plotted) and
classical orbits (blue). Completely integrable
systems (such as a particle in a circular or
rectangular box) and completely chaotic
systems (such as a particle in a
stadium-shaped box) are very rare. Most
systems exhibit both types of

motion. Figure 1

always exist in a chaotic system and are still infinite in
number, though embedded in a much larger sea of cha-
otic, nonperiodic trajectories.

Gutzwiller had the idea of looking at the trace (the
integral over all coordinates) of the energy Green’s func-
tion, which has simple pole singularities at the eigenval-
ues E,. Integrating to obtain the semiclassical version
of this trace leaves only the periodic orbit contributions.
In the resulting formula, one must sum over all the periodic
orbits to find even a single eigenvalue. The trace formula
for a particle of mass m and momentum p = \N2mE inside
a box with arbitrarily shaped walls is

gE)=Y T-E _lE

ml, exp (ikpl,/f - inkv,/2)
p

_ v v
~gE) +7; — 1)
O GIE G T omarye

—

The term g(E) is a smooth function giving the mean
density of states. The double sum in equation 1 runs
over all distinct periodic orbits, labeled by ¥ and over &,
the number of retracings of each orbit. Each orbit yhas
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Typical ‘scarred’ eigenstates of the stadium
billiard. These are plots of y for numerically
accurate eigenstates. The scars, regions of
high amplitude, are generated by periodic
orbits, two of which are shown. Figure 2

length /,, and the integer v, is a phase shift that counts
the number of focal points and twice the number of
reflections off the walls. The stability matrix M, records
the sensitivity of the trajectory to changes 1n initial
conditions. If the sum converges (a big if!), the eigen-
values appear as singularities in the sum.

The trace formula is rarely simple to implement.
Early attempts to compute enough periodic orbits in
equation 1 to give individual eigenvalues found, para-
doxically, that the lower energies were easier to obtain
and the higher eigenvalues were nonconvergent. This
outcome is paradoxical because one expects semiclassical
methods to work better at higher energies (the “classical
limit”). Also, the series is asymptotic at best and has to
be singular at the eigenvalues. Progress has been made
using resummation methods, which reorder the terms in
the sum in the hope of faster convergence or convergence
per se. The trace formula is very similar in structure to
one of the most studied functions in higher mathematics,
the Riemann zeta function. Special means of convergence
have been developed for the Riemann zeta function, and
“Riemann zeta look-alike procedures” for the trace for-
mula have shown promising convergence.® Considerable
success also has been achieved by the reordering and
regrouping of the terms of the sum in other ways that
seem physically rather compelling.® Extraction of accu-
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rate eigenvalues by examining periodic orbits now ap-
pears to be feasible, although most of the results so far
are confined to low energies. Indeed the helium atom
has finally been quantized directly, using periodic orbit
trajectories.” Accurate excited-state eigenvalues have
been computed from knowledge of relatively few periodic
orbits. However, deep questions about the convergence
of the trace formula and its modifications remain unan-
swered. This is still an area of intense effort.

Universal semiclassical form

Eigenvalues are important, but a spectrum or an eigen-
state, for example, depends also on quantum amplitudes.
Semiclassical approximations to quantum amplitudes
have a universal form,

w(x) =Y VP, (%) exp(ip,(x)/%) ©))

where P,(x) is the classical probability for the nth way
of reaching x, and ¢,(X) is the classical action along the
nth path reaching x. The sum over n is needed because
in general there may be 0, 1,2, ... ways of reaching x.
The Born interpretation, namely that w(x) is a probability
amplitude, dictates that the wavefunction should go as
the square root of the classical probabilities in the cor-
respondence limit. The phase is always an “action inte-
gral,” for example,

0, = [p,x)-dx’ 3)

This integral amounts to accumulating the phase of
de Broglie waves, since |p(x')| =h/2(x).

As an example, consider a point particle confined to
a two-dimensional lemon-shaped box. Figure 1 shows
the quantum eigenstates (left) and the classical orbits
(right) for three distinct types of classical quasiperiodic
motion and one chaotic trajectory. Hidden dynamical
symmetries exist that are revealed easily through the
classical motion. They are called hidden because the
more complicated quasiperiodic motion is not at all ob-
vious from the shape of the box. The lemon box is an
example of “soft” chaos, by far the most common type of
dynamical system, possessing both regular motion and
chaotic motion. The chaotic trajectories are characterized
by extreme sensitivity to initial conditions.

Figure 1 shows clear examples of the universal for-
mula, equation 2. The wavefunction is large only where
trajectories go. Each of the independent rays reaching
a given point gives a term in equation 2. The nodal
pattern results from two to eight distinct terms in the
sum, depending on how many ways the trajectory visits
a given position. Wherever there are several distinct
directions of rays, a wild nodal pattern results. Regions
of classical buildup of probability, particularly at the focal
points, or “caustics,” show quantum buildup as well. (The
classical-quantum correspondence is just as strong for
the usual textbook circular or rectangular box, but the
existence of analytic quantum solutions in those cases
makes the classical approach seem superfluous.)

The trajectory is the scaffolding on which semiclas-
sical approximations to the wavefunction are built. The
quasiperiodic motion and the corresponding semiclassical
wavefunctions are all part of the conventional theory
having its roots in the old quantum theory and standard
semiclassical approximations. The accurate, numerically
determined eigenstates corresponding to the quasiperiod-
ic motion show almost perfect correspondence with the
trajectories. The trajectories are quasiperiodic and have
two constants of the motion (“actions”), corresponding to



PHOTOIONIZATION CROSS SECTION

Photoionization cross section of a
hydrogen atom in a strong magnetic field
in the chaotic regime. Medium- and
low-resolution spectra (blue and red
curves, respectively) clearly exhibit
structure, which was ascribed to the
returning orbits sketched in the inset.
The direction of the magnetic field is
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the direction along and the direction transverse to the
channels in which the trajectories choose to move. This
property allows an assignment of two quantum numbers to
those eigenstates, corresponding to the two classical actions.

Chaotic eigenstates and scars
We haven’t considered the chaotic trajectory (figure 1,
top right). The eigenstate corresponding to it also was
determined accurately by numerical methods. The cha-
otic trajectory passes through a given location with a
continuous range of momenta instead of a finite set. In
this case the universal formula is not on solid ground,
because there are infinitely many terms. Worse, the
quantization condition requiring phase coherence upon
repeated revisitation of the same region cannot be ar-
ranged. The frustration of semiclassical theory in the
case of chaotic motion is evident. The quasiperiodic
motion quantizes beautifully, but neighboring chaotic
motion in the same system has no theory.

It is still not known to what extent eigenstates can
be understood from a semiclassical analysis. The deepest
issues in semiclassical theory are at stake. In principle,

along z. The energy zero is at the
energy of ionization. (Adapted from
ref. 14.). Figure 3

40 50

the dynamics over infinitely long times is needed to
determine an eigenstate completely. Semiclassical ap-
proximations are predicted to break down well before the
time—energy uncertainty principle allows the eigenstates
to be resolved from one another. This difficulty gets
worse at higher energy. In spite of this, an accurate
high-energy semiclassical wavefunction was recently suc-
cessfully constructed from strongly chaotic motion,® as
we discuss below. This accomplishment represents a
milestone, but semiclassical construction of eigenstates
in general remains a doubtful prospect.

About 20 years ago, Michael Berry made a conjecture
about the eigenstates of chaotic systems. Extending the
ideas of regular motion and equation 2 to hard chaos, he
suggested that the eigenstates of chaotic systems are
governed by random sums of infinitely many terms in
equation 2, corresponding to the infinitely many ways a
trajectory accesses a given region for a chaotic system.

Accurate numerical calculations tend to support
Berry’s conjecture, but there is a caveat: Some eigen- .
states have regions of high amplitude, called “scars,” near
certain classical periodic orbits.® As we have just seen,

Quantum and semiclassical time evolution (red and blue curves, respectively) of an initially Gaussian
wavepacket in a Morse potential. From left to right the times are t=0, t=0.1 and t= 6.0, where t=1 is the
mean period of one oscillation. Note that the Gaussian becomes delocalized after a few classical periods (the
evolution is past the “Ehrenfest” regime) but the semiclassical propagation still works well (right). Figure 4
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periodic orbits play a large role in the theory of eigen-
values, so a corresponding role in the eigenstates should
not come as a surprise. Periodic orbits differ in stability,
the property that governs how far a similar, nearby
trajectory moves away in one period. Periodic orbits that
are not too unstable cause scarring. (See figure 2.)
Eugene Bogomolny'® and Berry!! added much to the scar
theory by quantifying the appearance of scars in coordi-
nate and phase space, respectively. The scars are the
most noticeable features in the otherwise confused sea of
amplitude in chaotic eigenstates.

The importance of time

We have discussed eigenvalues and eigenstates so far.
The great bulk of the work in semiclassical theory has
been in the energy domain, with an emphasis on eigen-
values. One can, however, argue that the time domain
is more fundamental, since it contains the stationary
states with no further constructions. Moreover, explicitly
time-dependent experiments are proliferating, providing
further motivation for studying the time-domain theory.
Other experiments, although not time dependent, are best
understood in the time domain because their essential
physics is of short duration.

The hydrogen atom in a magnetic field is a beautiful
problem of atomic physics, intermediate between hydro-
gen and helium in difficulty. For a wide range of mag-
netic field strengths and the energies of the atom, this
dynamical system is a typical case of soft chaos, approach-
ing hard chaos for certain ranges. Measurements of
direct absorption spectra show oscillatory structure in the
cross section even above the ionization threshold; the
origin of these features is not immediately obvious.
Building on early experimental results of William Garton
and Frank Tomkins,'? Karl Welge and coworkers!®!4
published beautiful spectra and a semiclassical theory of
the system in 1986, attracting many new converts to the
field. Harald Friedrich, Dieter Wintgen, John Delos and
Meng Li Du'® furthered the connection between the care-
fully remeasured spectral features and the periodic orbits
of the classical hydrogenic electron in a magnetic field.
(See figure 3.)

This problem is best understood semiclassically. In-
deed, some low-lying energy levels were successfully pre-
dicted from the Gutzwiller trace formula using very few
periodic orbits. Along with another modified Coulomb
system, the so-called anisotropic Kepler problem,'¢ this
was one of the early successes of the Gutzwiller trace
formula.

However, the essential physics of the striking quasi-
Landau oscillations in the spectrum involves short-time
motion of the electron as it leaves the vicinity of the
nucleus and then returns.!” The spectrum can be repre-
sented as the Fourier transform of the autocorrelation

Evolution in phase space of a classical
distribution under chaotic dynamics.

a: Initial distribution x’(0) corresponding
to a definite position x” and all possible
momenta. b: Early folding of x’(f). The
position x (red) shows the location of a
caustic singularity. c¢: The folding and
winding due to chaotic dynamics over a
longer time. The green disk has area &
and corresponds to a localized state in
a “safe” zone away from area-fi-
violating regions at the ends of

loops. Figure 5
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function (ple(¢)), where lp) is the nonstationary state
consisting of the ground eigenstate multiplied by the
usual dipole coupling. The state lg(¢)) is l¢) propagated

for a time ¢ under the full atomic Hamiltonian. The
spectrum £(w) is given by'®
e(@) = [ expiot) (plo@®) dt @

The low-resolution structure in the Welge measurements
is thus due to short-time motion of lg(#)). Time-domain
features in (plp(¢)) correspond to distinct patterns in the
spectrum.

These results suggest that one can calculate the
dynamics of |¢(#)) directly from the time domain, avoiding
the eigenstates. However, to do so one needs a time-de-
pendent semiclassical approach. The oldest postquantum
semiclassical theory is John van Vleck’s time-dependent
semiclassical Green’s function, introduced in 1928. It has
been relatively neglected except as a route to the station-
ary-state results. The realization of the full potential of
the van Vleck Green’s function is one of the promising
new developments in semiclassical theory.

Recall that the quantum propagator G(x,x";t) takes
amplitude from x’ to x in time ¢. The classical analog
of this is constructed by way of the universal formula,
equation 2. The classical analog starts with all the
trajectories at x” at time ¢t =0. They have all possible
momenta, corresponding to the infinite quantum un-
certainty in momentum for a position state. The tra-
jectories fan out in all directions with all speeds for
t>0. The classical probability needed for equation 2
is simply the classical density of trajectories arriving
at x by a given route; different routes to the same x
each merit a term in equation 2. The action integral
is computed for each trajectory; this becomes the phase.
The picture is one of a swarm of trajectories carrying
amplitude and phase around with them. They inter-
fere destructively or constructively and collectively
build the wavefunction. As complicated as this may
seem, it is vastly simpler than the exact Feynman path
integral construction of the propagator. The trajecto-
ries are the scaffolding for semiclassical stationary
states and for semiclassical dynamics.®

The van Vleck Green’s function is

G*(x,x’;t) =
1/2 1/2 . o
(1 y 92S;(x,x) iSj(x,x) 1y7
2wt | | e | PR 2
1/2 1/2 . .
(1 o’ iSje,x) iy7
‘(mﬁj EJ: o |, eXp[ 2 (%)

XM X(t)




The action

t
S..x) =] at' [p@) xt) - Hp@)x)]  ©)
0

is the usual integral of the classical Lagrangian
L=pxt)— H(pt),x()) over the jth classical path from
x’ to x. The sum is over all trajectories that connect x’
tox in time ¢. The term —iv;z/2 is the Maslov—Gutzwiller
phase. The integer v; increases by 1 whenever the clas-
sical trajectory connecting x” to x meets a focal point, or
caustic, where 82Sj(x,x’)/ dx 0x’ diverges. Although there
were precedents to this Green’s function in related con-
texts, Gutzwiller gave the crucial phase correction v; to
the van Vleck expression, without which it would be
useless.

Certainly one impediment to the use of the van
Vleck—Gutzwiller Green’s function has been the appar-
ently forbidding task of evaluating it. For each time ¢
and separately for each pair of points x and x” we must
find all trajectories connecting those points. One of the
exciting recent developments is the realization that this
is too pessimistic a perspective. Much more efficient
algorithms exist. One direct approach is to run a grid
of trajectories and use interpolation, accounting for essen-
tially all relevant classical paths. Successive times £+ &t
are built upon the prior time ¢ by a single integration step.

A one-dimensional example illustrates a valuable
point. If we launch a narrow wavepacket l¢(0)) in an
anharmonic oscillator, Ehrenfest’s theorem tells us that
it will (for a limited time) follow a classical trajectory
(x,, p,) in the sense (p(t)|x o)) = x, and (p()|plo(®)) = p;.
The wavepacket remains localized for a time we call the
Ehrenfest time, after which it becomes delocalized over
all of the potential accessible to it. One might expect
that the semiclassical approximation would break down
after the Ehrenfest time, but this is far from the case,
as figure 4 shows.?

Oil on troubled waters
As mentioned above, caustics occur at divergences of

o) (2 @
Jx Ox op’ B

A divergence is caused by trajectories piling up at certain
values of x after they leave x’. A phase space picture is
very helpful. A vertical line at x” corresponds to the
initial classical distribution x'(0), that is, all possible
momenta at a single position. (See figure 5a.) After
some time the trajectories have spread out to many
places, but there are caustics at certain values of x where
loops or folds form and the density of trajectories diverges.
More specifically, a caustic occurs at x if the vertical line
at x is tangent to the curve x/(¢). (See figure 5b.)

The divergences of the Green’s function would appear
to be a major problem. The semiclassical Green’s func-
tion blows up at the divergences, but the quantum Green’s
function is finite. In their pioneering study of semiclas-
sical propagation, Berry and coworkers noted that the
divergences grow in number until almost no region is
free of them.?’® The problem is much worse for chaotic
systems, because the number of divergences grows expo-
nentially fast. This growth was widely thought to lead
to the demise of semiclassical propagation on a disap-
pointingly short time scale.

A fortunate circumstance saves semiclassical propa-
gation from the divergences. The Green’s function itself
is normally not needed; instead, it is applied to smooth

Two groups of trajectories leaving with very
similar initial conditions in a stadium return
to the starting point by different paths. Each
group carries wave amplitude and
corresponds to a term in equation 2. These
are two of the more than 30 000 “echoes”
whose return contributes to the later values of
the autocorrelation function shown in

figure 8. Figure 6

states ¢(x) to move them forward in time. The use of a
smooth wavefunction ¢(x) with the badly behaved Green’s
function is like pouring oil on troubled waters: The
Green’s function singularities disappear, replaced by
much more benign errors. The semiclassical van Vleck
Green’s function G*(x,x’;t) is used by exact analogy to
the quantum propagator:

o) = [ G 'st) 9(x',0) (8)

In this way classical trajectories from various initial
locations x’, weighted by the amplitude ¢(x’,0), guide the
moving wavefronts of ¢(z).

The smoothing of the Green’s function singularities
is done in amplitude space, not as a palliative but as a
necessity. Smooth states are localized in phase space to
zones of area h. They can easily dodge error-prone
regions, as figure 5¢c shows. The green disk representing
the smooth state in phase space is out of harm’s way by
being far from the ends of loops in x’(¢"). The loops cause
errors when they enclose area less than #, as they must
if they are approached too closely.

Now we can understand the time-dependent semi-
classical treatment of the hydrogen atom in a magnetic
field: The trajectories leave the region of the nucleus
and groups of them later return. The wave ¢(x,t), guided
by the trajectories, does the same. If the wave returns,
there will be a recurrence, an increase in the correlation
function {(ple(?)), at a time governed by the classical
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Evolution of a localized wavepacket in
the stadium billiard system, computed
numerically. The initial Gaussian,
pictured in the first frame, has a
momentum corresponding to 30
wavelengths stretching across the
horizontal axis. From left to right, top to
bottom, the images are for t=0, 0.4, 0.8,
1.6, 3.2 and 6.4, where 1 is about the
time required for the wavepacket to
traverse the stadium horizontally. After a
few bounces the wavefunction is
completely delocalized. The dynamics is
nonetheless almost all describable by
time-dependent semiclassical methods.
(Adapted from ref. 24.) Figure 7

trajectories. This will appear in the spectrum as oscil-
latory structure spaced proportionally to the inverse time
of return.

Chaoos: The demise of semiclassical dynamics?

The smoothing effect is a big help, but it is not enough
to fix all the problems of the semiclassical approach.
Chaos complicates matters by creating exponentially
many new ways to get from x’ to x as time increases,
and these new ways necessarily cause stretching and
folding in the phase space distribution. (See figure 5.)
This creates two new difficulties, one fundamental, one
practical. The fundamental problem is that the narrow
folds may enclose area less than . This feature is a red
flag in semiclassical theory, one that the “o0il” cannot
really fix. For areas less than 7% there is a breakdown
of the stationary-phase evaluation of integrals that are
at the heart of the theory.

The practical problem is the task of enumerating all
the trajectories. Fortunately the trajectories often natu-
rally divide into groups with similar histories. One can
approximate each group by expanding the local classical
motion about a representative orbit. The sum over indi-
vidual trajectories then becomes a sum over far fewer
groups, each one guiding an independent wavelet. The
sum of all these wavelets yields the semiclassical approxi-
mation to the full dynamics. However, the groups visit
any region by a staggering number of topologically dis-
tinct paths as time evolves, so eventually even the num-
ber of groups becomes a problem.

It is very instructive to see how these wavelets
develop for a stadium-shaped box, a system known to
be completely chaotic. In figure 6 we see two groups
of rays emanating from very similar initial conditions
near the center of the stadium. After three bounces
both sets have returned, but by topologically distinct
paths. As in all chaotic systems, small differences
between trajectories have been rapidly amplified. Each
group carries with it a wavelet, which will contribute
amplitude to a recurrence, that is, a growth in the
correlation function (ple(#)). The returning wavelets
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are separate terms in equation 2.
An acoustical version of the stadium has almost the
same physics. Imagine shouting in a certain direction in

a stadium-shaped room. The correlation function
amounts to listening for echoes. The earliest returning
echoes can only have bounced off one or two walls, but
very shortly thereafter the number of distinctly different
paths leading to echoes is staggering. Labeling the walls
(top, side, bottom, side) 1 through 4, a path is distinct if
the sequence of bounces (for example, 1-2-3-2-3-1-4) is
new. After just 10 bounces there are roughly 100 000
approximately equally important distinct paths for ech-
oes. Clearly each of the separate subechoes has to be
extremely feeble. Can the process of following the echoes
by such ray tracing be meaningful under such conditions?
Here we face the semiclassical crisis of confidence.

One view of the crisis is that as time increases, the
initial shift of position or direction required to distinguish
one set of returning rays from another is microscopic,
perhaps one ten-thousandth of a wavelength. It would
seem that the rays can no longer be used to construct
the semiclassical propagation if classical details on a scale
much smaller than a wavelength are important. The
other side of the same coin is that any phase space cell
the size of Planck’s constant is bent and folded into pieces
seemingly insignificant on the scale of Planck’s constant.
This happens in a short time dubbed the “log time,”
because if 7 is made smaller the time to reach supposedly
ruinous folding only gets longer as log(1/%). Until very
recently, it was widely believed that semiclassical ap-
proximations would break down on this time scale. If
that is true, it is hard to see why the energy space results
such as the trace formula should work, because the
Fourier transform from time to energy implies they de-
pend on long-time propagation.

Fortunately these worries are ill posed and ill
founded. The right question to ask is, How much has
the semiclassical phase (action) changed between differ-
ent returning wavelets? There is a simple rule: Trajec-
tories leaving from very similar initial conditions and
returning to very similar final conditions at the same



time need to have phases that differ by at least one
radian, or else the usual rules of semiclassical approxi-
mations break down. In a billiard system this means
path lengths differing by approximately one wavelength
divided by 27 or greater. As time increases, even micro-
scopic differences in initial conditions get amplified and
can lead to large path length differences before the
trajectories return. Amazingly, strong chaos may help
the semiclassical approximation by amplifying such dif-
ferences or, equivalently, by building large loops in phase
space. Detailed analysis along these lines shows that
the breakdown happens at times much longer than the
log time. The breakdown time goes algebraically in 7,
not logarithmically.?!

Chaos in the stadium

The stadium has played a large role in the study of
classical chaos and its effect on quantum mechanics.
Now it is playing an experimental role as well. Recently,
a mesoscopic stadium-shaped chamber has been con-
structed?? for the study of conductance fluctuations as a
function of magnetic field. The stadium has also been
the subject of microwave cavity experiments.??

Figure 7 shows the time evolution of a smooth non-
stationary wavepacket in a stadium.?* The wavepacket
was computed accurately by numerical means at times
t=04, 08, 1.6, 3.2 and 6.4 (where 2 is about the time
it takes the center of the wavepacket, bouncing horizon-
tally, to make a round trip). The rapid breakup of the
packet is evident; the Ehrenfest time (time required for
wavepacket breakup) is less than 1. The log time is
around ¢ =2.

Figure 8 shows the quantum and semiclassical re-
sults?¢ we obtained for the correlation function (¢l¢(%))
for the wavepacket l¢(0)) shown in figure 7. Long after
the log time, the results hold up well. By ¢=6 the
number of contributing paths was about 30000 and
growing exponentially. In short, we ran out of computer
time. No significant breakdown of the semiclassical
propagation had taken place.

We get the spectrum by taking the Fourier transform
of the correlation function. The inset of figure 8 shows
the semiclassical result along with the numerically de-
termined exact spectrum. The semiclassical spectrum is
remarkably accurate and resolves the spectrum to nearly
the mean spacing; only classical mechanics was used to
generate it! Eigenvalues in the neighborhood of the
1000th are given accurately. The finite resolution of the
semiclassical spectrum results from our cutting off the
Fourier integral at ¢ =6, where the correlation function
was doing well. This implies that if more classical detail
had been followed past ¢ = 6, even finer resolution would
have been obtained.

Because of the benefits of using smooth states and
the more optimistic fold analysis, we find that while
chaotic dynamics increases the complexity of the semi-
classical constructions, the accuracy is good for times
much longer than the log time. In the acoustical case,
adding all 30 000 feeble echoes gives the correct sound
amplitude after all.

Is there a paradox here, in that 30 000 extremely
small zones in phase space are contributing to an accurate
result? The key point is to recognize that the uncertainty
principle is a one-way street: While it is true that
quantum mechanics cannot resolve structures finer than
f in size, it is quite possible to construct quantum me-
chanics from thousands of pieces of data within each
Planck cell. The matter is no more profound than a
blurry photograph. The blurred image cannot be used
to construct a sharp one, but the sharp image can cer-
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spectrum obtained by taking the Fourier
transform of C(d) (blue) and the numerically
determined exact spectrum. (Adapted from
ref. 24.) Figure 8

tainly give the correct blurred one. In fact, infinitely
many different sharp photographs give the same blurred
one. Current research is exploiting this idea; it may not
be necessary to calculate the exact classical dynamics, or
its full complexity, to get an accurate approximation to
quantum mechanics. This is one implication of the “cycle
expansion” for the eigenvalues,®’ which uses “pseudo-
orbits” (collections of subtly related classical orbits) to
speed or even induce convergence in the trace formula.

When does semiclassical propagation become inaccu-
rate? There is no single answer to this question, even
for a given system. The time of breakdown can vary
dramatically depending on the location of the initial state
to be propagated. All “classically forbidden” processes
are by definition absent from an approach based purely
on ordinary classical trajectories. These processes go
under the names of diffraction, tunneling and localization,
although the distinctions between them are not always
well defined. In the time domain, the wavefunction starts
out exact by definition. Accuracy is expected to deterio-
rate with time, due to all the accumulated effects of the
classically forbidden processes. For billiard systems
(disks, stadiums and so on) breakdown can squarely be
blamed on diffraction. In the stadium, the biggest source
of diffraction is the joints between the straight walls and
the circular sections. By examining the accumulation of
the diffracted amplitude, it is possible to show that the
time scale for breakdown is not logarithmic in # but
follows a power law. For the stadium, it goes as fi™/2.
While this is good news compared with the log time, it
bodes ill for the determination of individual eigenstates
as i— 0. The reason is that the density of states goes
as 772, so the breakdown will occur before the eigenstates
can be resolved.

Nevertheless, it is possible to go further and attempt
to construct a semiclassical eigenstate from the chaotic
trajectories. This is another watershed. Figure 9 shows
the exact and semiclassical eigenfunctions obtained from
the Fourier transform of a propagated wavepacket similar
to the one shown in figure 7. The energy was chosen to
match one of the peaks in the packet’s semiclassical
spectrum.® The normalized overlap between the exact
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and approximate states is approximately 0.96. The semi-
classical eigenfunction is surprisingly accurate consider-
ing the intricate and delicate interferences taking place
in its construction. Could it be that the mathematical
arguments about the breakdown of semiclassical theory
are still far too pessimistic?

The Holy Grail?

Beginning about 20 years ago, Berry focused attention
on the dilemmas of semiclassical theory by defining its
Holy Grail: quantization of classical chaos. The recent
quantization of the helium atom” and the construction of
the spectra and semiclassical eigenstates directly from
chaotic classical trajectories mean the grail is much
nearer. However, too many questions remain about con-
vergence and errors of the procedures to say that the
grail has been found.

There is no doubt that the agenda of the old quantum
theorists is active again, after a long hiatus caused by
classical chaos. At first people were unaware of chaos
and the problems it can create. Later, those problems
may have been overestimated. We have learned that
chaos poses no devastating threat, but it adds complexity
to the classical mechanics. Enumerating the periodic
orbits for the trace formula or the groups of returning
(but not necessarily periodic) orbits for a correlation
function is difficult for long orbits. Simplifying that
complexity is a major challenge. The analogy with a
blurry photograph may provide a clue. There ought to
be a simplest sharp photograph (set of effective rays) that
gives substantially the correct blurred one. This ap-
proach is a major area of research.

The normal sorts of threats to semiclassical methods
(diffraction and tunneling) will take center stage as chaos
per se recedes in importance. Effects such as diffraction
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A quantum eigenstate and its semiclassical approximation for
the chaotic stadium billiard. The normalized overlap between
the two states is approximately 0.96. (Adapted from

ref. 8.) Figure 9

may be too important to be safely ignored, or may even
be the essence of the problem. Still, it is amusing to
note that the concepts of diffraction and tunneling only
exist relative to classical mechanics as a baseline! Clas-
sical ideas pervade quantum mechanics. It is good to
know how far they can really take us.

Most importantly, many applications to physical sys-
tems lie ahead. If semiclassical methods are really
worthwhile, the best understanding of many atomic, mo-
lecular, nuclear and mesoscopic processes and properties
will be in terms of classical mechanics and semiclassical
amplitudes.

* kK

We thank our coworker Miguel Sepiilveda for many helpful dis-
cussions and William P. Harter for a critical reading of the
manuscript.
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