
POST MODERN 
QUANTUM MECHANICS 

Recent progress in semiclassical theory has overcome barriers posed 
by classical chaos and cast light on the correspondence principle. 
Semiclassical ideas have also become central to new experiments 
in atomic, molecular, microwave and mesoscopic physics. 

Eric J. Heller and Steven Tomsovic 

Postmodern movements are well known in the arts. After 
a major artistic revolution, and after the "modern" inno­
vations have been assimilated, the threads of premodern 
thought are always reconsidered. Much of value may be 
rediscovered and put to new use. The modern context 
casts new light on premodern thought, which in turn 
shades perspectives on modernism. 

Robert Harris at the University of California at 
Berkeley coined the term "postmodern quantum mechan­
ics" to describe the keen new interest in semiclassical 
approximations. These approximations have their roots 
in the premodern old quantum theory. Semiclassical 
methods have occupied a niche in the modern era, but 
lately their evolution has taken a dramatic turn with the 
confrontation of their nemesis: classical chaos. 

It is not widely understood that classical chaos has 
prevented the broad application of semiclassical ideas 
and techniques. Semiclassical methods are built on clas­
sical trajectories; if these are extremely complex, the 
semiclassical approximations may become inaccurate, dif­
ficult to compute or even ill defined. Chaos kept Bohr, 
Kramers, Heisenberg and Born from quantizing the he­
lium atom, although they were not aware that chaos was 
to blame. Among physicists, only Einstein knew that 
what he called "type B" (chaotic) classical motion would 
not yield to the old quantization methods . He published 
a paper pointing this out in 1917, but it was ignored.1 

In the last 10 to 15 years it has been recognized that 
most classical dynamical systems, including helium, can 
behave chaotically. What good is a semiclassical theory 
that cannot handle chaos? 

The issue of semiclassical approximations to chaos 
was confronted for the first time when Martin Gutzwiller2 

derived his semiclassical "trace formula" for the eigen­
values of a chaotic system in 1970. His result reopened 
the premodern agenda and marked the beginning of the 
postmodern era. 

Theory and experiment interact strongly in the post-
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modern investigations. The mesoscopic world, caught 
between classical and quantum behavior, is the focus of 
much research. Here semiclassical ideas are a necessity. 
Many new experiments with excited atomic and molecular 
systems directly probe the realm of high quantum num­
bers or classically chaotic motion. 

The quantum and classical realms are related by the 
connections that exist between wave phenomena and 
geometric ray paths. These connections are common to 
many fields , and essentially identical problems exist in 
quantum mechanics, optics, acoustics, seismology, ocean­
ography, plasma physics and microwave physics. Some 
of these fields (for example, optics) far surpass quantum 
mechanics in the use of geometrical paths as the backbone 
for understanding. In many areas of wave physics, the 
geometrical limit has always been regarded simply as a 
useful approximation to the true wave behavior. 

In quantum mechanics, nothing is quite so simple. 
Controversy surrounds the semiclassical limit. Mathe­
matical questions of wave-ray asymptotics are inter­
twined with questions of quantum measurement theory, 
the Copenhagen interpretation, the correspondence prin­
ciple and even the completeness of quantum mechanics. 
These issues sharpen the debate but often obscure the 
technical question of the semiclassical limit to quantum 
mechanics. Much of the recent controversy is sparked 
by issues of chaos: Can quantum mechanics give classical 
chaos as a limiting behavior? Can classical chaos be 
successfully semiclassically quantized? Are the two ques­
tions different? What is "quantum chaos ," or does it even 
exist?3 In this article we will sidestep the philosophical 
debate and focus on the issues of useful approximations 
and physical insight. 

When presented with the results of a large quantum 
calculation, Eugene P . Wigner once said: "It is nice to 
know that the computer understands the problem. But 
I would like to understand it, too."4 It is extremely 
difficult to visualize or to calculate the movement of a 
quantum wave in six dimensions, but easy to imagine or 
calculate trajectories for two electrons moving around a 
helium nucleus. Unavoidably, we think classically about 
systems of more than a couple of particles. It would be 
splendid if most of the physics of such problems could be 
calculated with classical mechanics and a few rules. That 
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goal seems much closer now. With the chaos barrier 

coming down, semiclassical ideas are better able to sup­

port or suggest new experiments and to lend physical 

insight into quantum mechanics. Beyond this, semiclas­

sical methods can be the basis of calculations that are 

computationally out of reach to full quantum approaches. 

Eigenvalues and the trace formula 
After much effort, the pioneers (Bohr, Kramers, Bom and 

Heisenberg) failed in their attempt to quantize atomic 

helium. Their problems were fundamental: They neither 

understood chaos nor had the means to find chaotic 

trajectories. Helium is chaotic; worse, under classical 

dynamics it "illegally" ejects an electron (autoionization) 

for a large fraction of initial conditions. One electron 

falls closer to the nucleus and to a lower energy than is 

quantum mechanically allowed, ejecting the other elec­

tron. In 1970 Gutzwiller finally did what the pioneers 

needed to do, namely express the eigenvalues in terms 

of the periodic orbits.2 The periodic orbits are the natural 

extension of the Bohr orbits of the hydrogen atom. For 

a chaotic system, the periodic orbits are rare, unstable 

trajectories that return exactly upon themselves. They 

The ' lemon' billiard system, a particle in a 
lemon-shaped box, is a typical mixed 
dynamical system, having both chaotic 
motion (top two images) and quasiperiodic 
motion (bottom six images). All four distinct 
types of motion seen in the lemon are shown, 
in the form of numerica ll y obtained quantum 
eigenstates (green; hi'V is plotted) and 
classica l orbits (b lue). Completely integrable 
systems (such as a particle in a circu lar or 
rectangu lar box) and completely chaotic 
systems (such as a particle in a 
stadium-shaped box) are very rare. Most 
systems exhibit both types of 
motion . Figure 1 

always exist in a chaotic system and are still infinite in 

number, though embedded in a much larger sea of cha­

otic, nonperiodic trajectories. 
Gutzwiller had the idea of looking at the trace (the 

integral over all coordinates) of the energy Green's func­

tion, which has simple pole singularities at the eigenval­

ues En- Integrating to obtain the semiclassical version 

of this trace leaves only the periodic orbit contributions. 

In the resulting formula, one must sum over all the periodic 

orbits to find even a single eigenvalue. The trace formula 

for a particle of mass m and momentum p = ,J2mE inside 

a box with arbitrarily shaped walls is 

1 
g(E)= LE-E 

n n 

_ 1 ~ mlr exp (ikplrf li- ink vr f 2) 

== g(E) +iii ~ k~l P 12- Tr(M/1 112 
(1) 

The term g(E) is a smooth function g~vmg the mean 

density of states. The double sum in equation 1 runs 

over all distinct periodic orbits, labeled by y, and over k , 

the number of retracings of each orbit. Each orbit r has 
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Typical'scarred' eigenstates of the stadium 
billiard. These are plots of lfl for numerically 
accurate eigenstates. The scars, regions of 
high amplitude, are generated by periodic 
orbits, two of which are shown. Figure 2 

length l r, and the integer vr is a phase shift that counts 
the number of focal points and twice the number of 
reflections off the walls. The stability matrix Mr records 
the sensitivity of the trajectory to changes in initial 
conditions. If the sum converges (a big if!), the eigen­
values appear as singularities in the sum. 

The trace formula is rarely simple to implement. 
Early attempts to compute enough periodic orbits in 
equation 1 to give individual eigenvalues found, para­
doxically, that the lower energies were easier to obtain 
and the higher eigenvalues were nonconvergent. This 
outcome is paradoxical because one expects semiclassical 
methods to work better at higher energies (the "classical 
limit"). Also, the series is asymptotic at best and has to 
be singular at the eigenvalues. Progress has been made 
using resummation methods, which reorder the terms in 
the sum in the hope of faster convergence or convergence 
per se. The trace formula is very similar in structure to 
one of the most studied functions in higher mathematics, 
the Riemann zeta function . Special means of convergence 
have been developed for the Riemann zeta function, and 
"Riemann zeta look-alike procedures" for the trace for­
mula have shown promising convergence.5 Considerable 
success also has been achieved by the reordering and 
regrouping of the terms of the sum in other ways that 
seem physically rather compelling.6 Extraction of accu-

40 PHYSICS TODAY JULY 1993 

rate eigenvalues by exammmg periodic orbits now ap­
pears to be feasible, although most of the results so far 
are confined to low energies . Indeed the helium atom 
has finally been quantized directly, using periodic orbit 
trajectories.7 Accurate excited-state eigenvalues have 
been computed from knowledge of relatively few periodic 
orbits. However, deep questions about the convergence 
of the trace formula and its modifications remain unan­
swered. This is still an area of intense effort. 

Universal semiclassical form 
Eigenvalues are important, but a spectrum or an eigen­
state, for example, depends also on quantum amplitudes. 
Semiclassical approximations to quantum amplitudes 
have a universal form, 

lf/(X) =I, >JP n(x) exp(iq>n(x)/n) (2) 
n 

where Pn(x) is the classical probability for the nth way 
of reaching x , and IPn(x) is the classical action along the 
nth path reaching x . The sum over n is needed because 
in general there may be 0, 1, 2, . .. ways of reaching x. 
The Born interpretation, namely that lfi(X) is a probability 
amplitude, dictates that the wavefunction should go as 
the square root of the classical probabilities in the cor­
respondence limit. The phase is always an "action inte­
gral," for example, 

(3) 

This integral amounts to accumulating the phase of 
de Broglie waves, since lp(x') I = h /J.. (x'). 

As an example, consider a point particle confined to 
a two-dimensional lemon-shaped box. Figure 1 shows 
the quantum eigenstates (left) and the classical orbits 
(right) for three distinct types of classical quasiperiodic 
motion and one chaotic trajectory. Hidden dynamical 
symmetries exist that are revealed easily through the 
classical motion. They are called hidden because the 
more complicated quasiperiodic motion is not at all ob­
vious from the shape of the box. The lemon box is an 
example of "soft" chaos, by far the most common type of 
dynamical system, possessing both regular motion and 
chaotic motion. The chaotic trajectories are characterized 
by extreme sensitivity to initial conditions. 

Figure 1 shows clear examples of the universal for­
mula, equation 2. The wavefunction is large only where 
trajectories go. Each of the independent rays reaching 
a given point gives a term in equation 2. The nodal 
pattern results from two to eight distinct terms in the 
sum, depending on how many ways the trajectory visits 
a given position. Wherever there are several distinct 
directions of rays, a wild nodal pattern results. Regions 
of classical buildup of probability, particularly at the focal 
points, or "caustics," show quantum buildup as well. (The 
classical-quantum correspondence is just as strong for 
the usual textbook circular or rectangular box, but the 
existence of analytic quantum solutions in those cases 
makes the classical approach seem superfluous.) 

The trajectory is the scaffolding on which semiclas­
sical approximations to the wavefunction are built. The 
quasiperiodic motion and the corresponding semiclassical 
wavefunctions are all part of the conventional theory 
having its roots in the old quantum theory and standard 
semiclassical approximations. The accurate, numerically 
determined eigenstates corresponding to the quasiperiod­
ic motion show almost perfect correspondence with the 
trajectories. The trajectories are quasiperiodic and have 
two constants of the motion ("actions"), corresponding to 
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the direction along and the direction transverse to the 
channels in which the trajectories choose to move. This 
property allows an assignment of two quantum numbers to 
those eigenstates, corresponding to the two classical actions. 

Chaotic eigenstates and scars 
We haven't considered the chaotic trajectory (figure 1, 
top right). The eigenstate corresponding to it also was 
determined accurately by numerical methods. The cha­
otic trajectory passes through a given location with a 
continuous range of momenta instead of a finite set. In 
this case the universal formula is not on solid ground, 
because there are infinitely many terms. Worse, the 
quantization condition requiring phase coherence upon 
repeated revisitation of the same region cannot be ar­
ranged. The frustration of semiclassical theory in the 
case of chaotic motion is evident. The quasiperiodic 
motion quantizes beautifully, but neighboring chaotic 
motion in the same system has no theory. 

It is still not known to what extent eigenstates can 
be understood from a semiclassical analysis. The deepest 
issues in semiclassical theory are at stake. In principle, 
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Photoionization cross section of a 
hydrogen atom in a strong magnetic fie ld 
in the chaotic regime. Medium- and 
low-resolution spectra (blue and red 
curves, respective ly) clear ly exhibit 
structure, which was ascribed to the 
return ing orbits sketched in the inset. 
The direction of the magnetic field is 
along z. The energy zero is at the 
energy of ion izat ion. (Adapted from 
ref. 14.) Figure 3 

the dynamics over infinitely long times is needed to 
determine an eigenstate completely. Semiclassical ap­
proximations are predicted to break down well before the 
time-energy uncertainty principle allows the eigenstates 
to be resolved from one another. This difficulty gets 
worse at higher energy. In spite of this, an accurate 
high-energy semiclassical wavefunction was recently suc­
cessfully constructed from strongly chaotic motion,8 as 
we discuss below. This accomplishment represents a 
milestone, but semiclassical construction of eigenstates 
in general remains a doubtful prospect. 

About 20 years ago, Michael Berry made a conjecture 
about the eigenstates of chaotic systems. Extending the 
ideas of regular motion and equation 2 to hard chaos, he 
suggested that the eigenstates of chaotic systems are 
governed by random sums of infinitely many t erms in 
equation 2, corresponding to the infinitely many ways a 
trajectory accesses a given region for a chaotic system. 

Accurate numerical calculations tend to support 
Berry's conjecture, but there is a caveat: Some eigen­
states have regions of high amplitude, called "scars," near 
certain classical periodic orbits.9 As we have just seen, 

Quantum and semiclassical time evolution (red and blue curves, respectively) of an initial ly Gaussian 

wavepacket in a Morse potential. From left to right the t imes are t= 0, t= 0.1 and t= 6.0, where t= 1 is the 

mean period of one osc il lat ion. Note that the Gauss ian becomes delocalized after a few class ica l periods (the 

evolution is past the "Ehrenfest" regime) but the semiclassical propagation sti ll works we ll (right). Figure 4 
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periodic orbits play a large role in the theory of eigen­
values, so a corresponding role in the eigenstates should 
not come as a surprise. Periodic orbits differ in stability, 
the property that governs how far a similar, nearby 
trajectory moves away in one period. Periodic orbits that 
are not too unstable cause scarring. (See figure 2.) 
Eugene Bogomolny10 and Berry11 added much to the scar 
theory by quantifying the appearance of scars in coordi­
nate and phase space, respectively. The scars are the 
most noticeable features in the otherwise confused sea of 
amplitude in chaotic eigenstates. 

The importance of time 
We have discussed eigenvalues and eigenstates so far. 
The great bulk of the work in semiclassical theory has 
been in the energy domain, with an emphasis on eigen­
values. One can, however, argue that the time domain 
is more fundamental, since it contains the stationary 
states with no further constructions . Moreover, explicitly 
time-dependent experiments are proliferating, providing 
further motivation for studying the time-domain theory. 
Other experiments, although not time dependent, are best 
understood in the time domain because their essential 
physics is of short duration. 

The hydrogen atom in a magnetic field is a beautiful 
problem of atomic physics, intermediate between hydro­
gen and helium in difficulty. For a wide range of mag­
netic field strengths and the energies of the atom, this 
dynamical system is a typical case of soft chaos, approach­
ing hard chaos for certain ranges. Measurements of 
direct absorption spectra show oscillatory structure in the 
cross section even above the ionization threshold; the 
origin of these features is not immediately obvious. 
Building on early experimental results of William Garton 
and Frank Tomkins,lZ Karl Welge and coworkers13.14 

published beautiful spectra and a semiclassical theory of 
the system in 1986, attracting many new converts to the 
field. Harald Friedrich, Dieter Wintgen, John Delos and 
Meng Li Du 15 furthered the connection between the care­
fully remeasured spectral features and the periodic orbits 
of the classical hydrogenic electron in a magnetic field. 
(See figure 3.) 

This problem is best understood semiclassically. In­
deed, some low-lying energy levels were successfully pre­
dicted from the Gutzwiller trace formula using very few 
periodic orbits. Along with another modified Coulomb 
system, the so-called anisotropic Kepler problem, 16 this 
was one of the early successes of the Gutzwiller trace 
formula. 

However, the essential physics of the striking quasi­
Landau oscillations in the spectrum involves short-time 
motion of the electron as it leaves the vicinity of the 
nucleus and then returns. 17 The spectrum can be repre­
sented as the Fourier transform of the autocorrelation 

Evolution in phase space of a classica l 
distribution under chaotic dynam ics. 

a: Ini tial distribution x'(O) corresponding 
to a definite position x' and all possible 
momenta. b: Early folding of x '(t) . The 
position x (red) shows the location of a 
caustic singul arity. c: The folding and 

winding due to chaotic dynamics over a 
longer time. The green disk has area h 
and corresponds to a loca lized state in 

a "safe" zone away from area-h­
violating regions at the ends of 

loops. Figure 5 
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function (.-p l.-p(t)), where 1.-p) is the nonstationary state 
consisting of the ground eigenstate multiplied by the 
usual dipole coupling. The state I .-p(t)) is I .-p) propagated 
for a time t under the full atomic Hamiltonian. The 
spectrum e(m) is given by18 

e(m) = J exp(imt) (.-pl.-p(t)) dt (4) 

The low-resolution structure in the Welge measurements 
is thus due to short-time motion of I .-p(t)). Time-domain 
features in (.-p I .-p(t)) correspond to distinct patterns in the 
spectrum. 

These results suggest that one can calculate the 
dynamics of I .-p(t)) directly from the time domain, avoiding 
the eigenstates. However, to do so one needs a time-de­
pendent semiclassical approach. The oldest postquantum 
semiclassical theory is John van Vleck's time-dependent 
semiclassical Green's function, introduced in 1928. It has 
been relatively neglected except as a route to the station­
ary-state results. The realization of the full potential of 
the van Vleck Green's function is one of the promising 
new developments in semiclassical theory. 

Recall that the quantum propagator G(x,x'; t) takes 
amplitude from x' to x in time t. The classical analog 
of this is constructed by way of the universal formula, 
equation 2. The classical analog starts with all the 
trajectories at x' at time t = 0. They have all possible 
momenta, corresponding to the infinite quantum un­
certainty in momentum for a position state. The tra­
jectories fan out in all directions with all speeds for 
t > 0. The classical probability needed for equation 2 
is simply the classical density of trajectories arriving 
at x by a given route; different routes to the same x 
each merit a term in equation 2. The action integral 
is computed for each trajectory; this becomes the phase. 
The picture is one of a swarm of trajectories carrying 
a mplitude and phase around with them. They inter­
fere destructively or constructively and collectively 
build the wavefunction. As complicated as this may 
seem, it is vastly simpler than the exact Feynman path 
integral construction of the propagator. The trajecto­
ries are the scaffolding for semiclassical stationary 
states and for semiclassical dynamics. 19 

The van Vleck Green's function is 

a •ccx,x';t) = 

= (-1-. ]112 

L I FPS1(x,x') 1

112 

exp (iS1(x,x') _ i ljn) 
2mn . ax ax' h 2 

J 

c 
x'(t) x'(t') 

X 



The action 

t 

S1(x,x') = f dt' [p(t') x(t')- H(p(t'),x(t'))] (6) 

is the usual integral of the classical Lagrangian 
L = p(t')x(t') - H(p(t'),x(t')) over thejth classical path from 
x' to x. The sum is over all trajectories that connect x' 
toxin timet. The term- i~n/2 is the Maslov-Gutzwiller 
phase. The integer ~ increases by 1 whenever the clas­
sical trajectory connecting x' to x meets a focal point, or 
caustic, where a2Sj(x,x') I ax ax' diverges. Although there 
were precedents to this Green's function in related con­
texts, Gutzwiller gave the crucial phase correction ~ to 
the van Vleck expression, without which it would be 
useless. 

Certainly one impediment to the use of the van 
Vleck-Gutzwiller Green's function has been the appar­
ently forbidding task of evaluating it. For each time t 
and separately for each pair of points x and x' we must 
find all trajectories connecting those points. One of the 
exciting recent developments is the realization that this 
is too pessimistic a perspective. Much more efficient 
algorithms exist. One direct approach is to run a grid 
of trajectories and use interpolation, accounting for essen­
tially all relevant classical paths. Successive times t + 8t 
are built upon the prior time t by a single integration step. 

A one-dimensional example illustrates a valuable 
point. If we launch a narrow wavepacket I qJ(O)) in an 
anharmonic oscillator, Ehrenfest's theorem tells us that 
it will (for a limited time) follow a classical trajectory 
(xt, Pt) in the sense (<P(t) I x I <P(t)) "' x t and (<P(t) I p I <P(t) ) "'Pt · 
The wavepacket remains localized for a time we call the 
Ehrenfest time, after which it becomes delocalized over 
all of the potential accessible to it. One might expect 
that the semiclassical approximation would break down 
after the Ehrenfest time, but this is far from the case, 
as figure 4 shows.l9 

Oil on troubled waters 
As mentioned above, caustics occur at divergences of 

a2
S1(x,x' ) =(axJ 
ax ax' ap' x' 

(7) 

A divergence is caused by trajectories piling up at certain 
values of x after they leave x'. A phase space picture is 
very helpful. A vertical line at x' corresponds to the 
initial classical distribution x'(O), that is, all possible 
momenta at a single position. (See figure 5a.) Mter 
some time the trajectories have spread out to many 
places, but there are caustics at certain values of x where 
loops or folds form and the density of trajectories diverges. 
More specifically, a caustic occurs at x if the vertical line 
at x is tangent to the curve x' (t) . (See figure 5b.) 

The divergences of the Green's function would appear 
to be a major problem. The semiclassical Green's func­
tion blows up at the divergences, but the quantum Green's 
function is finite . In their pioneering study of semiclas­
sical propagation, Berry and coworkers noted that the 
divergences grow in number until almost no region is 
free of them.20 The problem is much worse for chaotic 
systems, because the number of divergences grows expo­
nentially fast. This growth was widely thought to lead 
to the demise of semiclassical propagation on a disap­
pointingly short time scale. 

A fortunate circumstance saves semiclassical propa­
gation from the divergences. The Green's function itself 
is normally not needed; instead, it is applied to smooth 

Two groups of trajectories leaving with very 
similar initia l conditions in a stadium return 
to the starting point by different paths. Each 
group carries wave amplitude and 
corresponds to a term in equation 2. These 
are two of the more th an 30 000 "echoes" 
whose return contributes to the later values of 
the autocorrelation function shown in 
figure 8. Figure 6 

states rp(x) to move them forward in time. The use of a 
smooth wavefunction rp(x) with the badly behaved Green's 
function is like pouring oil on troubled waters: The 
Green's function singularities disappear, replaced by 
much more benign errors. The semiclassical van Vleck 
Green's function asc(x,x';t) is used by exact analogy to 
the quantum propagator: 

rp(x,t) "' f csc(x,x';t) rp(x' ,O) dx' (8) 

In this way classical trajectories from various initial 
locations x', weighted by the amplitude rp(x' ,O) , guide the 
moving wavefronts of rp(t). 

The smoothing of the Green's function singularities 
is done in amplitude space, not as a palliative but as a 
necessity. Smooth states are localized in phase space to 
zones of area h. They can easily dodge error-prone 
regions, as figure 5c shows. The green disk representing 
the smooth state in phase space is out of harm's way by 
being far from the ends of loops in x'(t'). The loops cause 
errors when they enclose area less than h, as they must 
if they are approached too closely. 

Now we can understand the time-dependent semi­
classical treatment of the hydrogen atom in a magnetic 
field: The trajectories leave the region of the nucleus 
and groups of them later return. The wave rp(x,t), guided 
by the trajectories, does the same. If the wave returns, 
there will be a recurrence, an increase in the correlation 
function (rp I <P(t)), at a time governed by the classical 

PHYSICS TODAY JULY 199J 43 



Evolution of a localized wavepacket in 
the stadium billiard system, computed 

numerically. The initial Gaussian, 
pictured in the first frame, has a 
momentum corresponding to 30 

wavelengths stretching across the 
horizontal ax is. From left to right, top to 
bottom, the images are for t= 0, 0.4, 0.8, 

1 .6, 3.2 and 6.4, where 1 is about the 
time required for the wavepacket to 

traverse the stadium horizontally. After a 
few bounces the wavefunction is 

completely delocalized. The dynamics is 
nonetheless almost al l describable by 

time-dependent semiclassical methods. 
(Adapted from ref. 24.) Figure 7 

trajectories. This will appear in the spectrum as oscil­
latory structure spaced proportionally to the inverse time 
of return. 

Chaos: The demise of semiclassical dynamics? 
The smoothing effect is a big help, but it is not enough 
to fix all the problems of the semiclassical approach. 
Chaos complicates matters by creating exponentially 
many new ways to get from x' to x as time increases, 
and these new ways necessarily cause stretching and 
folding in the phase space distribution. (See figure 5.) 
This creates two new difficulties, one fundamental, one 
practical. The fundamental problem is that the narrow 
folds may enclose area less than h. This feature is a red 
flag in semiclassical theory, one that the "oil" cannot 
really fix. For areas less than h there is a breakdown 
of the stationary-phase evaluation of integrals that are 
at the heart of the theory. 

The practical problem is the task of enumerating all 
the trajectories. Fortunately the trajectories often natu­
rally divide into groups with similar histories. One can 
approximate each group by expanding the local classical 
motion about a representative orbit. The sum over indi­
vidual trajectories then becomes a sum over far fewer 
groups, each one guiding an independent wavelet. The 
sum of all these wavelets yields the semiclassical approxi­
mation to the full dynamics. However, the groups visit 
any region by a staggering number of topologically dis­
tinct paths as time evolves, so eventually even the num­
ber of groups becomes a problem. 

It is very instructive to see how these wavelets 
develop for a stadium-shaped box, a system known to 
be completely chaotic. In figure 6 we see two groups 
of rays emanating from very similar initial conditions 
near the center of the stadium. After three bounces 
both sets have returned, but by topologically distinct 
paths. As in all chaotic systems, small differences 
between trajectories have been rapidly amplified. Each 
group carries with it a wavelet, which will contribute 
amplitude to a recurrence , that is, a growth in the 
correlation function (tpl tp(t) ). The returning wavelets 
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are separate terms in equation 2. 
An acoustical version of the stadium has almost the 

same physics. Imagine shouting in a certain direction in 
a stadium-shaped room. The correlation function 
amounts to listening for echoes. The earliest returning 
echoes can only have bounced off one or two walls, but 
very shortly thereafter the number of distinctly different 
paths leading to echoes is staggering. Labeling the walls 
(top, side, bottom, side) 1 through 4, a path is distinct if 
the sequence of bounces (for example, 1-2-3-2-3-1-4) is 
new. After just 10 bounces there are roughly 100 000 
approximately equally important distinct paths for ech­
oes. Clearly each of the separate subechoes has to be 
extremely feeble . Can the process of following the echoes 
by such ray tracing be meaningful under such conditions? 
Here we face the semiclassical crisis of confidence. 

One view of the crisis is that as time increases, the 
initial shift of position or direction required to distinguish 
one set of returning rays from another is microscopic, 
perhaps one ten-thousandth of a wavelength. It would 
seem that the rays can no longer be used to construct 
the semiclassical propagation if classical details on a scale 
much smaller than a wavelength are important. The 
other side of the same coin is that any phase space cell 
the size of Planck's constant is bent and folded into pieces 
seemingly insignificant on the scale of Planck's constant. 
This happens in a short time dubbed the "log time," 
because if h is made smaller the time to reach supposedly 
ruinous folding only gets longer as log(1 /h). Until very 
recently, it was widely believed that semiclassical ap­
proximations would break down on this time scale. If 
that is true, it is hard to see why the energy space results 
such as the trace formula should work, because the 
Fourier transform from time to energy implies they de­
pend on long-time propagation. 

Fortunately these worries are ill posed and ill 
founded. The right question to ask is, How much has 
the semiclassical phase (action) changed between differ­
ent returning wavelets? There is a simple rule: Trajec­
tories leaving from very similar initial conditions and 
returning to very similar final conditions at the same 



time need to have phases that differ by at least one 
radian, or else the usual rules of semiclassical approxi­
mations break down. In a billiard system this means 
path lengths differing by approximately one wavelength 
divided by 2n or greater. As time increases, even micro­
scopic differences in initial conditions get amplified and 
can lead to large path length differences before the 
trajectories return. Amazingly, strong chaos may help 
the semiclassical approximation by amplifying such dif­
ferences or, equivalently, by building large loops in phase 
space. Detailed analysis along these lines shows that 
the breakdown happens at times much longer than the 
log time. The breakdown time goes algebraically in li, 
not logarithmically. 21 

Chaos in the stadium 
The stadium has played a large role in the study of 
classical chaos and its effect on quantum mechanics. 
Now it is playing an experimental role as well. Recently, 
a mesoscopic stadium-shaped chamber has been con­
structed22 for the study of conductance fluctuations as a 
function of magnetic field. The stadium has also been 
the subject of microwave cavity experiments .23 

Figure 7 shows the time evolution of a smooth non­
stationary wavepacket in a stadium. 24 The wavepacket 
was computed accurately by numerical means at times 
t = 0.4, 0.8, 1.6, 3.2 and 6.4 (where 2 is about the time 
it takes the center of the wavepacket, bouncing horizon­
tally, to make a round trip). The rapid breakup of the 
packet is evident; the Ehrenfest time (time required for 
wavepacket breakup) is less than 1. The log time is 
around t = 2. 

Figure 8 shows the quantum and semiclassical re­
sults24 we obtained for the correlation function (rp I rp(t)) 
for the wavepacket I rp(O)) shown in figure 7. Long after 
the log time, the results hold up well. By t = 6 the 
number of contributing paths was about 30 000 and 
growing exponentially. In short, we ran out of computer 
time. No significant breakdown of the semiclassical 
propagation had taken place. 

We get the spectrum by taking the Fourier transform 
of the correlation function. The inset of figure 8 shows 
the semiclassical result along with the numerically de­
termined exact spectrum. The semiclassical spectrum is 
remarkably accurate and resolves the spectrum to nearly 
the mean spacing; only classical mechanics was used to 
generate it! Eigenvalues in the neighborhood of the 
lOOOth are given accurately. The finite resolution of the 
semiclassical spectrum results from our cutting off the 
Fourier integral at t = 6, where the correlation function 
was doing well. This implies that if more classical detail 
had been followed past t = 6, even finer resolution would 
have been obtained. 

Because of the benefits of using smooth states and 
the more optimistic fold analysis, we find that while 
chaotic dynamics increases the complexity of the semi­
classical constructions, the accuracy is good for times 
much longer than the log time. In the acoustical case, 
adding all 30 000 feeble echoes gives the correct sound 
amplitude after all . 

Is there a paradox here, in that 30 000 extremely 
small zones in phase space are contributing to an accurate 
result? The key point is to recognize that the uncertainty 
principle is a one-way street: While it is true that 
quantum mechanics cannot resolve structures finer than 
li in size, it is quite possible to construct quantum me­
chanics from thousands of pieces of data within each 
Planck cell. The matter is no more profound than a 
blurry photograph. The blurred image cannot be used 
to construct a sharp one, but the sharp image can cer-
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tainly give the correct blurred one. In fact, infinitely 
many different sharp photographs give the same blurred 
one. Current research is exploiting this idea; it may not 
be necessary to calculate the exact classical dynamics, or 
its full complexity, to get an accurate approximation to 
quantum mechanics. This is one implication of the "cycle 
expansion" for the eigenvalues,6•7 which uses "pseudo­
orbits" (collections of subtly related classical orbits) to 
speed or even induce convergence in the trace formula. 

When does semiclassical propagation become inaccu­
rate? There is no single answer to this question, even 
for a given system. The time of breakdown can vary 
dramatically depending on the location of the initial state 
to be propagated. All "classically forbidden" processes 
are by definition absent from an approach based purely 
on ordinary classical trajectories. These processes go 
under the names of diffraction, tunneling and localization, 
although the distinctions between them are not always 
well defined. In the time domain, the wavefunction starts 
out exact by definition. Accuracy is expected to deterio­
rate with time, due to all the accumulated effects of the 
classically forbidden processes. For billiard systems 
(disks, stadiums and so on) breakdown can squarely be 
blamed on diffraction. In the stadium, the biggest source 
of diffraction is the joints between the straight walls and 
the circular sections. By examining the accumulation of 
the diffracted amplitude, it is possible to show that the 
time scale for breakdown is not logarithmic in li but 
follows a power law. For the stadium, it goes as !i-112. 
While this is good news compared with the log time, it 
bodes ill for the determination of individual eigenstates 
as li--> 0. The reason is that the density of states goes 
as !i-2, so the breakdown will occur before the eigenstates 
can be resolved. 

Nevertheless, it is possible to go further and attempt 
to construct a semiclassical eigenstate from the chaotic 
trajectories. This is another watershed. Figure 9 shows 
the exact and semiclassical eigenfunctions obtained from 
the Fourier transform of a propagated wave packet similar 
to the one shown in figure 7. The energy was chosen to 
match one of the peaks in the packet's semiclassical 
spectrum.8 The normalized overlap between the exact 
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and approximate states is approximately 0.96. The semi­
classical eigenfunction is surprisingly accurate consider­
ing the intricate and delicate interferences taking place 
in its construction. Could it be that the mathematical 
arguments about the breakdown of semiclassical theory 
are still far too pessimistic? 

The Holy Grail? 
Beginning about 20 years ago, Berry focused attention 
on the dilemmas of semiclassical theory by defining its 
Holy Grail: quantization of classical chaos. The recent 
quantization of the helium atom7 and the construction of 
the spectra and semiclassical eigenstates directly from 
chaotic classical trajectories mean the grail is much 
nearer . However, too many questions remain about con­
vergence and errors of the procedures to say that the 
grail has been found . 

There is no doubt that the agenda of the old quantum 
theorists is active again, after a long hiatus caused by 
classical chaos. At first people were unaware of chaos 
and the problems it can create . Later, those problems 
may have been overestimated. We have learned that 
chaos poses no devastating threat, but it adds complexity 
to the classical mechanics. Enumerating the periodic 
orbits for the trace formula or the groups of returning 
(but not necessarily periodic) orbits for a correlation 
function is difficult for long orbits. Simplifying that 
complexity is a major challenge. The analogy with a 
blurry photograph may provide a clue. There ought to 
be a simplest sharp photograph (set of effective rays) that 
gives substantially the correct blurred one. This ap­
proach is a major area of research. 

The normal sorts of threats to semiclassical methods 
(diffraction and tunneling) will take center stage as chaos 
per se recedes in importance. Effects such as diffraction 
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A quantum eigenstate and its semiclassical approximation for 
the chaotic stad ium bi ll iard. The normalized overlap between 
the two states is approximately 0.96. (Adapted from 
ref. 8.) Figure 9 

may be too important to be safely ignored, or may even 
be the essence of the problem. Still, it is amusing to 
note that the concepts of diffraction and tunneling only 
exist relative to classical mechanics as a baseline! Clas­
sical ideas pervade quantum mechanics. It is good to 
know how far they can really take us. 

Most importantly, many applications to physical sys­
tems lie ahead. If semiclassical methods are really 
worthwhile, the best understanding of many atomic, mo­
lecular, nuclear and mesoscopic processes and properties 
will be in terms of classical mechanics and semiclassical 
amplitudes. 

We thank our coworker Miguel Sepulveda for many helpful dis­
cussions and William P. Harter for a critical reading of the 
manuscript. 
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