THE SPECTROSCOPY OF
QUANTUM DOT ARRAYS

Arrays of nanometer potential wells, fabricated at
semiconductor interfaces, exhibit infrared absorption lines
reminiscent of atoms, molecules and even crystal lattices.

Detlef Heitmann and Joérg P. Kotthaus

For three decades individual transistors in integrated
semiconductor circuits have been getting smaller and
smaller. Soon they will be approaching the 100-nano-
meter regime, where the classical description of diffusive
electron motion breaks down and quantum concepts
become important, bringing about fundamental changes
in electronic and optical properties. Already in the widely
used silicon MOSFET transistors, the interface between the
semiconductor and the oxide layer serves as a potential
well less than 10 nm wide. While electrons remain free to
wander in the plane of the interface, their motion in the
perpendicular direction is quantized by this very narrow
well. Such two-dimensional electron systems, best real-
ized in high-mobility modulation-doped semiconductor
heterostructures, have been found over the years to
exhibit new and quite unexpected quantum phenomena,
like the integral and fractional quantum Hall effects.
The richness of new physics discovered in two-
dimensional semiconductor systems, as well as the prog-
ress in technologies for lateral patterning of such struc-
tures, has challenged many researchers to fabricate and
study systems of still lower electronic dimensionality:
quantum wires and quantum dots." (See the February
1990 special issue of pHysics TODAY, the October 1992
article by Leroy Chang and Leo Esaki, and the January
1993 article by Marc Kastner.) Imposing ultrafine lateral
confinement at length scales of about 100 nm on an
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originally two-dimensional system will also quantize the
electron motion in the lateral directions. If the original
two-dimensional system defines the xy plane, a narrow
confining potential acting in the x direction produces a
quantum wire. Finally we come to the quantum dot, an ar-
tifical atom with a totally discrete energy spectrum,
created by confining potentials in both the x and y
directions.?®

An array of such quantum dots may be envisioned as
a periodic potential landscape filled with electrons up to
some Fermi level. (See figure 1a.) Because the orthogonal
2z confinement is usually much stronger than the in-plane
confinement, the electron distribution in a quantum dot is
pancake-like rather than spherical. When more electrons
are injected into the lateral confining potential, they
eventually spill over to create a topologically complemen-
tary structure of so-called antidots, which can be envi-
sioned as an array of island voids rising out of a two-
dimensional electron sea.”® (See figure 1b.)

Just as with real atoms, one expects to obtain
information about the quantum-confined energy levels in
these low-dimensional systems by optical studies of the
electronic transitions. It turns out that the dynamic
response of quantum dots exhibits a complex interplay of
atom-like single-particle behavior and collective many-
body effects.

Most of the experiments on low-dimensional electron
systems are done with modulation-doped AlGaAs-GaAs
heterostructures, because of their superior electron mobil-
ity. Let us recall some relevant parameters of gallium
arsenide. Its dielectric constant € is 12, and the effective
mass m* of the conduction electrons is only 7% of the free-
electron mass m,. Thus the effective Rydberg energy R, *,
given by m*R, /(m, €?), is about 6 milli-electron-volts, and
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the effective Bohr radius a*, given by ea,m,/m*, is 10
nanometers. That’s almost 200 times the Bohr radius a,
of the hydrogen atom.

In a rectangular, infinitely deep GaAs potential well
of width w, the energy difference AE between the first and
second quantized levels is given by R, *(ma*/w)*2? — 1%
If, for example, the well is 50 nm wide, that comes to
6 meV. Thus the very small effective electron mass in
GaAs lets one observe quantum effects beyond the
broadening mechanisms in systems with dimensions
accessible by modern lithographic techniques. Even
higher quantization energies can be achieved in narrow-
bandgap semiconductors with correspondingly smaller
effective masses. In indium-antimony devices,® for exam-
ple, the effective electron mass is only 0.014m,. But with
InSb the challenge is to prepare devices of sufficiently high
electron mobility.

The spectroscopic range for optical studies of atom-
like transitions between quantized levels in quantum dots
is the far infrared. At the relevant far-infrared wave-
lengths, the semiconducting materials are quite transpar-
ent at low temperatures in the absence of conduction
electrons. We measure the small amount of absorption
caused by the excitation of electron states in the quantum
dots by comparing infrared transmission through an array
with and without conducting electrons in the dots.

At near-infrared and visible wavelengths, studies of

Topology of arrays of quantum
dots and antidots in a periodic
potential landscape. a: When the
level of the Fermi electron sea (blue)
is low, the electrons are confined in
quantum dots looking like isolated
mountain lakes. b: When the Fermi
level is raised, the electrons
eventually spill over into a
connected sea studded with

quantum antidots (green). Figure 1

such nanostructures involve transitions between valence
band and conduction band states, and they are further
complicated by electron-hole interactions. (See the article
by Arto Nurmikko and Aron Pinczuk on page 24 of this
special issue.)

Fabrication of quantum dots

Two examples of quantum dot structures are sketched in
figure 2a and 2b. Both are fabricated from modulation-
doped AlGaAs-GaAs heterostructures. The dopant is
implanted in part of the AlGaAs layer, and the electrons
are strongly confined in the GaAs at the interface, thus
forming a two-dimensional electron system. A periodic
array of photoresist dots defined by holographic lithog-
raphy' serves as the mask for further processing. The
“deep-mesa-etched” quantum dots of figure 2a are made
by dry-etching deep grooves all the way into the active
GaAs. The etching leaves behind a landscape of cylindrical
mesas, each about 500 nm in diameter. The effective
diameter w of the electronic system (typically 100 nm) is
significantly smaller than this geometrical size, because
some of the electrons from the doped AlGaAs region are
trapped by surface states at the open etched sidewalls,
where they help confine the conduction electrons to the
inner reaches of the dot. Thus the boundary of the
confining potential does not coincide with the physical
sidewalls of the dot; it is formed electrostatically by the do-
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Two ways of making
quantum dot arrays at an
interface between GaAs

GaAs

GaAs

nor ions and fixed surface charges surrounding the dot.

Figure 2b shows a semitransparent metal gate depos- ,

ited on the photoresist mask to form a textured capacitor.
A negative voltage applied at the gate relative to a thin
semitransparent contact layer electrically coupled to the
active electron system above it causes the depletion of
conduction electrons wherever the gate is closest to the
AlGaAs-GaAs interface. Thus a device is created in which
one can vary the Fermi level by tuning the voltage. Asthe
electronic sea level falls, the homogeneous two-dimension-
al electron system becomes an antidot array and finally an
array of quantum dots, as we saw in figure 1. Figure 2c is
an electron micrograph of a tunable array of field-effect
quantum dots on InSb with a period of 250 nm between ad-
jacent dots. )

Far-infrared spectroscopy

Far-infrared radiation can directly induce optical transi-
tions between the meV energy levels confined in the
quantum dot. To achieve a detectable signal requires dot
arrays with active sample areas on the order of 10 mm?2.
Fabricating such a surface, with its 10® nearly identical
quantum dots, poses quite a challenge. Typically such
spectroscopic experiments are carried out at liquid helium
temperatures to eliminate thermal broadening. Wave-
guides couple the radiation from a suitable source, either a
Fourier-transform spectrometer or a far-infrared laser, to
the sample, and a cryogenic detector measures the
transmitted radiation.

The experimenter often applies a magnetic field
normal to the interface. One can exploit the interplay
between electronic and magnetic confinement very effec-
tively to characterize lengths, energies and interactions in
quantum dots. In a magnetic field B the cyclotron-energy
#ieB/m* of the conduction electrons becomes comparable
to the confining energy in the quantum dot. (In GaAs at
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(green) and n-doped AlGaAs
(red). Both start with an array
of photoresist dots serving as a
mask. ‘‘Deep-mesa-etched”’
quantum dots (a) are
fabricated by etching all the
way down into the GaAs,
leaving mesas typically 500
nm wide. The potential wells
(blue) in which the electrons
are trapped near the interface
are narrower than the mesas.
A field-effect array (b) is made
by depositing a
semitransparent metal gate
(purple) on the photoresist
mask (yellow). Voltage
applied between the gate and
a semitransparent contact
layer (between dashed lines) in
the GaAs concentrates the
interface electrons into
potential wells where the gate
is farthest away. A scanning
electron micrograph (c, below)

AlGaAs

AlGaAs

,;,’ of a field-effect quantum dot
,;','/ array in an InSb structure3
> shows photoresist dots 100

nm wide covered by a metal
gate layer. Figure 2

1 tesla, the cyclotron energy is 1.8 meV.) Equivalently,
the radius of the cyclotron orbit becomes comparable to
the typical lateral confinement length.

Figure 3a shows the relative change with frequency
of far-infrared transmission through a square quantum dot
array on GaAs with a spatial period of 500 nm, with and
without an applied magnetic field. The gate voltage is
chosen so that each dot contains about 50 electrons. This
occupancy level can be directly deduced from the strength
of the transmission signal integrated over frequency. The
transmission coefficient is normalized to the transmission
when the gate voltage is tuned to keep the dots empty.

In the absence of an external magnetic field, the
spectrum (blue curve in figure 3a) shows only one
absorption resonance. That’s somewhat surprising for so



many electrons in each dot. The resonance occurs at a
wavenumber of about 30 cm™!, corresponding to a
wavelength of 330 microns in the far infrared and a photon
energy of 3.7 meV. If one imposes a 1.4-tesla magnetic
field normal to the array plane, the resonance splits in two
(red curve). Figure 3b shows how this splitting emerges
with increasing magnetic field. While the lower branch
decreases in frequency with increasing field, the upper
branch increases toward the cyclotron resonance frequen-
cy. Surprisingly, one finds in such experiments that
neither this dispersive splitting nor the absolute frequen-
cies depend strongly on the number of electrons per dot.
That’s quite different from what we are used to in ordinary
atoms. This lack of sensitivity to electron population
turns out to be a characteristic signature of parabolic
confining potentials.

Dipole excitations

The explanation of the experimentally observed spectra is
intimately connected with the shape of the confining
potential. Model calculations show that the bare external
confining potential for electrons in a field-effect quantum
dot has a nearly parabolic shape.’® This shape can be
understood from the charge distributions indicated in
figure 2. The strong confinement of the conduction
electrons along the growth direction of the heterostruc-
ture restricts their motion to the xy plane of the interface.
Fixed donor charges in the AlGaAs layer, charged surface
states and the spatially modulated electrostatic field in the
gated structure define the equilibrium position of the
conduction electrons in the center of the dot. Displacing
these electrons in the xy plane produces a restoring force
approximately linear in the displacement. Consequently
the confining potential V(x,y) is %, m*Q2(x* + y?). That is
to say, it is parabolic, with a characteristic frequency Q,
determined by the electrostatic environment.

The energy spectrum for a single electron confined by
such a parabolic potential in the presence of a magnetic
field was already calculated in 1928 by Vladimir Fock at
Gottingen.!! The dipole-allowed transitions in this spec-
trum have energies®

AE* = \[#2 Q2 + (fiw /2 + #iw. /2 1)

where o, is the cyclotron frequency for a given magnetic
field. This equation describes well the observed dispersion
of the split absorption resonance with increasing magnetic
field, shown in figure 3b.

But there is more than one electron in a quantum dot.
For a small number of electrons per dot it is possible to cal-
culate many-electron wavefunctions and energy states.'?
The many-body spectrum at zero magnetic field is then
governed by two characteristic energies: the quantum
confinement energy E, and the Coulomb energy Ec. For
the simplest case of two parabolically confined electrons,
which one might call the “helium” of the quantum dot
atoms, these parameters may be expressed in terms of /,,
the confinement length of the harmonic oscillator, as
E, =#/(m*1}), and E; = */(4mee,l,), where [, is given by
VA/m*Q,. The energy ratio E¢/E, is simply [,/a*.

With increasing [, both energies decrease, but the
Coulomb energy increasingly dominates over the confine-
ment energy. Figure 4 compares two different calcula-
tions of the energy spectrum for two electrons in a
parabolic well with [, =a*. The spectrum on the left
assumes the two electrons to be independent of each other;
the right-hand spectrum includes their mutual interac-
tion. We see that the interaction increases the ground
state energy of the two-electron system. This “Coulomb
charging energy” is the cost for squeezing the second
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Far-infrared resonance fregencies due to
electronic excitations in a quantum dot array
on GaAs. a: Transmission coefficient plotted
against wavenumber shows a single
absorption resonance in the absence of an
applied magnetic field (blue curve). In a
1.4-tesla field (red curve) the resonance has
split in two. b: The dispersion of these two
resonances widens with increasing applied
magnetic field. (Adapted from

ref. 6.) Figure 3

electron into the quantum dot. The electron—electron
interaction also lifts some of the degeneracies of the one-
electron energy levels, giving rise to a complex spectrum
with singlet and triplet states.

A unique spectroscopic property of parabolically
confined electrons is that the dipole-allowed transitions
for two interacting electrons have exactly the same
energy, #i{),, as the one-electron transition. Moreover, this
result also holds for an arbitrary number of electrons in
the dot. The Hamiltonian for an interacting, parabolically
confined many-electron system is separable into two parts
describing, respectively, the center-of-mass motion of the
whole electron system and the relative internal motions of
the electrons.’® Furthermore, because the far-infrared
wavelengths in the experiments are ten thousand times
larger than the dot diameter, the dipole approximation is
very well fulfilled and the exciting electric fields couple
only to the center-of-mass motion. Thus the optical dipole
response of a quantum dot with parabolic confinement, in
the absence of a magnetic field, represents a rigid
collective center-of-mass excitation at £, the frequency of
the bare external potential. It is independent of the
number of electrons confined in the dot and their Coulomb
interactions. This result is a generalization of the famous
Kohn theorem: In 1961 Walter Kohn, at the University of
California at San Diego, showed that the cyclotron
resonance frequency in a translationally invariant system
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is not affected by electron—electron interactions.'*

Because the far-infrared response of the electron
system in a quantum dot reflects primarily the rigid
center-of mass motion, it is appealing to approach these
excitations also by way of a model of classical collective
modes. Equation 1, the dispersion equation one gets from
quantum mechanics, can also be derived classically as
describing a plasma oscillation, or a depolarization mode,
in which, in the absence of a magnetic field, a disk of
conduction electrons moves back and forth rigidly with
respect to the fixed donor ions.’® As the resonance splits
and separates with increasing magnetic field, the cyclo-
tron orbit eventually becomes much smaller than the dot
diameter. Then the classical model describes the two
resonant frequencies as follows: The high-frequency mode
is a magnetoplasma oscillation that approaches the
cyclotron resonance. In this mode all electrons orbit
coherently around individual centers at the cyclotron
frequency and hardly feel the confinement of the dot
potential. The lower-frequency mode reflects a collective
motion of the centers of all the cyclotron orbits around the
center of the dot. In this mode each cyclotron-orbit center
drifts around the center of the dot under the joint
influence of the confining electrostatic field E and the
imposed magnetic field B, with a drift velocity vy given by
E/B. The corresponding frequency at large magnetic
fields, v4 /r = Q% /w,, thus decreases as 1/B. For a square-
well dot potential this mode becomes localized at the edge
of the dot in a strong magnetic field. Therefore it is often
called an edge magnetoplasmon.

The generalized Kohn theorem clarifies why optical
spectroscopy on parabolically confined quantum dots is
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Bohr radius. Coupling
raises and splits the
degenerate independent-
electron levels into
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(and labeled) by total spin
(1 or 0). But the energy
#Q, of the dipole-allowed
transition (arrows) remains
the same, unaffected by the
interaction between
electrons. (Adapted from
ref. 12.) Figure 4
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much less specific than it is on ordinary atoms. It also in-
dicates that a nonparabolic potential should make it
possible to access relative electron motion spectroscopical-
ly in quantum dots. Additional, weaker fine structure has
been spectroscopically observed in quantum dot arrays,
manifesting the excitation of internal motions.*® But
because such fine structure has thus far only been
observed in quantum dots larger than a*, the character of
these additional excitations is still predominantly collec-
tive. In spectroscopic studies on quantum wires one also
finds that a single collective center-of-mass mode domi-
nates the far-infrared response.!16:17

Charging with single electrons

The generalized Kohn theorem tells us that for parabolic
confinement one cannot determine the number of elec-
trons in a quantum dot atom from its resonant frequency.
But far-infrared spectroscopy gives us not only the
resonant frequency but also the absorption strength,
which is a measure of the electron population per dot. For
a parabolic potential at B =0 all absorption occurs at a
single resonant frequency. It follows that absorption
strength increases in direct proportion to the number of
electrons in the quantum dot. A careful measurement® of
absorption strength versus gate voltage in a field-effect
quantum dot array with a spatial periodicity of 200 nm is
displayed in figure 5. Surprisingly, one finds that the
absorption at low electron occupancy increases step-wise
with gate voltage. Starting with a single electron in each
dot, the electron population increases by one with each
step. This behavior of the infrared absorption strength
shows that most of the 10® dots in the array change their
charge by one electron at just about the same gate voltage.
At first glance that’s rather puzzling.

The cause of this well-defined charging behavior lies
in the relatively large Coulomb charging energy required
to squeeze an additional electron into a quantum dot.
(Recall figure 4.) One gets a rough estimate of the
Coulomb charging energy classically from what might be
called the “capacitance” of the dot. Take the simple model
of a parallel-plate capacitor, where one plate is formed by
the quantum dot electron disk with a diameter defined by
the extent of the wavefunction in a harmonic oscillator.
That diameter is 54 nm for the experiment® whose results
are shown in figure 5. (Note that this “capacitance” varies
with increasing charge.) Then, taking the distance to both
the front gate and the back contact layer into account, one
gets a capacitance C of 5x107!8 farads and a related
charging energy, given by €?/2C, of about 15 meV. This en-
ergy is significantly larger than the thermal energy £T. It
ensures that Coulomb charging effects are smeared out
neither by temperature nor by unavoidable potential
fluctuations.

Experimentally one can obtain a more reliable value
of the Coulomb charging energy from the gate voltage
interval AV, it takes to add one additional electron to each
dot.® In figure 5 it takes 30 mV to increase the dot
occupancy from two to three electrons. The capacitance
equals e/AV,, so that the charging energy ¢?/2C equals
eAV,/2, or 15 meV, which is just what the geometrical
estimate gave. The observation of such single-electron
charging phenomena, now widely studied in small metal-
lic and semiconductor systems,'® assures us that present
fabrication technologies can produce extremely uniform
arrays of quantum dots. That capability opens a wide field
for the study of detailed quantum effects and interactions
in controlled few-electron systems.

Artificial molecules and solids
Having prepared uniform arrays of artificial atoms, it is



natural that one starts to look for quasimolecular and
solid-like interaction phenomena between quantum dots.
The voltage-tunable confining potentials that let one add
single electrons to quantum dots in large arrays also make
it possible to fabricate artificial quantum dot “solids.” To
accomplish that, one electrostatically controls the cou-
pling between adjacent dots by adjusting the Fermi sea
level sketched in figure 1. Raising the Fermi energy in a
dot array will eventually open narrow conducting chan-
nels where the dot perimeters touch. In practice this is
done by raising the gate voltage in a suitable field-effect
dot array. Once the dots become electrically connected,
new lines appear in the infrared transmission spectra that
manifest the coupling in a characteristic manner quite
analogous to what we know well from atoms interacting in
molecules or solids.

The magnetic dispersion of the infrared resonances in
such an array is shown in figure 6 for dots that are weakly
coupled by narrow conducting channels in the borderline
case between dots and antidots.® (See the inset.) In this
case two more spectral lines are observed in addition to the
characteristic quantum dot modes. The new lowest-
frequency mode can be understood as representing the
center-of-mass motion of the electrons guided by the ExXB
drift of the cyclotron orbits between two adjacent quantum
dots. It is a characteristic edge-magnetoplasmon-like
excitation of a diatomic quantum dot molecule, with
charge moving ballistically back and forth through the

narrow constriction between two adjacent dots. Other -

possible quasimolecular modes experience stronger damp-
ing because they involve passage through two or more
narrow channels and are therefore no longer discernible
in the experimental spectra.

As we see in figure 6, the high-frequency single-dot
branch splits in two when the magnetic field becomes
strong enough to render the cyclotron orbits small enough
to fit into the narrow channels beween adjacent dots. The
new uppermost branch can be identified as a two-
dimensional bulk-like plasmon mode with its wavelength
determined by the period of the dot array. Thus it is
analogous to a phonon mode of the quantum dot solid,
directly reflecting the long-range coupling in the array
structure when the Fermi level is high enough for narrow
channels to form between dots.

It might seem surprising that the center-of-mass mode
description, which is strictly valid only for parabolic
confining potentials, remains useful for the molecular
excitation discussed above, where the potential has
certainly acquired substantial nonparabolic terms. The
reason is that the far-infrared light uniformly irradiating
the array couples best to the coherent motion of the
conduction electrons with respect to the background
charge, even if the bare confining potential becomes
rather nonparabolic. This becomes even more apparent at
higher Fermi levels, when dots, or antidots, become
strongly coupled.

Collective motion among the antidots

Another type of artificial lateral superlattice is the antidot
array. As sketched in figure 1b, such an array consists of
periodically placed repulsive potentials in the plane of a
two-dimensional electron system. One can generate
arrays of antidots electrostatically with suitably patterned
gates. The periodic arrays can also be made with focused
ion beams or by etching geometric holes into the hetero-
structure.

The magnetic dispersion of far-infrared excitation
frequencies in such an antidot array is shown in figure 7a.
The array was prepared at the Max Planck Institute in
Stuttgart by etching deep holes into a modulation-doped
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Steplike increase of far-infrared absorption
(integrated over frequency) with changing gate
voltage in a square field-effect array of 108
quantum dots shows that the dots increase
their occupancies almost simultaneously, one
electron at a time. (Adapted from

ref. 6.) Figure 5

GalnAs-AllnAs single quantum well.® Because of the
relatively small lateral electron depletion at the etched
sidewalls of the GalnAs region, one can create holes of
very small electrical radius. The two infrared resonances
in figure 7a have a magnetic field dispersion that is
distinctly different from what one gets with quantum dots.
The difference can be understand as follows: At high Bthe
dispersion of both branches in figure 7a resembles the
excitation spectrum we have seen for quantum dots. The
higher-frequency mode at high magnetic field intensities,
where it approaches the cyclotron frequency, represents a
cyclotron-like motion in the region between the antidots.
At small B this mode shows a weak but distinct negative
dispersion; that is to say, the resonant frequency decreases
with increasing B. This is a signature that the mode
represents, at small B, a kind of one-dimensional plasmon
that propagates along the charged stripes between the
geometrical holes with a wavelength given by the periodic-
ity of the array.!”

The lower-frequency branch eventually falls with
increasing B, as it does in dot arrays. This branch
represents an edge magnetoplasmon mode. In dot arrays,
the individual electrons of this collective mode execute
skipping orbits along the inner boundary of the dot. (See
the red trajectory in the inset of figure 6.) For antidots,
however, the individual electrons within the collective
excitation perform skipping orbits around the hole.
Because the electron orbits grow with decreasing B, the
electrons can eventually perform classical cyclotron-like
orbits around the geometrical hole. Therefore, in contrast
to what one observes for dots, the edge magnetoplasmon
resonance of the low-frequency branch changes its charac-
ter as B approaches zero: The frequency approaches the
decreasing cyclotron frequency. The collective edge -
magnetoplasmon excitation at large B has gradually gone
over to a classical cyclotron excitation. For the sample
characterized in figure 7a, the classical cyclotron radius
comes to equal the radius of the holes at a field strength of
about 1 tesla. That is indeed where the turnover occurs.
Experiments verify that the dispersion turns over at
higher B when one uses smaller holes, as this model
predicts.

Antidot arrays also exhibit intriguing magnetoresist-
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Four dispersion modes, instead of the usual two (solid
curves), appear in a plot of resonant infrared absorption
frequency against applied magnetic field when the quantum
dots in the absorbing array are coupled to their neighbors by
weak electrical channels, as indicated in the inset. The lowest
of the four modes (dashed line) can be interpreted as a
quasimolecular excitation involving adjacent pairs of quantum
dots, as indicated by the red trajectory in the inset. The
highest-frequency mode is a phonon-like collective excitation
of the whole array behaving like a two-dimensional solid.

The spacing between quantum dots in the square lattice array
is 450 nm, and each dot houses about 80 electrons. (Adapted
from ref. 5.) Figure 6

ance properties that have been successfully explained by
classical ballistic trajectory models.”® Whenever the
classical cyclotron diameter approaches the period of the
antidot array or multiples thereof, the magnetoresistance
exhibits “commensurability oscillations” that arise from
an interplay between chaotic and stationary trajectories.
The success of such classical models has triggered an
attempt to use the same kind of trajectory calculation to
model the high-frequency electronic modes in more
complex structures such as arrays of coupled dots.® In
such a calculation one uses the classical equations of
motion to determine the trajectories of a single electron
moving ballistically at constant Fermi energy in the
landscape of the periodic potential and an imposed
magnetic field. Using randomly chosen initial coordinates
and velocities, one computes large sets of trajectories. The
high-frequency response is then calculated by Fourier
analysis of the velocity component along the high-
frequency electric field. A phenomenological damping
parameter simulates the destruction of deterministic
ballistic motion by random scatterers.

For a single electron confined in a parabolic quantum
dot such a classical model yields the same resonance
frequencies as the quantum mechanical model from which
one gets equation 1. The results of such a calculation for
an antidot array are displayed in figure 7b. The resonant
frequencies calculated with a model potential similar to
the screened periodic potential of the experimental
devices come out lower than the observed frequencies.
That’s because the collective center-of-mass motion in the
experiments tests the bare, unscreened potential. Be-
cause the single-electron trajectory model cannot include
such collective effects; it reflects the softer, screened
potential. The one-particle approach also fails to describe
the negative B dispersion of the high-frequency resonance
branch. Nonetheless this simple trajectory model does
reproduce most features of the observed magnetic field
dispersion for the complex excitations in an antidot array.

Dipolar coupling
An additional, distinctly different coupling mechanism
can arise from the dipolar Coulomb interaction between
electrically isolated quantum dots. This mechanism is
most easily envisioned by considering a single electron
bound in the plane of a quantum dot by a fixed positive
charge located above that plane. A displacement of the
electron from equilibrium induces a dipole moment in the
plane, which in turn can polarize an adjacent quantum
dot. Such classical dipolar interdot interaction has been
considered for different quantum dot geometries. Under
sufficiently favorable conditions it is predicted to give rise
to a ferroelectric or antiferroelectric phase transition.'®
These conditions for a so-called polarization catastro-
phe may not be realizable for some time to come. They re-
quire the binding of very small electron populations into
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quantum dots with highly anisotropic confining poten-
tials. Nonetheless they pose a very challenging experi-
mental problem, for two reasons. One is that such
ordering in quantum dot arrays would make it possible to
study symmetry-breaking phase transitions in artificial
two-dimensional solid-like systems. The other is that
strong dipolar coupling between adjacent dots may even-
tually open a route to the use of quantum dot arrays for
computational purposes. One promising scheme, recently
put forward by Craig Lent and coworkers at Notre Dame
University, is based on cellular automata. It employs the
dipolar coupling between quantum dots to transfer infor-
mation between adjacent cells without connecting wires.

Such dipolar coupling can be demonstrated even
before the onset of any phase transition by studying the
far-infrared modes. A recent experiment at the Universi-
ty of Munich on classical (as distinguished from quantum)
circular dots placed on a rectangular lattice demonstrated
how the dipolar coupling manifests itself in the high-
frequency modes.?® Instead of the mode degeneracy that is
characteristic of a single circular dot in the absence of a
magnetic field (as shown in figure 4) one finds two modes
when circular dots are placed on a rectangular lattice so
that their spacing is much smaller in one direction than in
the other. This splitting provides a direct measure of the
relative strength of the dipolar coupling along the two
axes of the rectangular lattice. Splitting and softening of
the low-frequency mode is thus also a signature of dipolar
interaction in quantum dots. It can be used as a measure
of this interaction even before a symmetry-breaking phase
transition occurs. At the phase transition, where the
dynamic polarization becomes static, the low-frequency
infrared mode will go to zero frequency, reflecting the
absence of a net restoring force for the electron.

What's ahead?

One of the surprising results from the investigation of
quantum dot arrays has been that many aspects of
spectroscopic and transport phenomena can be described
classically—this despite the fact that quantum dots
contain few electrons and confinement lengths are compar-
able to their de Broglie wavelengths. In large part this is
due to the parabolic shape of the bare confining potentials
fabricated thus far. Such confining potentials are domi-
nated by charges relatively far from the confined electrons.
Thus the far-infrared spectra reflect most prominently
their harmonic-oscillator-like collective motion.



For antidot arrays, the observed dispersion of resonant
absorption frequency with increasing applied magnetic field
(a) is quite different from what one finds with ordinary
quantum dot arrays (as shown, for example, in figure 3b).
The antidot array with which these data were taken has a
period of 300 nm and a hole diameter of 200 nm; it was
made by deep mesa etching on a GalnAs—AllnAs
heterostructure. (Adapted from ref. 8.) The predicted
spectral response (b) of a single ballistically moving electron
at a Fermi energy of 25 meV in an antidot potential 40 mV
deep is calculated from a simple classical trajectory model.
The diagonal line indicates the cyclotron frequency.
(Adapted from ref. 9.) Figure 7

We thank Claus Dahl and Ulrich Merkt for very helpful comments
on the manuscript, and many colleagues in the field of nanostruc-
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Relative motion among the electrons, by contrast, will
become more easily visible when the confining potentials
become nonparabolic or when materials with nonparabo-
lic band structure come into use. One can achieve a
nonparabolic potential shape by bringing the charges that
control the confinement closer to the confined electrons.
Though successful attempts in that direction have already
been made, the nanolithographic technologies still need
further refinement. One ingenious, highly promising
route to tightly confined quantum dots uses patterned
substrates combined with multilayer epitaxy to grow very
small quantum wires and dots. With such an approach Eli
Kapon and colleagues at Bellcore demonstrated the first
successful operation of a quantum wire laser.?' It now
appears possible to use similar techniques to fabricate
quantum dots only a few tens of nanometers across, with
controllable size, confining potential and electron popula-
tion. Once such systems are realized we can expect to
observe more specific electronic spectra that clearly
exhibit spectral differences between quantum dot “hydro-
gen” and “helium.”

It remains an open question whether quantum dots
will ever be useful in the sense of forming the backbone for
some future nanoelectronic architecture based on cellular
automata or neural networks. Such developments appear
to be possible, but it will probably be many years before our
present concepts are confronted with the practical tests of
realizability, technological stability and tolerance. In the
shorter run, studies of quantum dots and the structures
that can be built with them are likely to produce important
new insights into fundamental physics issues such as the
effects of spin, single-electron charging, ballistic and
chaotic motion, commensurability and fractal dimension-
ality on the electronic properties of these artificial atom-
like structures.
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