
THE SPECTROSCOPY OF 
QUANTUM DOT ARRAYS 

Arrays of nanometer potential wells, fabricated at 
semiconductor interfaces, exhibit infrared absorption lines 
reminiscent of atoms, molecules and even crystal lattices. 

Detlef Heitmann and Jorg P. Kotthaus 

For three decades individual transistors in integrated 
semiconductor circuits have been getting smaller and 
smaller. Soon they will be approaching the 100-nano­
meter regime, where the classical description of diffusive 
electron motion breaks down and quantum concepts 
become important, bringing about fundamental changes 
in electronic and optical properties. Already in the widely 
used silicon MOSFET transistors, the interface between the 
semiconductor and the oxide layer serves as a potential 
well less than 10 nm wide. While electrons remain free to 
wander in the plane of the interface, their motion in the 
perpendicular direction is quantized by this very narrow 
well. Such two-dimensional electron systems, best real­
ized in high-mobility modulation-doped semiconductor 
heterostructures, have been found over the years to 
exhibit new and quite unexpected quantum phenomena, 
like the integral and fractional quantum Hall effects. 

The richness of new physics discovered in two­
dimensional semiconductor systems, as well as the prog­
ress in technologies for lateral patterning of such struc­
tures, has challenged many researchers to fabricate and 
study systems of still lower electronic dimensionality: 
quantum wires and quantum dots.1 (See the February 
1990 special issue of PHYSICS TODAY, the October 1992 
article by Leroy Chang and Leo Esaki, and the January 
1993 article by Marc Kastner.) Imposing ultrafine lateral 
confinement at length scales of about 100 nm on an 

Detlef Heitmann is a professor at the University of 
Hamburg's Institute for Applied Physics. Jorg Kotthaus is a 
professor of physics at the Ludwig-Maximillians University 
of Munich . 

56 PHYSICS TODAY JUNE 1993 

originally two-dimensional system will also quantize the 
electron motion in the lateral directions. If the original 
two-dimensional system defines the xy plane, a narrow 
confining potential acting in the x direction produces a 
quantum wire. Finally we come to the quantum dot, an ar­
tifical atom with a totally discrete energy spectrum, 
created by confining potentials in both the x and y 
directions. z- G 

An array of such quantum dots may be envisioned as 
a periodic potential landscape filled with electrons up to 
some Fermi level. (See figure 1a.) Because the orthogonal 
z confinement is usually much stronger than the in-plane 
confinement, the electron distribution in a quantum dot is 
pancake-like rather than spherical. When more electrons 
are injected into the lateral confining potential, they 
eventually spill over to create a topologically complemen­
tary structure of so-called antidots, which can be envi­
sioned as an array of island voids rising out of a two­
dimensional electron sea.7

-
9 (See figure lb.) 

Just as with real atoms, one expects to obtain 
information about the quantum-confined energy levels in 
these low-dimensional systems by optical studies of the 
electronic transitions. It turns out that the dynamic 
response of quantum dots exhibits a complex interplay of 
atom-like single-particle behavior and collective many­
body effects. 

Most of the experiments on low-dimensional electron 
systems are done with modulation-doped AlGaAs- GaAs 
heterostructures, because of their superior electron mobil­
ity. Let us recall some relevant parameters of gallium 
arsenide. Its dielectric constant E is 12, and the effective 
mass m • of the conduction electrons is only 7% of the free­
electron mass m0 • Thus the effective Rydberg energy R y •, 
given by m • R y l(m0 c

2
) , is about 6 milli-electron-volts, and 
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the effective Bohr radius a•, given by m 0 m0 / m*, is 10 
nanometers. That's almost 200 times the Bohr radius a0 

of the hydrogen atom. 
In a rectangular, infinitely deep GaAs potential well 

of width w, the energy difference t::.E between the first and 
second quantized levels is given by Ry *(TTa* ! w)2(22 -12

). 

If, for example, the well is 50 nm wide, that comes to 
6 meV. Thus the very small effective electron mass in 
GaAs lets one observe quantum effects beyond the 
broadening mechanisms in systems with dimensions 
accessible by modern lithographic techniques. Even 
higher quantization energies can be achieved in narrow­
bandgap semiconductors with correspondingly smaller 
effective masses. In indium-antimony devices,3 for exam­
ple, the effective electron mass is only 0.014m0 • But with 
InSb the challenge is to prepare devices of sufficiently high 
electron mobility. 

The spectroscopic range for optical studies of atom­
like transitions between quantized levels in quantum dots 
is the far infrared. At the relevant far-infrared wave­
lengths, the semiconducting materials are quite transpar­
ent at low temperatures in the absence of conduction 
electrons. We measure the small amount of absorption 
caused by the excitation of electron states in the quantum 
dots by comparing infrared transmission through an array 
with and without conducting electrons in the dots. 

At near-infrared and visible wavelengths, studies of 

Topology of arrays of quantum 
dots and antidots in a periodic 
potential landscape. a: When the 
level of the Fermi electron sea (blue) 
is low, the electrons are confined in 
quantum dots looking like isolated 
mountain lakes. b: When the Fermi 
level is raised, the electrons 
eventually spill over into a 
connected sea studded with 
quantum antidots (green). Figu_re 1 

such nanostructures involve transitions between valence 
band and conduction band states, and they are further 
complicated by electron-hole interactions. (See the article 
by Arto N urmikko and Aron Pinczuk on page 24 of this 
special issue.) 

Fabrication of quantum dots 
Two examples of quantum dot structures are sketched in 
figure 2a and 2b. Both are fabricated from modulation­
doped AlGaAs-GaAs heterostructures. The dopant is 
implanted in part of the AlGaAs layer, and the electrons 
are strongly confined in the GaAs at the interface, thus 
forming a two-dimensional electron system. A periodic 
array of photoresist dots defined by holographic lithog­
raphy1 serves as the mask for further processing. The 
"deep-mesa-etched" quantum dots of figure 2a are made 
by dry-etching deep grooves all the way into the active 
GaAs. The etching leaves behind a landscape of cylindrical 
mesas, each about 500 nm in diameter. The effective 
diameter w of the electronic system (typically 100 nm) is 
significantly smaller than this geometrical size, because 
some of the electrons from the doped AlGaAs region are 
trapped by surface states at the open etched sidewalls, 
where they help confine the conduction electrons to the 
inner reaches of the dot. Thus the boundary of the 
confining potential does not coincide with the physical 
sidewalls of the dot; it is formed electrostatically by the do-
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nor ions and fixed surface charges surrounding the dot. 

Figure 2b shows a semitransparent metal gate depos­
ited on the photoresist mask to form a textured capacitor. 
A negative voltage applied at the gate relative to a thin 
semitransparent contact layer electrically coupled to the 
active electron system above it causes the depletion of 
conduction electrons wherever the gate is closest to the 
AlGaAs-GaAs interface. Thus a device is created in which 
one can vary the Fermi level by tuning the voltage. As the 
electronic sea level falls, the homogeneous two-dimension­
al electron system becomes an antidot array and finally an 
array of quantum dots, as we saw in figure 1. Figure 2c is 
an electron micrograph of a tunable array of field-effect 
quantum dots on InSb with a period of 250 nm between ad-
jacent dots. · 

Far-infrared spectroscopy 
Far-infrared radiation can directly induce optical transi­
tions between the me V energy levels confined in the 
quantum dot. To achieve a detectable signal requires dot 
arrays with active sample areas on the order of 10 mm2

• 

Fabricating such a surface, with its 108 nearly identical 
quantum dots, poses quite a challenge. Typically such 
spectroscopic experiments are carried out at liquid helium 
temperatures to eliminate thermal broadening. Wave­
guides couple the radiation from a suitable source, either a 
Fourier-transform spectrometer or a far-infrared laser, to 
the sample, and a cryogenic detector measures the 
transmitted radiation. 

The experimenter often applies a magnetic field 
normal to the interface. One can exploit the interplay 
between electronic and magnetic confinement very effec­
tively to characterize lengths, energies and interactions in 
quantum dots. In a magnetic field B the cyclotron·energy · 
fleB! m* of the conduction electrons becomes comparable 
to the confining energy in the quantum dot. (In GaAs at 
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Two ways of making 
quantum dot arrays at an 
interface between GaAs 
(green) and n-doped AIGaAs 
(red). Both start with an array 
of photoresist dots serving as a 
mask. " Deep-mesa-etched" 
quantum dots (a) are 
fabricated by etching all the 
way down into the GaAs, 
leaving mesas typically 500 
nm wide. The potential wells 
(blue) in which the electrons 
are trapped near the interface 
are narrower than the mesas. 
A field-effect array (b) is made 
by depositing a 
semitransparent metal gate 
(purple) on the photoresist 
mask (yellow). Voltage 
applied between the gate and 
a semitransparent contact 
layer (between dashed lines) in 
the GaAs concentrates the 
interface electrons into 
potential wells where the gate 
is farthest away. A scanning 
electron micrograph (c, below) 
of a field-effect quantum dot 
array in an lnSb structure3 
shows photoresist dots 1 00 
nm wide covered by a metal 
gate layer. Figure 2 

1 tesla, the cyclotron energy is 1.8 meV.) Equivalently, 
the radius of the cyclotron orbit becomes comparable to 
the typical lateral confinement length. 

Figure 3a shows the relative change with frequency 
of far-infrared transmission through a square quantum dot 
array on GaAs with a spatial period of 500 nm, with and 
without an applied magnetic field. The gate voltage is 
chosen so that each dot contains about 50 electrons. This 
occupancy level can be directly deduced from the strength 
of the transmission signal integrated over frequency. The 
transmission coefficient is normalized to the transmission 
when the gate voltage is tuned to keep the dots empty. 

In the absence of an external magnetic field, the 
spectrum (blue curve in figure 3a) shows only one 
absorption resonance. That's somewhat surprising for so 



many electrons in each dot. The resonance occurs at a 
wavenumber of about 30 em - \ corresponding to a 
wavelength of 330 microns in the far infrared and a photon 
energy of 3.7 meV. If one imposes a 1.4-tesla magnetic 
field normal to the array plane, the resonance splits in two 
(red curve). Figure 3b shows how this splitting emerges 
with increasing magnetic field. While the lower branch 
decreases in frequency with increasing field, the upper 
branch increases toward the cyclotron resonance frequen­
cy. Surprisingly, one finds in such experiments that 
neither this dispersive splitting nor the absolute frequen­
cies depend strongly on the number of electrons per dot. 
That's quite different from what we are used to in ordinary 
atoms. This lack of sensitivity to electron population 
turns out to be a characteristic signature of parabolic 
confining potentials. 

Dipole excitations 
The explanation of the experimentally observed spectra is 
intimately connected with the shape of the confining 
potential. Model calculations show that the bare external 
confining potential for electrons in a field-effect quantum 
dot has a nearly parabolic shape.10 This shape can be 
understood from the charge distributions indicated in 
figure 2. The strong confinement of the conduction 
electrons along the growth direction of the heterostruc­
ture restricts their motion to the xy plane of the interface. 
Fixed donor charges in the AlGaAs layer, charged surface 
states and the spatially modulated electrostatic field in the 
gated structure define the equilibrium position of the 
conduction electrons in the center of the dot. Displacing 
these electrons in the xy plane produces a restoring force 
approximately linear in the displacement. Consequently 
the confining potential V(x ,y) is % m * n~ (x 2 + y 2

). That is 
to say, it is parabolic, with a characteristic frequency no 
determined by the electrostatic environment. 

The energy spectrum for a single electron confined by 
such a parabolic potential in the presence of a magnetic 
field was already calculated in 1928 by Vladimir Fock at 
Gottingen.U The dipole-allowed transitions in this spec­
trum have energies3 

(1) 

where we is the cyclotron frequency for a given magnetic 
field . This equation describes well the observed dispersion 
of the split absorption resonance with increasing magnetic 
field, shown in figure 3b. 

But there is more than one electron in a quantum dot. 
For a small number of electrons per dot it is possible to cal­
culate many-electron wavefunctions and energy states.12 

The many-body spectrum at zero magnetic field is . then 
governed by two characteristic energies: the quantum 
confinement energy Eq and the Coulomb energy Ec. For 
the simplest case of two parabolically confined electrons, 
which one might call the "helium" of the quantum dot 
atoms, these parameters may be expressed in terms of l0 , 

the confinement length of the harmonic oscillator, as 
Eq = fN(m*fo), and Ec = e21(41Tee0l0 ), where l0 is given by 

~fzlm*n0 . The energy ratio Ec!Eq is simply l0 / a*. 
With increasing l0 both energies decrease, but the 

Coulomb energy increasingly dominates over the confine­
ment energy. Figure 4 compares two different calcula­
tions of the energy spectrum for two electrons in a 
parabolic well with l0 =a* . The spectrum on the left 
assumes the two electrons to be independent of each other; 
the right-hand spectrum includes their mutual interac­
tion. We see that the interaction increases the ground 
state energy of the two-electron system. This "Coulomb 
charging energy" is the cost for squeezing the second 
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Far-infrared resonance freqencies due to 
electronic excitations in a quantum dot array 
on GaAs. a: Transmission coeffic ient plotted 
against w avenumber shows a single 
absorption resonance in the absence of an 
applied magnetic field (blue curve). In a 
1 .4-tesla field (red curve) the resonance has 
split in two. b: The dispersion of these two 
resonances widens with increasing applied 
magnetic field . (Adapted from 
ref. 6.) Figure 3 
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electron into the quantum dot. The electron-electron 
interaction also lifts some of the degeneracies of the one­
electron energy levels, giving rise to a complex spectrum 
with singlet and triplet states. 

A unique spectroscopic property of parabolically 
confined electrons is that the dipole-allowed transitions 
for two interacting electrons have exactly the same 
energy, /in0, as the one-electron transition. Moreover, this 
result also holds for an arbitrary number of electrons in 
the dot. The Hamiltonian for an interacting, parabolically 
confined many-electron system is separable into two parts 
describing, respectively, the center-of-mass motion of the 
whole electron system and the relative internal motions of 
the electronsY Furthermore, because the far-infrared 
wavelengths in the experiments are ten thousand times 
larger than the dot diameter, the dipole approximation is 
very well fulfilled and the exciting electric fields couple 
only to the center-of-mass motion. Thus the optical dipole 
response of a quantum dot with parabolic confinement, in 
the absence of a magnetic field, represents a rigid 
collective center-of-mass excitation at n0, the frequency of 
the bare external potential. It is independent of the 
number of electrons confined in the dot and their Coulomb 
interactions. This result is a generalization of the famous 
Kohn theorem: In 1961 Walter Kohn, at the University of 
California at San Diego, showed that the cyclotron 
resonance frequency in a translationally invariant system 
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is not affected by electron-electron interactions. 14 

Because the far-infrared response of the electron 
system in a quantum dot reflects primarily the rigid 
center-of mass motion, it is appealing to approach these 
excitations also by way of a model of classical collective 
modes. Equation 1, the dispersion equation one gets from 
quantum mechanics, can also be derived classically as 
describing a plasma oscillation, or a depolarization mode, 
in which, in the absence of a magnetic field, a disk of 
conduction electrons moves back and forth rigidly with 
respect to the fixed donor ions. 15 As the resonance splits 
and separates with increasing magnetic field, the cyclo­
tron orbit eventually becomes much smaller than the dot 
diameter. Then the classical model describes the two 
resonant frequencies as follows: The high-frequency mode 
is a magnetoplasma oscillation that approaches the 
cyclotron resonance. In this mode all electrons orbit 
coherently around individual centers at the cyclotron 
frequency and hardly feel the confinement of the dot 
potential. The lower-frequency mode reflects a collective 
motion of the centers of all the cyclotron orbits around the 
center of the dot. In this mode each cyclotron-orbit center 
drifts around the center of the dot under the joint 
influence of the confining electrostatic field E and the 
imposed magnetic field B, with a drift velocity vd given by 
El B. The corresponding frequency at large magnetic 
fields, vd / r = n& I we, thus decreases as 1/ B. For a square­
well dot potential this mode becomes localized at the edge 
of the dot in a strong magnetic field . Therefore it is often 
called an edge magnetoplasmon. 

The generalized Kohn theorem clarifies why optical 
spectroscopy on parabolically confined quantum dots is 

Calculated energy spectra 
for two independent 

electrons (left) and two 
interacting electrons (right) 

confined in the parabolic 
potential of a quantum dot 
whose harmonic oscillator 

radius equals its effective 
Bohr radius . Coupling 

raises and splits the 
degenerate independent­

electron levels into 
sublevels characterized 

(and labeled) by total spin 
(1 or 0). But the energy 

11!10 of the dipole-allowed 
transition (arrows) remains 

the same, unaffected by the 
interaction between 

electrons. (Adapted from 
ref. 12.) Figure 4 
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much less specific than it is on ordinary atoms. It also in­
dicates that a nonparabolic potential should make it 
possible to access relative electron motion spectroscopical­
ly in quantum dots. Additional, weaker fine structure has 
been spectroscopically observed in quantum dot arrays, 
manifesting the excitation of internal motions.4·s But 
because such fine structure has thus far only been 
observed in quantum dots larger than a •, the character of 
these additional excitations is still predominantly collec­
tive. In spectroscopic studies on quantum wires one also 
finds that a single collective center-of-mass mode domi­
nates the far-infrared response.u s·17 

Charging with single electrons 
The generalized Kohn theorem tells us that for parabolic 
confinement one cannot determine the number of elec­
trons in a quantum dot atom from its resonant frequency. 
But far-infrared spectroscopy gives us not only the 
resonant frequency but also the absorption strength, 
which is a measure of the electron population per dot. For 
a parabolic potential at B = 0 all absorption occurs at a 
single resonant frequency. It follows that absorption 
strength increases in direct proportion to the number of 
electrons in the quantum dot. A careful measurements of 
absorption strength versus gate voltage in a field-effect 
quantum dot array with a spatial periodicity of 200 nm is 
displayed in figure 5. Surprisingly, one finds that the 
absorption at low electron occupancy increases step-wise 
with gate voltage. Starting with a single electron in each 
dot, the electron population increases by one with each 
step. This behavior of the infrared absorption strength 
shows that most of the 108 dots in the array change their 
charge by one electron at just about the same gate voltage. 
At first glance that's rather puzzling. 

The cause of this well-defined charging behavior lies 
in the relatively large Coulomb charging energy required 
to squeeze an additional electron into a quantum dot. 
(Recall figure 4.) One gets a rough estimate of the 
Coulomb charging energy classically from what might be 
called the "capacitance" of the dot. Take the simple model 
of a parallel-plate capacitor, where one plate is formed by 
the quantum dot electron disk with a diameter defined by 
the extent of the wavefunction in a harmonic oscillator. 
That diameter is 54 nm for the experiments whose results 
are shown in figure 5. (Note that this "capacitance" varies 
with increasing charge.) Then, taking the distance to both 
the front gate and the back contact layer into account, one 
gets a capacitance C of 5 X 10- 18 farads and a related 
charging energy, given by e2/ 2C, of about 15 meV. This en­
ergy is significantly larger than the thermal energy kT. It 
ensures that Coulomb charging effects are smeared out 
neither by temperature nor by unavoidable potential 
fluctuations. 

Experimentally one can obtain a more reliable value 
of the Coulomb charging energy from the gate voltage 
interval D. Vg it takes to add one additional electron to each 
dot.s In figure 5 it takes 30 m V to increase the dot 
occupancy from two to three electrons. The capacitance 
equals e/ D. Vg, so that the charging energy e2 / 2C equals 
e!:J. Vg / 2, or 15 me V, which is just what the geometrical 
estimate gave. The observation of such single-electron 
charging phenomena, now widely studied in small metal­
lic and semiconductor systems, 18 assures us that present 
fabrication technologies can produce extremely uniform 
arrays of quantum dots. That capability opens a wide field 
for the study of detailed quantum effects and interactions 
in controlled few-electron systems. 

Artificial molecules and solids 
Having prepared uniform arrays of artificial atoms, it is 



natural that one starts to look for quasimolecular and 
solid-like interaction phenomena between quantum dots. 
The voltage-tunable confining potentials that let one add 
single electrons to quantum dots in large arrays also make 
it possible to fabricate artificial quantum dot "solids." To 
accomplish that, one electrostatically controls the cou­
pling between adjacent dots by adjusting the Fermi sea 
level sketched in figure 1. Raising the Fermi energy in a 
dot array will eventually open narrow conducting chan­
nels where the dot perimeters touch. In practice this is 
done by raising the gate voltage in a suitable field-effect 
dot array. Once the dots become electrically connected, 
new lines appear in the infrared transmission spectra that 
manifest the coupling in a characteristic manner quite 
analogous to what we know well from atoms interacting in 
molecules or solids. 

The magnetic dispersion of the infrared resonances in 
such an array is shown in figure 6 for dots that are weakly 
coupled by narrow conducting channels in the borderline 
case between dots and antidots.5 (See the inset.) In this 
case two more spectral lines are observed in addition to the 
characteristic quantum dot modes. The new lowest­
frequency mode can be understood as representing the 
center-of-mass motion of the electrons guided by the E X B 
drift of the cyclotron orbits between two adjacent quantum 
dots. It is a characteristic edge-magnetoplasmon-like 
excitation of a diatomic quantum dot molecule, with 
charge moving ballistically back and forth through the 
narrow constriction between two adjacent dots. Other 
possible quasimolecular modes experience stronger damp­
ing because they involve passage through two or more 
narrow channels and are therefore no longer discernible 
in the experimental spectra. 

As we see in figure 6, the high-frequency single-dot 
branch splits in two when the magnetic field becomes 
strong enough to render the cyclotron orbits small enough 
to fit into the narrow channels beween adjacent dots. The 
new uppermost branch can be identified as a two­
dimensional bulk-like plasmon mode with its wavelength 
determined by the period of the dot array. Thus it is 
analogous to a phonon mode of the quantum dot solid, 
directly reflecting the long-range coupling in the array 
structure when the Fermi level is high enough for narrow 
channels to form between dots. 

It might seem surprising that the center-of-mass mode 
description, which is strictly valid only for parabolic 
confining potentials, remains useful for the molecular 
excitation discussed above, where the potential has 
certainly acquired substantial nonparabolic terms. The 
reason is that the far-infrared light uniformly irradiating 
the array couples best to the coherent motion of the 
conduction electrons with respect to the background 
charge, even if the bare confining potential becomes 
rather non parabolic. This becomes even more apparent at 
higher Fermi levels, when dots, or antidots, become 
strongly coupled. 

Collective motion among the antidots 
Another type of artificial lateral super lattice is the antidot 
array. As sketched in figure lb, such an array consists of 
periodically placed repulsive potentials in the plane of a 
two-dimensional electron system. One can generate 
arrays of antidots electrostatically with suitably patterned 
gates. The periodic arrays can also be made with focused 
ion beams or by etching geometric holes into the hetero­
structure. 

The magnetic dispersion of far-infrared excitation 
frequencies in such an antidot array is shown in figure 7a. 
The array was prepared at the Max Planck Institute in 
Stuttgart by etching deep holes into a modulation-doped 
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Steplike increase of far-infra red absorption 
(integrated over freq uency) with changing gate 
voltage in a square field-effect array of 108 

quantum dots shows that the dots increase 
their occupancies almost simultaneously, one 
electron at a time. (Adapted from 
ref. 6.) Figure 5 

GalnAs-AllnAs single quantum well.8 Because of the 
relatively small lateral electron depletion at the etched 
sidewalls of the GalnAs region, one can create holes of 
very small electrical radius. The two infrared resonances 
in figure 7a have a magnetic field dispersion that is 
distinctly different from what one gets with quantum dots. 
The difference can be understand as follows: At high B the 
dispersion of both branches in figure 7 a resembles the 
excitation spectrum we have seen for quantum dots. The 
higher-frequency mode at high magnetic field intensities, 
where it approaches the cyclotron frequency, represents a 
cyclotron-like motion in the region between the antidots. 
At small B this mode shows a weak but distinct negative 
dispersion; that is to say, the resonant frequency decreases 
with increasing B. This is a signature that the mode 
represents, at small B, a kind of one-dimensional plasmon 
that propagates along the charged stripes between the 
geometrical holes with a wavelength given by the periodic­
ity of the array. 17 

The lower-frequency branch eventually falls with 
increasing B, as it does in dot arrays. This branch 
represents an edge magnetoplasmon mode. In dot arrays, 
the individual electrons of this collective mode execute 
skipping orbits along the inner boundary of the dot. (See 
the red trajectory in the inset of figure 6.) For antidots, 
however, the individual electrons within the collective 
excitation perform skipping orbits around the hole. 
Because the electron orbits grow with decreasing B, the 
electrons can eventually perform classical cyclotron-like 
orbits around the geometrical hole. Therefore, in contrast 
to what one observes for dots, the edge magnetoplasmon 
resonance of the low-frequency branch changes its charac­
ter as B approaches zero: The frequency approaches the 
decreasing cyclotron frequency. The collective edge 
magnetoplasmon excitation at large B has gradually gone 
over to a classical cyclotron excitation. For the sample 
characterized in figure 7a, the classical cyclotron radius 
comes to equal the radius of the holes at a field strength of 
about 1 tesla. That is indeed where the turnover occurs. 
Experiments verify that the dispersion turns over at 
higher B when one uses smaller holes, as this model 
predicts. 

Antidot arrays also exhibit intriguing magnetoresist-

PHYSICS TODAY JUNE 1993 61 



Four dispersion modes, instead of the usual two (solid 
curves), appear in a plot of resonant infrared absorption 

frequency against applied magnetic field when the quantum 
dots in the absorbing array are coupled to their neighbors by 

weak electrical channels, as indicated in the inset. The lowest 
of the four modes (dashed line) can be interpreted as a 

quasimolecular excitation involving adjacent pairs of quantum 
dots, as indicated by the red trajectory in the inset. The 

highest-frequency mode is a phonon-like collective excitation 
of the whole array behaving like a two-dimensional solid. 

The spacing between quantum dots in the square lattice array 
is 450 nm, and each dot houses about 80 electrons. (Adapted 

from ref. 5.) Figure 6 

ance properties that have been successfully explained by 
classical ballistic trajectory models.7 ·

9 Whenever the 
classical cyclotron diameter approaches the period of the 
antidot array or multiples thereof, the magnetoresistance 
exhibits "commensurability oscillations" that arise from 
an interplay between chaotic and stationary trajectories. 
The success of such classical models has triggered an 
attempt to use the same kind of trajectory calculation to 
model the high-frequency electronic modes in more 
complex structures such as arrays of coupled dots.9 In 
such a calculation one uses the classical equations of 
motion to determine the trajectories of a single electron 
moving ballistically at constant Fermi energy in the 
landscape of the periodic potential and an imposed 
magnetic field. Using randomly chosen initial coordinates 
and velocities, one computes large sets of trajectories. The 
high-frequency response is then calculated by Fourier 
analysis of the velocity component along the high­
frequency electric field . A phenomenological damping 
parameter simulates the destruction of deterministic 
ballistic motion by random scatterers. 

For a single electron confined in a parabolic quantum 
dot such a classical model yields the same resonance 
frequencies as the quantum mechanical model from which 
one gets equation 1. The results of such a calculation for 
an antidot array are displayed in figure 7b. The resonant 
frequencies calculated with a model potential similar to 
the screened periodic potential of the experimental 
devices come out lower than the observed frequencies. 
That's because the collective center-of-mass motion in the 
experiments tests the bare, unscreened potential. Be­
cause the single-electron trajectory model cannot include 
such collective effects, it reflects the softer, screened 
potential. The one-particle approach also fails to describe 
the negative B dispersion of the high-frequency resonance 
branch. Nonetheless this simple trajectory model does 
reproduce most features of the observed magnetic field 
dispersion for the complex excitations in an antidot array. 

Dipolar coupling 
An additional, distinctly different coupling mechanism 
can arise from the dipolar Coulomb interaction between 
electrically isolated quantum dots. This mechanism is 
most easily envisioned by considering a single electron 
bound in the plane of a quantum dot by a fixed positive 
charge located above that plane. A displacement of the 
electron from equilibrium induces a dipole moment in the 
plane, which in turn can polarize an adjacent quantum 
dot. Such classical dipolar interdot interaction has been 
considered for different quantum dot geometries. Under 
sufficiently favorable conditions it is predicted to give rise 
to a ferroelectric or antiferroelectric phase transition. 19 

These conditions for a so-called polarization catastro­
phe may not be realizable for some time to come. They re­
quire the binding of very small electron populations into 
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quantum dots with highly anisotropic confining poten­
tials. Nonetheless they pose a very challenging experi­
mental problem, for two reasons. One is that such 
ordering in quantum dot arrays would make it possible to 
study symmetry-breaking phase transitions in artificial 
two-dimensional solid-like systems. The other is that 
strong dipolar coupling between adjacent dots may even­
tually open a route to the use of quantum dot arrays for 
computational purposes. One promising scheme, recently 
put forward by Craig Lent and coworkers at Notre Dame 
University, is based on cellular automata. It employs the 
dipolar coupling between quantum dots to transfer infor­
mation between adjacent cells without connecting wires. 

Such dipolar coupling can be demonstrated even 
before the onset of any phase transition by studying the 
far-infrared modes. A recent experiment at the Universi­
ty of Munich on classical (as distinguished from quantum) 
circular dots placed on a rectangular lattice demonstrated 
how the dipolar coupling manifests itself in the high­
frequency modes. 20 Instead of the mode degeneracy that is 
characteristic of a single circular dot in the absence of a 
magnetic field (as shown in figure 4) one finds two modes 
when circular dots are placed on a rectangular lattice so 
that their spacing is much smaller in one direction than in 
the other. This splitting provides a direct measure of the 
relative strength of the dipolar coupling along the two 
axes of the rectangular lattice. Splitting and softening of 
the low-frequency mode is thus also a signature of dipolar 
interaction in quantum dots. It can be used as a measure 
of this interaction even before a symmetry-breaking phase 
transition occurs. At the phase transition, where the 
dynamic polarization becomes static, the low-frequency 
infrared mode will go to zero frequency, reflecting the 
absence of a net restoring force for the electron. 

What's ahead? 
One of the surprising results from the investigation of 
quantum dot arrays has been that many aspects of 
spectroscopic and transport phenomena can be described 
classically-this despite the fact that quantum dots 
contain few electrons and confinement lengths are compar­
able to their de Broglie wavelengths. In large part this is 
due to the parabolic shape of the bare confining potentials 
fabricated thus far. Such confining potentials are domi­
nated by charges relatively far from the confined electrons. 
Thus the far-infrared spectra reflect most prominently 
their harmonic-oscillator-like collective motion. 
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Relative motion among the electrons, by contrast, will 
become more easily visible when the confining potentials 
become nonparabolic or when materials with nonparabo­
lic band structure come into use. One can achieve a 
non parabolic potential shape by bringing the charges that 
control the confinement closer to the confined electrons. 
Though successful attempts in that direction have already 
been made, the nanolithographic technologies still need 
further refinement. One ingenious, highly promising 
route to tightly confined quantum dots uses patterned 
substrates combined with multilayer epitaxy to grow very 
small quantum wires and dots. With such an approach Eli 
Kapon and colleagues at Bellcore demonstrated the first 
successful operation of a quantum wire laser.21 It now 
appears possible to use similar techniques to fabricate 
quantum dots only a few tens of nanometers across, with 
controllable size, confining potential and electron popula­
tion. Once such systems are realized we can expect to 
observe more specific electronic spectra that clearly 
exhibit spectral differences between quantum dot "hydro­
gen" and "helium." 

It remains an open question whether quantum dots 
will ever be useful in the sense of forming the backbone for 
some future nanoelectronic architecture based on cellular 
automata or neural networks. Such developments appear 
to be possible, but it will probably be many years before our 
present concepts are confronted with the practical tests of 
realizability, technological stability and tolerance. In the 
shorter run, studies of quantum dots and the structures 
that can be built with them are likely to produce important 
new insights into fundamental physics issues such as the 
effects of spin, single-electron charging, ballistic and 
chaotic motion, commensurability and fractal dimension­
ality on the electronic properties of these artificial atom­
like structures. 

For antidot arrays, the observed dispersion of resonant 
absorption frequency with increasing app lied magnetic field 
(a) is qu ite different from what one finds with ordinary 
quantum dot arrays (as shown, for example, in figure 3b) . 
The antidot array with which these data were taken has a 
period of 300 nm and a hole diameter of 200 nm; it was 
made by deep mesa etching on a GalnAs-AI InAs 
heterostructure. (Adapted from ref. 8.) The predicted 
spectral response (b) of a single ballistically moving electron 
at a Fermi energy of 25 meV in an antidot potential 40 mV 
deep is calcu lated from a simple classical trajectory model. 
The diagonal line indicates the cyclotron frequency. 
(Adapted from ref. 9.) Figure 7 
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